

A	Philosophy	of	Software	Design

John	Ousterhout
Stanford	University

A	Philosophy	of	Software	Design
by	John	Ousterhout

Copyright	©	2018	John	K.	Ousterhout.
All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	in	any	form	or	by	any	means,	without
permission	in	writing	from	the	author.
Published	by	Yaknyam	Press,	Palo	Alto,	CA.

Cover	design	by	Pete	Nguyen	and	Shirin	Oreizy	(www.hellonextstep.com).

Printing	History:
April	2018:																First	Edition	(v1.0)
November	2018:								First	Edition	(v1.01)

ISBN	978-1-7321022-0-0

Digital	book(s)	(epub	and	mobi)	produced	by	Booknook.biz.

http://www.hellonextstep.com
http://Booknook.biz

Contents

Preface

1				Introduction

1.1							How	to	use	this	book

2				The	Nature	of	Complexity

2.1							Complexity	defined
2.2							Symptoms	of	complexity
2.3							Causes	of	complexity
2.4							Complexity	is	incremental
2.5							Conclusion

3				Working	Code	Isn’t	Enough

3.1							Tactical	programming
3.2							Strategic	programming
3.3							How	much	to	invest?
3.4							Startups	and	investment
3.5							Conclusion

4				Modules	Should	Be	Deep

4.1							Modular	design
4.2							What’s	in	an	interface?
4.3							Abstractions
4.4							Deep	modules
4.5							Shallow	modules
4.6							Classitis
4.7							Examples:	Java	and	Unix	I/O
4.8							Conclusion

5				Information	Hiding	(and	Leakage)

5.1							Information	hiding
5.2							Information	leakage
5.3							Temporal	decomposition
5.4							Example:	HTTP	server
5.5							Example:	too	many	classes
5.6							Example:	HTTP	parameter	handling
5.7							Example:	defaults	in	HTTP	responses
5.8							Information	hiding	within	a	class
5.9							Taking	it	too	far
5.10						Conclusion

6				General-Purpose	Modules	are	Deeper

6.1							Make	classes	somewhat	general-purpose
6.2							Example:	storing	text	for	an	editor
6.3							A	more	general-purpose	API
6.4							Generality	leads	to	better	information	hiding
6.5							Questions	to	ask	yourself
6.6							Conclusion

7				Different	Layer,	Different	Abstraction

7.1							Pass-through	methods
7.2							When	is	interface	duplication	OK?
7.3							Decorators
7.4							Interface	versus	implementation
7.5							Pass-through	variables
7.6							Conclusion

8				Pull	Complexity	Downwards

8.1							Example:	editor	text	class
8.2							Example:	configuration	parameters
8.3							Taking	it	too	far
8.4							Conclusion

9				Better	Together	Or	Better	Apart?

9.1							Bring	together	if	information	is	shared

9.2							Bring	together	if	it	will	simplify	the	interface
9.3							Bring	together	to	eliminate	duplication
9.4							Separate	general-purpose	and	special-purpose	code
9.5							Example:	insertion	cursor	and	selection
9.6							Example:	separate	class	for	logging
9.7							Example:	editor	undo	mechanism
9.8							Splitting	and	joining	methods
9.9							Conclusion

10		Define	Errors	Out	Of	Existence

10.1					Why	exceptions	add	complexity
10.2					Too	many	exceptions
10.3					Define	errors	out	of	existence
10.4					Example:	file	deletion	in	Windows
10.5					Example:	Java	substring	method
10.6					Mask	exceptions
10.7					Exception	aggregation
10.8					Just	crash?
10.9					Design	special	cases	out	of	existence
10.10			Taking	it	too	far
10.11			Conclusion

11		Design	it	Twice

12		Why	Write	Comments?	The	Four	Excuses

12.1					Good	code	is	self-documenting
12.2					I	don’t	have	time	to	write	comments
12.3					Comments	get	out	of	date	and	become	misleading
12.4					All	the	comments	I	have	seen	are	worthless
12.5					Benefits	of	well-written	comments

13		Comments	Should	Describe	Things	that	Aren’t	Obvious	from	the	Code

13.1					Pick	conventions
13.2					Don’t	repeat	the	code
13.3					Lower-level	comments	add	precision

13.4					Higher-level	comments	enhance	intuition
13.5					Interface	documentation
13.6					Implementation	comments:	what	and	why,	not	how
13.7					Cross-module	design	decisions
13.8					Conclusion
13.9					Answers	to	questions	from	Section	13.5

14		Choosing	Names

14.1					Example:	bad	names	cause	bugs
14.2					Create	an	image
14.3					Names	should	be	precise
14.4					Use	names	consistently
14.5					A	different	opinion:	Go	style	guide
14.6					Conclusion

15		Write	The	Comments	First

15.1					Delayed	comments	are	bad	comments
15.2					Write	the	comments	first
15.3					Comments	are	a	design	tool
15.4					Early	comments	are	fun	comments
15.5					Are	early	comments	expensive?
15.6					Conclusion

16		Modifying	Existing	Code

16.1					Stay	strategic
16.2					Maintaining	comments:	keep	the	comments	near	the	code
16.3					Comments	belong	in	the	code,	not	the	commit	log
16.4					Maintaining	comments:	avoid	duplication
16.5					Maintaining	comments:	check	the	diffs
16.6					Higher-level	comments	are	easier	to	maintain

17		Consistency

17.1					Examples	of	consistency
17.2					Ensuring	consistency
17.3					Taking	it	too	far

17.4					Conclusion

18		Code	Should	be	Obvious

18.1					Things	that	make	code	more	obvious
18.2					Things	that	make	code	less	obvious
18.3					Conclusion

19		Software	Trends

19.1					Object-oriented	programming	and	inheritance
19.2					Agile	development
19.3					Unit	tests
19.4					Test-driven	development
19.5					Design	patterns
19.6					Getters	and	setters
19.7					Conclusion

20		Designing	for	Performance

20.1					How	to	think	about	performance
20.2					Measure	before	modifying
20.3					Design	around	the	critical	path
20.4					An	example:	RAMCloud	Buffers
20.5					Conclusion

21		Conclusion

Index

Summary	of	Design	Principles

Summary	of	Red	Flags

Preface

People	 have	 been	writing	 programs	 for	 electronic	 computers	 for	more	 than	 80
years,	 but	 there	 has	 been	 surprisingly	 little	 conversation	 about	 how	 to	 design
those	 programs	 or	 what	 good	 programs	 should	 look	 like.	 There	 has	 been
considerable	 discussion	 about	 software	 development	 processes	 such	 as	 agile
development	 and	 about	 development	 tools	 such	 as	 debuggers,	 version	 control
systems,	 and	 test	 coverage	 tools.	 There	 has	 also	 been	 extensive	 analysis	 of
programming	 techniques	 such	 as	 object-oriented	 programming	 and	 functional
programming,	 and	 of	 design	 patterns	 and	 algorithms.	All	 of	 these	 discussions
have	 been	 valuable,	 but	 the	 core	 problem	 of	 software	 design	 is	 still	 largely
untouched.	 David	 Parnas’	 classic	 paper	 “On	 the	 Criteria	 to	 be	 used	 in
Decomposing	Systems	into	Modules”	appeared	in	1971,	but	the	state	of	the	art	in
software	 design	 has	 not	 progressed	much	 beyond	 that	 paper	 in	 the	 ensuing	 45
years.

The	 most	 fundamental	 problem	 in	 computer	 science	 is	 problem
decomposition:	how	to	take	a	complex	problem	and	divide	it	up	into	pieces	that
can	be	 solved	 independently.	Problem	decomposition	 is	 the	 central	 design	 task
that	programmers	face	every	day,	and	yet,	other	than	the	work	described	here,	I
have	 not	 been	 able	 to	 identify	 a	 single	 class	 in	 any	 university	 where	 problem
decomposition	 is	 a	 central	 topic.	 We	 teach	 for	 loops	 and	 object-oriented
programming,	but	not	software	design.

In	 addition,	 there	 is	 a	 huge	 variation	 in	 quality	 and	 productivity	 among
programmers,	but	we	have	made	little	attempt	to	understand	what	makes	the	best
programmers	so	much	better	or	to	teach	those	skills	in	our	classes.	I	have	talked
with	 several	people	 I	 consider	 to	be	great	programmers,	 but	most	of	 them	had
difficulty	articulating	specific	 techniques	 that	give	 them	their	advantage.	Many
people	assume	that	software	design	skill	is	an	innate	talent	that	cannot	be	taught.
However,	there	is	quite	a	bit	of	scientific	evidence	that	outstanding	performance
in	many	fields	is	related	more	to	high-quality	practice	than	innate	ability	(see,	for
example,	Talent	is	Overrated	by	Geoff	Colvin).

For	 many	 years	 these	 issues	 have	 perplexed	 and	 frustrated	 me.	 I	 have
wondered	whether	software	design	can	be	 taught,	and	 I	have	hypothesized	 that

design	 skill	 is	 what	 separates	 great	 programmers	 from	 average	 ones.	 I	 finally
decided	 that	 the	 only	way	 to	 answer	 these	 questions	was	 to	 attempt	 to	 teach	 a
course	on	 software	design.	The	 result	 is	CS	190	at	Stanford	University.	 In	 this
class	 I	 put	 forth	 a	 set	 of	 principles	 of	 software	 design.	 Students	 then	 work
through	a	series	of	projects	to	assimilate	and	practice	the	principles.	The	class	is
taught	 in	 a	 fashion	 similar	 to	 a	 traditional	English	writing	class.	 In	an	English
class,	students	use	an	iterative	process	where	they	write	a	draft,	get	feedback,	and
then	 rewrite	 to	make	 improvements.	 In	CS	 190,	 students	 develop	 a	 substantial
piece	 of	 software	 from	 scratch.	We	 then	 go	 through	 extensive	 code	 reviews	 to
identify	design	problems,	and	students	revise	their	projects	to	fix	the	problems.
This	allows	students	to	see	how	their	code	can	be	improved	by	applying	design
principles.

I	 have	 now	 taught	 the	 software	 design	 class	 three	 times,	 and	 this	 book	 is
based	on	 the	design	principles	 that	 emerged	 from	 the	class.	The	principles	 are
fairly	 high	 level	 and	 border	 on	 the	 philosophical	 (“Define	 errors	 out	 of
existence”),	 so	 it	 is	 hard	 for	 students	 to	 understand	 the	 ideas	 in	 the	 abstract.
Students	learn	best	by	writing	code,	making	mistakes,	and	then	seeing	how	their
mistakes	and	the	subsequent	fixes	relate	to	the	principles.

At	 this	point	you	may	well	be	wondering:	what	makes	me	 think	I	know	all
the	answers	about	software	design?	To	be	honest,	I	don’t.	There	were	no	classes
on	software	design	when	I	learned	to	program,	and	I	never	had	a	mentor	to	teach
me	 design	 principles.	 At	 the	 time	 I	 learned	 to	 program,	 code	 reviews	 were
virtually	 nonexistent.	 My	 ideas	 about	 software	 design	 come	 from	 personal
experience	 writing	 and	 reading	 code.	 Over	 my	 career	 I	 have	 written	 about
250,000	 lines	 of	 code	 in	 a	 variety	 of	 languages.	 I’ve	 worked	 on	 teams	 that
created	three	operating	systems	from	scratch,	multiple	file	and	storage	systems,
infrastructure	 tools	 such	 as	 debuggers,	 build	 systems,	 and	 GUI	 toolkits,	 a
scripting	language,	and	interactive	editors	for	 text,	drawings,	presentations,	and
integrated	 circuits.	 Along	 the	 way	 I’ve	 experienced	 firsthand	 the	 problems	 of
large	systems	and	experimented	with	various	design	techniques.	In	addition,	I’ve
read	a	considerable	amount	of	code	written	by	other	people,	which	has	exposed
me	to	a	variety	of	approaches,	both	good	and	bad.

Out	of	all	of	this	experience,	I’ve	tried	to	extract	common	threads,	both	about
mistakes	 to	 avoid	 and	 techniques	 to	 use.	 This	 book	 is	 a	 reflection	 of	 my
experiences:	 every	 problem	 described	 here	 is	 one	 that	 I	 have	 experienced

personally,	and	every	suggested	technique	is	one	that	I	have	used	successfully	in
my	own	coding.

I	 don’t	 expect	 this	 book	 to	 be	 the	 final	word	 on	 software	 design;	 I’m	 sure
there	are	valuable	techniques	that	I’ve	missed,	and	some	of	my	suggestions	may
turn	out	to	be	bad	ideas	in	the	long	run.	However,	I	hope	that	the	book	will	start	a
conversation	 about	 software	 design.	Compare	 the	 ideas	 in	 this	 book	with	 your
own	experiences	and	decide	for	yourself	whether	the	approaches	described	here
really	 do	 reduce	 software	 complexity.	 This	 book	 is	 an	 opinion	 piece,	 so	 some
readers	will	 disagree	with	 some	 of	my	 suggestions.	 If	 you	 do	 disagree,	 try	 to
understand	why.	I’m	interested	in	hearing	about	things	that	work	for	you,	things
that	don’t	work,	and	any	other	ideas	you	may	have	about	software	design.	I	hope
that	 the	 ensuing	 conversations	 will	 improve	 our	 collective	 understanding	 of
software	design.	I	will	incorporate	what	I	learn	in	future	editions	of	this	book.

The	best	way	to	communicate	with	me	about	the	book	is	to	send	email	to	the
following	address:

software-design-book@googlegroups.com

I’m	 interested	 in	 hearing	 specific	 feedback	 about	 the	 book,	 such	 as	 bugs	 or
suggestions	for	improvement,	as	well	as	general	thoughts	and	experiences	related
to	software	design.	I’m	particularly	interested	in	compelling	examples	that	I	can
use	 in	 future	 editions	 of	 the	 book.	 The	 best	 examples	 illustrate	 an	 important
design	principle	and	are	simple	enough	to	explain	in	a	paragraph	or	two.	If	you
would	 like	 to	 see	 what	 other	 people	 are	 saying	 on	 the	 email	 address	 and
participate	in	discussions,	you	can	join	the	Google	Group	software-design-book.

If	for	some	reason	the	software-design-book	Google	Group	should	disappear
in	 the	 future,	 search	 on	 the	 Web	 for	 my	 home	 page;	 it	 will	 contain	 updated
instructions	 for	 how	 to	 communicate	 about	 the	 book.	 Please	 don’t	 send	 book-
related	email	to	my	personal	email	address.

I	recommend	that	you	take	the	suggestions	in	this	book	with	a	grain	of	salt.
The	 overall	 goal	 is	 to	 reduce	 complexity;	 this	 is	 more	 important	 than	 any
particular	principle	or	idea	you	read	here.	If	you	try	an	idea	from	this	book	and
find	that	it	doesn’t	actually	reduce	complexity,	then	don’t	feel	obligated	to	keep
using	it	(but,	do	let	me	know	about	your	experience;	I’d	like	to	get	feedback	on
what	works	and	what	doesn’t).

Many	people	have	offered	criticisms	or	made	suggestions	that	improved	the

Many	people	have	offered	criticisms	or	made	suggestions	that	improved	the
quality	of	the	book.	The	following	people	offered	helpful	comments	on	various
drafts	 of	 the	 book:	 Jeff	 Dean,	 Sanjay	 Ghemawat,	 John	 Hartman,	 Brian
Kernighan,	 James	Koppel,	Amy	Ousterhout,	Kay	Ousterhout,	Rob	Pike,	Partha
Ranganathan,	Keith	Schwartz,	and	Alex	Snaps.	Christos	Kozyrakis	suggested	the
terms	“deep”	and	“shallow”	for	classes	and	interfaces,	replacing	previous	terms
“thick”	 and	 “thin”,	 which	 were	 somewhat	 ambiguous.	 I	 am	 indebted	 to	 the
students	in	CS	190;	the	process	of	reading	their	code	and	discussing	it	with	them
has	helped	to	crystallize	my	thoughts	about	design.

Chapter	1

Introduction
(It’s	All	About	Complexity)

Writing	 computer	 software	 is	 one	 of	 the	 purest	 creative	 activities	 in	 the
history	 of	 the	 human	 race.	 Programmers	 aren’t	 bound	 by	 practical	 limitations
such	as	the	laws	of	physics;	we	can	create	exciting	virtual	worlds	with	behaviors
that	 could	 never	 exist	 in	 the	 real	 world.	 Programming	 doesn’t	 require	 great
physical	skill	or	coordination,	like	ballet	or	basketball.	All	programming	requires
is	a	creative	mind	and	the	ability	to	organize	your	thoughts.	If	you	can	visualize	a
system,	you	can	probably	implement	it	in	a	computer	program.

This	means	 that	 the	greatest	 limitation	 in	writing	 software	 is	 our	 ability	 to
understand	the	systems	we	are	creating.	As	a	program	evolves	and	acquires	more
features,	 it	 becomes	 complicated,	 with	 subtle	 dependencies	 between	 its
components.	 Over	 time,	 complexity	 accumulates,	 and	 it	 becomes	 harder	 and
harder	for	programmers	to	keep	all	of	the	relevant	factors	in	their	minds	as	they
modify	the	system.	This	slows	down	development	and	leads	to	bugs,	which	slow
development	even	more	and	add	to	its	cost.	Complexity	increases	inevitably	over
the	life	of	any	program.	The	larger	the	program,	and	the	more	people	that	work
on	it,	the	more	difficult	it	is	to	manage	complexity.

Good	development	 tools	 can	help	us	deal	with	complexity,	 and	many	great
tools	have	been	created	over	the	last	several	decades.	But	there	is	a	limit	to	what
we	can	do	with	tools	alone.	If	we	want	to	make	it	easier	to	write	software,	so	that
we	can	build	more	powerful	systems	more	cheaply,	we	must	find	ways	to	make
software	 simpler.	 Complexity	will	 still	 increase	 over	 time,	 in	 spite	 of	 our	 best
efforts,	but	simpler	designs	allow	us	to	build	larger	and	more	powerful	systems
before	complexity	becomes	overwhelming.

There	are	two	general	approaches	to	fighting	complexity,	both	of	which	will
be	 discussed	 in	 this	 book.	 The	 first	 approach	 is	 to	 eliminate	 complexity	 by

making	code	simpler	and	more	obvious.	For	example,	complexity	can	be	reduced
by	eliminating	special	cases	or	using	identifiers	in	a	consistent	fashion.

The	second	approach	to	complexity	is	to	encapsulate	it,	so	that	programmers
can	work	on	a	system	without	being	exposed	to	all	of	its	complexity	at	once.	This
approach	 is	 called	 modular	 design.	 In	 modular	 design,	 a	 software	 system	 is
divided	 up	 into	modules,	 such	 as	 classes	 in	 an	 object-oriented	 language.	 The
modules	 are	 designed	 to	 be	 relatively	 independent	 of	 each	 other,	 so	 that	 a
programmer	can	work	on	one	module	without	having	to	understand	the	details	of
other	modules.

Because	 software	 is	 so	malleable,	 software	 design	 is	 a	 continuous	 process
that	spans	 the	entire	 lifecycle	of	a	software	system;	 this	makes	software	design
different	from	the	design	of	physical	systems	such	as	buildings,	ships,	or	bridges.
However,	software	design	has	not	always	been	viewed	this	way.	For	much	of	the
history	of	programming,	design	was	concentrated	at	 the	beginning	of	a	project,
as	 it	 is	 in	other	engineering	disciplines.	The	extreme	of	 this	approach	 is	called
the	waterfall	model,	 in	which	 a	 project	 is	 divided	 into	 discrete	 phases	 such	 as
requirements	 definition,	 design,	 coding,	 testing,	 and	 maintenance.	 In	 the
waterfall	 model,	 each	 phase	 completes	 before	 the	 next	 phase	 starts;	 in	 many
cases	 different	 people	 are	 responsible	 for	 each	 phase.	 The	 entire	 system	 is
designed	at	once,	during	the	design	phase.	The	design	is	frozen	at	the	end	of	this
phase,	and	the	role	of	the	subsequent	phases	is	to	flesh	out	and	implement	that
design.

Unfortunately,	 the	waterfall	model	 rarely	works	well	 for	 software.	Software
systems	are	intrinsically	more	complex	than	physical	systems;	it	isn’t	possible	to
visualize	the	design	for	a	large	software	system	well	enough	to	understand	all	of
its	implications	before	building	anything.	As	a	result,	the	initial	design	will	have
many	problems.	The	problems	do	not	become	apparent	until	 implementation	 is
well	underway.	However,	 the	waterfall	model	 is	not	structured	 to	accommodate
major	design	changes	at	this	point	(for	example,	the	designers	may	have	moved
on	to	other	projects).	Thus,	developers	try	to	patch	around	the	problems	without
changing	the	overall	design.	This	results	in	an	explosion	of	complexity.

Because	 of	 these	 issues,	most	 software	 development	 projects	 today	 use	 an
incremental	 approach	 such	 as	 agile	 development,	 in	 which	 the	 initial	 design
focuses	 on	 a	 small	 subset	 of	 the	 overall	 functionality.	 This	 subset	 is	 designed,
implemented,	 and	 then	 evaluated.	 Problems	 with	 the	 original	 design	 are
discovered	 and	 corrected,	 then	 a	 few	more	 features	 are	 designed,	 implemented

and	evaluated.	Each	iteration	exposes	problems	with	 the	existing	design,	which
are	fixed	before	the	next	set	of	features	is	designed.	By	spreading	out	the	design
in	this	way,	problems	with	the	initial	design	can	be	fixed	while	the	system	is	still
small;	later	features	benefit	from	experience	gained	during	the	implementation	of
earlier	features,	so	they	have	fewer	problems.

The	incremental	approach	works	for	software	because	software	is	malleable
enough	to	allow	significant	design	changes	partway	through	implementation.	In
contrast,	major	design	changes	are	much	more	challenging	for	physical	systems:
for	example,	it	would	not	be	practical	to	change	the	number	of	towers	supporting
a	bridge	in	the	middle	of	construction.

Incremental	development	means	 that	 software	design	 is	never	done.	Design
happens	 continuously	 over	 the	 life	 of	 a	 system:	 developers	 should	 always	 be
thinking	 about	 design	 issues.	 Incremental	 development	 also	means	 continuous
redesign.	The	 initial	design	for	a	system	or	component	 is	almost	never	 the	best
one;	 experience	 inevitably	 shows	 better	 ways	 to	 do	 things.	 As	 a	 software
developer,	you	should	always	be	on	the	lookout	for	opportunities	to	improve	the
design	of	the	system	you	are	working	on,	and	you	should	plan	on	spending	some
fraction	of	your	time	on	design	improvements.

If	 software	 developers	 should	 always	 be	 thinking	 about	 design	 issues,	 and
reducing	 complexity	 is	 the	 most	 important	 element	 of	 software	 design,	 then
software	 developers	 should	 always	 be	 thinking	 about	 complexity.	 This	 book	 is
about	 how	 to	 use	 complexity	 to	 guide	 the	 design	 of	 software	 throughout	 its
lifetime.

This	 book	 has	 two	 overall	 goals.	 The	 first	 is	 to	 describe	 the	 nature	 of
software	complexity:	what	does	“complexity”	mean,	why	does	it	matter,	and	how
can	 you	 recognize	 when	 a	 program	 has	 unnecessary	 complexity?	 The	 book’s
second,	and	more	challenging,	goal	is	to	present	techniques	you	can	use	during
the	software	development	process	 to	minimize	complexity.	Unfortunately,	 there
isn’t	 a	 simple	 recipe	 that	will	 guarantee	 great	 software	 designs.	 Instead,	 I	will
present	 a	 collection	 of	 higher-level	 concepts	 that	 border	 on	 the	 philosophical,
such	 as	 “classes	 should	 be	 deep”	 or	 “define	 errors	 out	 of	 existence.”	 These
concepts	may	not	immediately	identify	the	best	design,	but	you	can	use	them	to
compare	design	alternatives	and	guide	your	exploration	of	the	design	space.

1.1				How	to	use	this	book

Many	of	the	design	principles	described	here	are	somewhat	abstract,	so	they	may

Many	of	the	design	principles	described	here	are	somewhat	abstract,	so	they	may
be	hard	to	appreciate	without	looking	at	actual	code.	It	has	been	a	challenge	to
find	examples	that	are	small	enough	to	include	in	the	book,	yet	large	enough	to
illustrate	 problems	with	 real	 systems	 (if	 you	 encounter	 good	 examples,	 please
send	them	to	me).	Thus,	this	book	may	not	be	sufficient	by	itself	for	you	to	learn
how	to	apply	the	principles.

The	best	way	to	use	this	book	is	in	conjunction	with	code	reviews.	When	you
read	 other	 people’s	 code,	 think	 about	 whether	 it	 conforms	 to	 the	 concepts
discussed	here	and	how	that	relates	to	the	complexity	of	the	code.	It’s	easier	to
see	design	problems	in	someone	else’s	code	than	your	own.	You	can	use	the	red
flags	described	here	to	identify	problems	and	suggest	improvements.	Reviewing
code	 will	 also	 expose	 you	 to	 new	 design	 approaches	 and	 programming
techniques.

One	of	the	best	ways	to	improve	your	design	skills	is	to	learn	to	recognize	red
flags:	signs	that	a	piece	of	code	is	probably	more	complicated	than	it	needs	to	be.
Over	 the	 course	 of	 this	 book	 I	 will	 point	 out	 red	 flags	 that	 suggest	 problems
related	 to	each	major	design	 issue;	 the	most	 important	ones	are	summarized	at
the	back	of	the	book.	You	can	then	use	these	when	you	are	coding:	when	you	see
a	 red	 flag,	 stop	 and	 look	 for	 an	 alternate	 design	 that	 eliminates	 the	 problem.
When	you	first	try	this	approach,	you	may	have	to	try	several	design	alternatives
before	you	find	one	that	eliminates	the	red	flag.	Don’t	give	up	easily:	the	more
alternatives	 you	 try	 before	 fixing	 the	 problem,	 the	 more	 you	 will	 learn.	 Over
time,	you	will	find	that	your	code	has	fewer	and	fewer	red	flags,	and	your	designs
are	cleaner	and	cleaner.	Your	experience	will	also	show	you	other	red	flags	that
you	can	use	to	identify	design	problems	(I’d	be	happy	to	hear	about	these).

When	applying	the	ideas	from	this	book,	it’s	important	to	use	moderation	and
discretion.	Every	rule	has	its	exceptions,	and	every	principle	has	its	limits.	If	you
take	 any	 design	 idea	 to	 its	 extreme,	 you	will	 probably	 end	 up	 in	 a	 bad	 place.
Beautiful	 designs	 reflect	 a	 balance	 between	 competing	 ideas	 and	 approaches.
Several	chapters	have	sections	 titled	“Taking	 it	 too	far,”	which	describe	how	to
recognize	when	you	are	overdoing	a	good	thing.

Almost	all	of	the	examples	in	this	book	are	in	Java	or	C++,	and	much	of	the
discussion	 is	 in	 terms	 of	 designing	 classes	 in	 an	 object-oriented	 language.
However,	the	ideas	apply	in	other	domains	as	well.	Almost	all	of	the	ideas	related
to	methods	can	also	be	applied	to	functions	in	a	language	without	object-oriented

features,	such	as	C.	The	design	 ideas	also	apply	 to	modules	other	 than	classes,
such	as	subsystems	or	network	services.

With	 this	 background,	 let’s	 discuss	 in	more	 detail	what	 causes	 complexity,
and	how	to	make	software	systems	simpler.

Chapter	2

The	Nature	of	Complexity

This	book	is	about	how	to	design	software	systems	to	minimize	their	complexity.
The	 first	 step	 is	 to	 understand	 the	 enemy.	Exactly	what	 is	 “complexity”?	How
can	 you	 tell	 if	 a	 system	 is	 unnecessarily	 complex?	 What	 causes	 systems	 to
become	 complex?	 This	 chapter	 will	 address	 those	 questions	 at	 a	 high	 level;
subsequent	chapters	will	show	you	how	to	recognize	complexity	at	a	lower	level,
in	terms	of	specific	structural	features.

The	ability	to	recognize	complexity	is	a	crucial	design	skill.	It	allows	you	to
identify	problems	before	you	invest	a	lot	of	effort	 in	them,	and	it	allows	you	to
make	 good	 choices	 among	 alternatives.	 It	 is	 easier	 to	 tell	 whether	 a	 design	 is
simple	 than	 it	 is	 to	 create	 a	 simple	 design,	 but	 once	 you	 can	 recognize	 that	 a
system	 is	 too	 complicated,	 you	 can	 use	 that	 ability	 to	 guide	 your	 design
philosophy	 towards	 simplicity.	 If	 a	 design	 appears	 complicated,	 try	 a	 different
approach	 and	 see	 if	 that	 is	 simpler.	 Over	 time,	 you	 will	 notice	 that	 certain
techniques	 tend	 to	 result	 in	 simpler	 designs,	 while	 others	 correlate	 with
complexity.	This	will	allow	you	to	produce	simpler	designs	more	quickly.

This	chapter	also	lays	out	some	basic	assumptions	that	provide	a	foundation
for	the	rest	of	the	book.	Later	chapters	take	the	material	of	this	chapter	as	given
and	use	it	to	justify	a	variety	of	refinements	and	conclusions.

2.1				Complexity	defined
For	 the	 purposes	 of	 this	 book,	 I	 define	 “complexity”	 in	 a	 practical	 way.
Complexity	 is	 anything	 related	 to	 the	 structure	 of	 a	 software	 system	 that
makes	 it	 hard	 to	 understand	 and	modify	 the	 system.	 Complexity	 can	 take
many	 forms.	For	example,	 it	might	be	hard	 to	understand	how	a	piece	of	 code
works;	it	might	take	a	lot	of	effort	to	implement	a	small	improvement,	or	it	might
not	 be	 clear	 which	 parts	 of	 the	 system	 must	 be	 modified	 to	 make	 the
improvement;	it	might	be	difficult	to	fix	one	bug	without	introducing	another.	If

a	software	system	is	hard	to	understand	and	modify,	then	it	is	complicated;	if	it	is
easy	to	understand	and	modify,	then	it	is	simple.

You	can	also	think	of	complexity	in	terms	of	cost	and	benefit.	In	a	complex
system,	it	takes	a	lot	of	work	to	implement	even	small	improvements.	In	a	simple
system,	larger	improvements	can	be	implemented	with	less	effort.

Complexity	 is	 what	 a	 developer	 experiences	 at	 a	 particular	 point	 in	 time
when	 trying	 to	 achieve	 a	 particular	 goal.	 It	 doesn’t	 necessarily	 relate	 to	 the
overall	size	or	functionality	of	the	system.	People	often	use	the	word	“complex”
to	describe	large	systems	with	sophisticated	features,	but	if	such	a	system	is	easy
to	work	 on,	 then,	 for	 the	 purposes	 of	 this	 book,	 it	 is	 not	 complex.	Of	 course,
almost	all	large	and	sophisticated	software	systems	are	in	fact	hard	to	work	on,	so
they	also	meet	my	definition	of	complexity,	but	this	need	not	necessarily	be	the
case.	 It	 is	 also	 possible	 for	 a	 small	 and	 unsophisticated	 system	 to	 be	 quite
complex.

Complexity	is	determined	by	the	activities	that	are	most	common.	If	a	system
has	a	few	parts	that	are	very	complicated,	but	those	parts	almost	never	need	to	be
touched,	 then	 they	 don’t	 have	 much	 impact	 on	 the	 overall	 complexity	 of	 the
system.	To	characterize	this	in	a	crude	mathematical	way:

The	overall	complexity	of	a	 system	(C)	 is	determined	by	 the	complexity	of
each	part	p	 (cp)	weighted	by	 the	 fraction	of	 time	developers	 spend	working	on
that	part	(tp).	Isolating	complexity	in	a	place	where	it	will	never	be	seen	is	almost
as	good	as	eliminating	the	complexity	entirely.

Complexity	is	more	apparent	to	readers	than	writers.	If	you	write	a	piece	of
code	and	it	seems	simple	to	you,	but	other	people	think	it	is	complex,	then	it	is
complex.	When	you	 find	yourself	 in	 situations	 like	 this,	 it’s	worth	probing	 the
other	 developers	 to	 find	 out	 why	 the	 code	 seems	 complex	 to	 them;	 there	 are
probably	 some	 interesting	 lessons	 to	 learn	 from	 the	 disconnect	 between	 your
opinion	and	theirs.	Your	job	as	a	developer	is	not	just	to	create	code	that	you	can
work	with	easily,	but	to	create	code	that	others	can	also	work	with	easily.

2.2				Symptoms	of	complexity
Complexity	 manifests	 itself	 in	 three	 general	 ways,	 which	 are	 described	 in	 the
paragraphs	 below.	 Each	 of	 these	 manifestations	 makes	 it	 harder	 to	 carry	 out

development	tasks.
Change	amplification:	The	first	symptom	of	complexity	is	that	a	seemingly

simple	 change	 requires	 code	 modifications	 in	 many	 different	 places.	 For
example,	consider	a	Web	site	containing	several	pages,	each	of	which	displays	a
banner	with	a	background	color.	In	many	early	Web	sites,	the	color	was	specified
explicitly	 on	 each	 page,	 as	 shown	 in	 Figure	 2.1(a).	 In	 order	 to	 change	 the
background	for	such	a	Web	site,	a	developer	might	have	to	modify	every	existing
page	by	hand;	this	would	be	nearly	impossible	for	a	large	site	with	thousands	of
pages.	Fortunately,	modern	Web	sites	use	an	approach	like	that	in	Figure	2.1(b),
where	 the	 banner	 color	 is	 specified	 once	 in	 a	 central	 place,	 and	 all	 of	 the
individual	 pages	 reference	 that	 shared	 value.	 With	 this	 approach,	 the	 banner
color	of	 the	entire	Web	site	can	be	changed	with	a	single	modification.	One	of
the	goals	of	good	design	is	to	reduce	the	amount	of	code	that	is	affected	by	each
design	decision,	so	design	changes	don’t	require	very	many	code	modifications.

Cognitive	load:	The	second	symptom	of	complexity	is	cognitive	load,	which
refers	 to	 how	much	 a	 developer	 needs	 to	 know	 in	 order	 to	 complete	 a	 task.	A
higher	 cognitive	 load	means	 that	 developers	 have	 to	 spend	more	 time	 learning
the	 required	 information,	 and	 there	 is	 a	greater	 risk	of	bugs	because	 they	have
missed	 something	 important.	 For	 example,	 suppose	 a	 function	 in	 C	 allocates
memory,	returns	a	pointer	to	that	memory,	and	assumes	that	the	caller	will	free
the	memory.	This	adds	to	the	cognitive	load	of	developers	using	the	function;	if	a
developer	 fails	 to	 free	 the	memory,	 there	will	be	a	memory	 leak.	 If	 the	system
can	 be	 restructured	 so	 that	 the	 caller	 doesn’t	 need	 to	 worry	 about	 freeing	 the
memory	(the	same	module	that	allocates	the	memory	also	takes	responsibility	for
freeing	it),	it	will	reduce	the	cognitive	load.	Cognitive	load	arises	in	many	ways,
such	 as	 APIs	 with	 many	 methods,	 global	 variables,	 inconsistencies,	 and
dependencies	between	modules.

System	 designers	 sometimes	 assume	 that	 complexity	 can	 be	 measured	 by
lines	of	 code.	They	assume	 that	 if	 one	 implementation	 is	 shorter	 than	 another,
then	it	must	be	simpler;	if	it	only	takes	a	few	lines	of	code	to	make	a	change,	then
the	 change	must	 be	 easy.	However,	 this	 view	 ignores	 the	 costs	 associated	with
cognitive	 load.	 I	 have	 seen	 frameworks	 that	 allowed	 applications	 to	 be	written
with	only	a	 few	 lines	of	code,	but	 it	was	extremely	difficult	 to	 figure	out	what
those	lines	were.	Sometimes	an	approach	that	requires	more	lines	of	code	is
actually	simpler,	because	it	reduces	cognitive	load.

Figure	2.1:	Each	page	in	a	Web	site	displays	a	colored	banner.	In	(a)	the	background	color	for	the	banner	is
specified	 explicitly	 in	 each	 page.	 In	 (b)	 a	 shared	 variable	 holds	 the	 background	 color	 and	 each	 page
references	that	variable.	In	(c)	some	pages	display	an	additional	color	for	emphasis,	which	is	a	darker	shade
of	the	banner	background	color;	if	the	background	color	changes,	the	emphasis	color	must	also	change.

Unknown	 unknowns:	 The	 third	 symptom	 of	 complexity	 is	 that	 it	 is	 not
obvious	 which	 pieces	 of	 code	 must	 be	 modified	 to	 complete	 a	 task,	 or	 what
information	 a	 developer	 must	 have	 to	 carry	 out	 the	 task	 successfully.	 Figure
2.1(c)	illustrates	this	problem.	The	Web	site	uses	a	central	variable	to	determine
the	banner	background	color,	so	it	appears	to	be	easy	to	change.	However,	a	few
Web	pages	 use	 a	 darker	 shade	 of	 the	 background	 color	 for	 emphasis,	 and	 that
darker	 color	 is	 specified	 explicitly	 in	 the	 individual	 pages.	 If	 the	 background
color	changes,	then	the	the	emphasis	color	must	change	to	match.	Unfortunately,
developers	are	unlikely	to	realize	this,	so	they	may	change	the	central	bannerBg
variable	without	updating	the	emphasis	color.	Even	if	a	developer	is	aware	of	the
problem,	 it	 won’t	 be	 obvious	 which	 pages	 use	 the	 emphasis	 color,	 so	 the
developer	may	have	to	search	every	page	in	the	Web	site.

Of	the	three	manifestations	of	complexity,	unknown	unknowns	are	the	worst.
An	unknown	unknown	means	that	there	is	something	you	need	to	know,	but	there
is	no	way	for	you	to	find	out	what	 it	 is,	or	even	whether	 there	 is	an	 issue.	You
won’t	 find	 out	 about	 it	 until	 bugs	 appear	 after	 you	 make	 a	 change.	 Change
amplification	 is	 annoying,	 but	 as	 long	 as	 it	 is	 clear	 which	 code	 needs	 to	 be
modified,	the	system	will	work	once	the	change	has	been	completed.	Similarly,	a
high	 cognitive	 load	will	 increase	 the	 cost	 of	 a	 change,	 but	 if	 it	 is	 clear	which
information	 to	 read,	 the	 change	 is	 still	 likely	 to	 be	 correct.	 With	 unknown
unknowns,	 it	 is	 unclear	 what	 to	 do	 or	 whether	 a	 proposed	 solution	 will	 even
work.	 The	 only	way	 to	 be	 certain	 is	 to	 read	 every	 line	 of	 code	 in	 the	 system,

which	 is	 impossible	 for	 systems	 of	 any	 size.	 Even	 this	may	 not	 be	 sufficient,
because	 a	 change	 may	 depend	 on	 a	 subtle	 design	 decision	 that	 was	 never
documented.

One	of	the	most	important	goals	of	good	design	is	for	a	system	to	be	obvious.
This	 is	 the	 opposite	 of	 high	 cognitive	 load	 and	 unknown	 unknowns.	 In	 an
obvious	system,	a	developer	can	quickly	understand	how	the	existing	code	works
and	 what	 is	 required	 to	 make	 a	 change.	 An	 obvious	 system	 is	 one	 where	 a
developer	can	make	a	quick	guess	about	what	to	do,	without	thinking	very	hard,
and	yet	be	confident	that	the	guess	is	correct.	Chapter	18	discusses	techniques	for
making	code	more	obvious.

2.3				Causes	of	complexity
Now	that	you	know	the	high-level	symptoms	of	complexity	and	why	complexity
makes	software	development	difficult,	the	next	step	is	to	understand	what	causes
complexity,	so	that	we	can	design	systems	to	avoid	the	problems.	Complexity	is
caused	by	two	things:	dependencies	and	obscurity.	This	section	discusses	 these
factors	at	a	high	level;	subsequent	chapters	will	discuss	how	they	relate	to	lower-
level	design	decisions.

For	 the	 purposes	 of	 this	 book,	 a	 dependency	 exists	when	 a	 given	 piece	 of
code	cannot	be	understood	and	modified	 in	 isolation;	 the	 code	 relates	 in	 some
way	to	other	code,	and	the	other	code	must	be	considered	and/or	modified	if	the
given	code	is	changed.	In	the	Web	site	example	of	Figure	2.1(a),	the	background
color	 creates	 dependencies	 between	 all	 of	 the	 pages.	All	 of	 the	 pages	 need	 to
have	the	same	background,	so	if	the	background	is	changed	for	one	page,	then	it
must	 be	 changed	 for	 all	 of	 them.	Another	 example	 of	 dependencies	 occurs	 in
network	protocols.	Typically	there	is	separate	code	for	the	sender	and	receiver	for
the	protocol,	but	they	must	each	conform	to	the	protocol;	changing	the	code	for
the	sender	almost	always	requires	corresponding	changes	at	the	receiver,	and	vice
versa.	 The	 signature	 of	 a	 method	 creates	 a	 dependency	 between	 the
implementation	of	that	method	and	the	code	that	invokes	it:	if	a	new	parameter	is
added	 to	 a	method,	 all	 of	 the	 invocations	 of	 that	method	must	 be	modified	 to
specify	that	parameter.

Dependencies	 are	 a	 fundamental	 part	 of	 software	 and	 can’t	 be	 completely
eliminated.	 In	 fact,	 we	 intentionally	 introduce	 dependencies	 as	 part	 of	 the
software	 design	 process.	 Every	 time	 you	 write	 a	 new	 class	 you	 create
dependencies	 around	 the	 API	 for	 that	 class.	 However,	 one	 of	 the	 goals	 of

software	 design	 is	 to	 reduce	 the	 number	 of	 dependencies	 and	 to	 make	 the
dependencies	that	remain	as	simple	and	obvious	as	possible.

Consider	 the	Web	 site	 example.	 In	 the	 old	Web	 site	 with	 the	 background
specified	separately	on	each	page,	all	of	the	Web	pages	were	dependent	on	each
other.	The	new	Web	site	fixed	this	problem	by	specifying	the	background	color
in	a	central	place	and	providing	an	API	that	individual	pages	use	to	retrieve	that
color	 when	 they	 are	 rendered.	 The	 new	 Web	 site	 eliminated	 the	 dependency
between	the	pages,	but	it	created	a	new	dependency	around	the	API	for	retrieving
the	 background	 color.	 Fortunately,	 the	 new	 dependency	 is	 more	 obvious:	 it	 is
clear	 that	 each	 individual	 Web	 page	 depends	 on	 the	 bannerBg	 color,	 and	 a
developer	can	easily	find	all	 the	places	where	the	variable	 is	used	by	searching
for	 its	 name.	Furthermore,	 compilers	 help	 to	manage	API	dependencies:	 if	 the
name	of	the	shared	variable	changes,	compilation	errors	will	occur	in	any	code
that	 still	 uses	 the	 old	 name.	 The	 new	 Web	 site	 replaced	 a	 nonobvious	 and
difficult-to-manage	dependency	with	a	simpler	and	more	obvious	one.

The	 second	 cause	 of	 complexity	 is	 obscurity.	 Obscurity	 occurs	 when
important	information	is	not	obvious.	A	simple	example	is	a	variable	name	that
is	 so	generic	 that	 it	doesn’t	 carry	much	useful	 information	 (e.g.,	time).	Or,	 the
documentation	for	a	variable	might	not	specify	its	units,	so	the	only	way	to	find
out	 is	 to	 scan	 code	 for	 places	 where	 the	 variable	 is	 used.	 Obscurity	 is	 often
associated	with	dependencies,	where	it	 is	not	obvious	that	a	dependency	exists.
For	example,	 if	a	new	error	status	 is	added	to	a	system,	 it	may	be	necessary	 to
add	an	entry	to	a	table	holding	string	messages	for	each	status,	but	the	existence
of	the	message	table	might	not	be	obvious	to	a	programmer	looking	at	the	status
declaration.	 Inconsistency	 is	 also	 a	major	 contributor	 to	 obscurity:	 if	 the	 same
variable	name	is	used	for	two	different	purposes,	it	won’t	be	obvious	to	developer
which	of	these	purposes	a	particular	variable	serves.

In	many	cases,	obscurity	comes	about	because	of	inadequate	documentation;
Chapter	13	deals	with	this	 topic.	However,	obscurity	is	also	a	design	issue.	If	a
system	has	a	clean	and	obvious	design,	then	it	will	need	less	documentation.	The
need	 for	 extensive	documentation	 is	often	a	 red	 flag	 that	 the	design	 isn’t	quite
right.	The	best	way	to	reduce	obscurity	is	by	simplifying	the	system	design.

Together,	dependencies	and	obscurity	account	for	the	three	manifestations	of
complexity	described	in	Section	2.2.	Dependencies	lead	to	change	amplification
and	 a	 high	 cognitive	 load.	 Obscurity	 creates	 unknown	 unknowns,	 and	 also

contributes	 to	 cognitive	 load.	 If	 we	 can	 find	 design	 techniques	 that	 minimize
dependencies	and	obscurity,	then	we	can	reduce	the	complexity	of	software.

2.4				Complexity	is	incremental
Complexity	isn’t	caused	by	a	single	catastrophic	error;	it	accumulates	in	lots	of
small	 chunks.	A	 single	 dependency	or	 obscurity,	 by	 itself,	 is	 unlikely	 to	 affect
significantly	 the	maintainability	of	a	software	system.	Complexity	comes	about
because	hundreds	or	 thousands	of	 small	dependencies	and	obscurities	build	up
over	time.	Eventually,	there	are	so	many	of	these	small	issues	that	every	possible
change	to	the	system	is	affected	by	several	of	them.

The	 incremental	 nature	of	 complexity	makes	 it	 hard	 to	 control.	 It’s	 easy	 to
convince	 yourself	 that	 a	 little	 bit	 of	 complexity	 introduced	 by	 your	 current
change	is	no	big	deal.	However,	if	every	developer	takes	this	approach	for	every
change,	complexity	accumulates	rapidly.	Once	complexity	has	accumulated,	it	is
hard	 to	 eliminate,	 since	 fixing	 a	 single	 dependency	 or	 obscurity	 will	 not,	 by
itself,	make	a	big	difference.	In	order	to	slow	the	growth	of	complexity,	you	must
adopt	a	“zero	tolerance”	philosophy,	as	discussed	in	Chapter	3.

2.5				Conclusion
Complexity	 comes	 from	 an	 accumulation	 of	 dependencies	 and	 obscurities.	As
complexity	increases,	it	leads	to	change	amplification,	a	high	cognitive	load,	and
unknown	unknowns.	As	a	result,	it	takes	more	code	modifications	to	implement
each	 new	 feature.	 In	 addition,	 developers	 spend	 more	 time	 acquiring	 enough
information	to	make	the	change	safely	and,	in	the	worst	case,	they	can’t	even	find
all	 the	 information	 they	 need.	 The	 bottom	 line	 is	 that	 complexity	 makes	 it
difficult	and	risky	to	modify	an	existing	code	base.

Chapter	3

Working	Code	Isn’t	Enough
(Strategic	vs.	Tactical	Programming)

One	of	the	most	important	elements	of	good	software	design	is	the	mindset
you	 adopt	 when	 you	 approach	 a	 programming	 task.	 Many	 organizations
encourage	a	 tactical	mindset,	 focused	on	getting	features	working	as	quickly	as
possible.	However,	 if	 you	want	 a	 good	 design,	 you	must	 take	 a	more	 strategic
approach	where	you	invest	time	to	produce	clean	designs	and	fix	problems.	This
chapter	 discusses	 why	 the	 strategic	 approach	 produces	 better	 designs	 and	 is
actually	cheaper	than	the	tactical	approach	over	the	long	run.

3.1				Tactical	programming
Most	programmers	approach	software	development	with	a	mindset	I	call	tactical
programming.	 In	 the	 tactical	 approach,	 your	 main	 focus	 is	 to	 get	 something
working,	 such	 as	 a	 new	 feature	 or	 a	 bug	 fix.	At	 first	 glance	 this	 seems	 totally
reasonable:	 what	 could	 be	 more	 important	 than	 writing	 code	 that	 works?
However,	 tactical	 programming	makes	 it	 nearly	 impossible	 to	 produce	 a	 good
system	design.

The	problem	with	 tactical	programming	 is	 that	 it	 is	 short-sighted.	 If	you’re
programming	 tactically,	 you’re	 trying	 to	 finish	 a	 task	 as	 quickly	 as	 possible.
Perhaps	 you	 have	 a	 hard	 deadline.	 As	 a	 result,	 planning	 for	 the	 future	 isn’t	 a
priority.	You	don’t	spend	much	time	looking	for	the	best	design;	you	just	want	to
get	 something	 working	 soon.	 You	 tell	 yourself	 that	 it’s	 OK	 to	 add	 a	 bit	 of
complexity	or	introduce	a	small	kludge	or	two,	if	that	allows	the	current	task	to
be	completed	more	quickly.

This	 is	 how	 systems	 become	 complicated.	 As	 discussed	 in	 the	 previous
chapter,	 complexity	 is	 incremental.	 It’s	 not	 one	 particular	 thing	 that	 makes	 a
system	complicated,	but	the	accumulation	of	dozens	or	hundreds	of	small	things.

If	you	program	tactically,	each	programming	task	will	contribute	a	few	of	these
complexities.	 Each	 of	 them	 probably	 seems	 like	 a	 reasonable	 compromise	 in
order	 to	 finish	 the	 current	 task	 quickly.	However,	 the	 complexities	 accumulate
rapidly,	especially	if	everyone	is	programming	tactically.

Before	 long,	some	of	 the	complexities	will	start	causing	problems,	and	you
will	 begin	 to	 wish	 you	 hadn’t	 taken	 those	 early	 shortcuts.	 But,	 you	 will	 tell
yourself	that	it’s	more	important	to	get	the	next	feature	working	than	to	go	back
and	refactor	existing	code.	Refactoring	may	help	out	in	the	long	run,	but	it	will
definitely	 slow	 down	 the	 current	 task.	 So,	 you	 look	 for	 quick	 patches	 to	work
around	 any	 problems	 you	 encounter.	 This	 just	 creates	more	 complexity,	which
then	 requires	more	 patches.	 Pretty	 soon	 the	 code	 is	 a	 mess,	 but	 by	 this	 point
things	are	so	bad	that	it	would	take	months	of	work	to	clean	it	up.	There’s	no	way
your	 schedule	 can	 tolerate	 that	 kind	 of	 delay,	 and	 fixing	 one	 or	 two	 of	 the
problems	 doesn’t	 seem	 like	 it	 will	 make	 much	 difference,	 so	 you	 just	 keep
programming	tactically.

If	you	have	worked	on	a	 large	software	project	 for	very	 long,	 I	suspect	you
have	seen	tactical	programming	at	work	and	have	experienced	the	problems	that
result.	Once	you	start	down	the	tactical	path,	it’s	difficult	to	change.

Almost	every	 software	development	organization	has	at	 least	one	developer
who	takes	tactical	programming	to	the	extreme:	a	tactical	tornado.	The	 tactical
tornado	is	a	prolific	programmer	who	pumps	out	code	far	faster	than	others	but
works	 in	 a	 totally	 tactical	 fashion.	 When	 it	 comes	 to	 implementing	 a	 quick
feature,	 nobody	 gets	 it	 done	 faster	 than	 the	 tactical	 tornado.	 In	 some
organizations,	management	treats	tactical	tornadoes	as	heroes.	However,	tactical
tornadoes	leave	behind	a	wake	of	destruction.	They	are	rarely	considered	heroes
by	 the	engineers	who	must	work	with	 their	 code	 in	 the	 future.	Typically,	other
engineers	must	 clean	 up	 the	messes	 left	 behind	 by	 the	 tactical	 tornado,	which
makes	it	appear	that	those	engineers	(who	are	the	real	heroes)	are	making	slower
progress	than	the	tactical	tornado.

3.2				Strategic	programming
The	 first	 step	 towards	 becoming	 a	 good	 software	 designer	 is	 to	 realize	 that
working	 code	 isn’t	 enough.	 It’s	 not	 acceptable	 to	 introduce	 unnecessary
complexities	in	order	to	finish	your	current	task	faster.	The	most	important	thing
is	 the	 long-term	 structure	 of	 the	 system.	 Most	 of	 the	 code	 in	 any	 system	 is
written	 by	 extending	 the	 existing	 code	 base,	 so	 your	 most	 important	 job	 as	 a

developer	 is	 to	 facilitate	 those	 future	extensions.	Thus,	you	should	not	 think	of
“working	 code”	 as	 your	 primary	 goal,	 though	of	 course	 your	 code	must	work.
Your	 primary	 goal	must	 be	 to	 produce	 a	 great	 design,	 which	 also	 happens	 to
work.	This	is	strategic	programming.

Strategic	 programming	 requires	 an	 investment	mindset.	 Rather	 than	 taking
the	fastest	path	to	finish	your	current	project,	you	must	invest	time	to	improve	the
design	of	 the	 system.	These	 investments	will	 slow	you	down	a	bit	 in	 the	 short
term,	but	they	will	speed	you	up	in	the	long	term,	as	illustrated	in	Figure	3.1.

Some	of	 the	 investments	will	be	proactive.	For	example,	 it’s	worth	taking	a
little	 extra	 time	 to	 find	 a	 simple	 design	 for	 each	 new	 class;	 rather	 than
implementing	 the	 first	 idea	 that	 comes	 to	 mind,	 try	 a	 couple	 of	 alternative
designs	and	pick	the	cleanest	one.	Try	to	imagine	a	few	ways	in	which	the	system
might	need	to	be	changed	in	the	future	and	make	sure	that	will	be	easy	with	your
design.	 Writing	 good	 documentation	 is	 another	 example	 of	 a	 proactive
investment.

Other	investments	will	be	reactive.	No	matter	how	much	you	invest	up	front,
there	 will	 inevitably	 be	 mistakes	 in	 your	 design	 decisions.	 Over	 time,	 these
mistakes	will	become	obvious.	When	you	discover	a	design	problem,	don’t	 just
ignore	 it	 or	 patch	 around	 it;	 take	 a	 little	 extra	 time	 to	 fix	 it.	 If	 you	 program
strategically,	 you	 will	 continually	 make	 small	 improvements	 to	 the	 system
design.	This	is	the	opposite	of	tactical	programming,	where	you	are	continually
adding	small	bits	of	complexity	that	cause	problems	in	the	future.

3.3				How	much	to	invest?
So,	what	is	the	right	amount	of	investment?	A	huge	up-front	investment,	such	as
trying	 to	 design	 the	 entire	 system,	 won’t	 be	 effective.	 This	 is	 the	 waterfall
method,	and	we	know	it	doesn’t	work.	The	ideal	design	tends	to	emerge	in	bits
and	pieces,	as	you	get	experience	with	the	system.	Thus,	the	best	approach	is	to
make	lots	of	small	investments	on	a	continual	basis.	I	suggest	spending	about	10–
20%	 of	 your	 total	 development	 time	 on	 investments.	 This	 amount	 is	 small
enough	 that	 it	 won’t	 impact	 your	 schedules	 significantly,	 but	 large	 enough	 to
produce	 significant	 benefits	 over	 time.	Your	 initial	 projects	will	 thus	 take	 10–
20%	longer	 than	 they	would	 in	a	purely	 tactical	approach.	That	extra	 time	will
result	 in	 a	 better	 software	 design,	 and	 you	will	 start	 experiencing	 the	 benefits
within	a	few	months.	It	won’t	be	long	before	you’re	developing	at	least	10–20%
faster	 than	 you	 would	 if	 you	 had	 programmed	 tactically.	 At	 this	 point	 your

investments	 become	 free:	 the	 benefits	 from	 your	 past	 investments	 will	 save
enough	time	to	cover	the	cost	of	future	investments.	You	will	quickly	recover	the
cost	of	the	initial	investment.	Figure	3.1	illustrates	this	phenomenon.

Figure	3.1:	At	the	beginning,	a	tactical	approach	to	programming	will	make	progress	more	quickly	than	a
strategic	 approach.	 However,	 complexity	 accumulates	 more	 rapidly	 under	 the	 tactical	 approach,	 which
reduces	 productivity.	 Over	 time,	 the	 strategic	 approach	 results	 in	 greater	 progress.	 Note:	 this	 figure	 is
intended	 only	 as	 a	 qualitative	 illustration;	 I	 am	 not	 aware	 of	 any	 empirical	measurements	 of	 the	 precise
shapes	of	the	curves.

Conversely,	 if	you	program	tactically,	you	will	finish	your	first	projects	10–
20%	 faster,	 but	 over	 time	 your	 development	 speed	 will	 slow	 as	 complexity
accumulates.	 It	 won’t	 be	 long	 before	 you’re	 programming	 at	 least	 10–20%
slower.	You	will	quickly	give	back	all	of	the	time	you	saved	at	the	beginning,	and
for	the	rest	of	system’s	lifetime	you	will	be	developing	more	slowly	than	if	you
had	taken	the	strategic	approach.	If	you	haven’t	ever	worked	in	a	badly	degraded
code	 base,	 talk	 to	 someone	who	 has;	 they	will	 tell	 you	 that	 poor	 code	 quality
slows	development	by	at	least	20%.

3.4				Startups	and	investment
In	 some	 environments	 there	 are	 strong	 forces	 working	 against	 the	 strategic
approach.	For	example,	early-stage	startups	feel	tremendous	pressure	to	get	their
early	releases	out	quickly.	In	these	companies,	it	might	seem	that	even	a	10–20%
investment	 isn’t	affordable.	As	a	 result,	many	startups	 take	a	 tactical	approach,
spending	little	effort	on	design	and	even	less	on	cleanup	when	problems	pop	up.
They	 rationalize	 this	with	 the	 thought	 that,	 if	 they	 are	 successful,	 they’ll	 have
enough	money	to	hire	extra	engineers	to	clean	things	up.

If	you	are	in	a	company	leaning	in	this	direction,	you	should	realize	that	once
a	code	base	 turns	 to	spaghetti,	 it	 is	nearly	 impossible	 to	 fix.	You	will	probably
pay	high	development	costs	for	 the	 life	of	 the	product.	Furthermore,	 the	payoff

for	good	(or	bad)	design	comes	pretty	quickly,	so	there’s	a	good	chance	that	the
tactical	approach	won’t	even	speed	up	your	first	product	release.

Another	 thing	 to	 consider	 is	 that	 one	 of	 the	 most	 important	 factors	 for
success	 of	 a	 company	 is	 the	 quality	 of	 its	 engineers.	 The	 best	 way	 to	 lower
development	 costs	 is	 to	 hire	 great	 engineers:	 they	 don’t	 cost	 much	more	 than
mediocre	engineers	but	have	tremendously	higher	productivity.	However,	the	best
engineers	care	deeply	about	good	design.	If	your	code	base	is	a	wreck,	word	will
get	out,	and	this	will	make	it	harder	for	you	to	recruit.	As	a	result,	you	are	likely
to	 end	 up	 with	 mediocre	 engineers.	 This	 will	 increase	 your	 future	 costs	 and
probably	cause	the	system	structure	to	degrade	even	more.

Facebook	 is	an	example	of	a	startup	 that	encouraged	 tactical	programming.
For	many	 years	 the	 company’s	motto	was	 “Move	 fast	 and	 break	 things.”	New
engineers	 fresh	 out	 of	 college	 were	 encouraged	 to	 dive	 immediately	 into	 the
company’s	 code	 base;	 it	 was	 normal	 for	 engineers	 to	 push	 commits	 into
production	 in	 their	 first	 week	 on	 the	 job.	 On	 the	 positive	 side,	 Facebook
developed	a	 reputation	as	a	company	 that	empowered	 its	employees.	Engineers
had	tremendous	latitude,	and	there	were	few	rules	and	restrictions	to	get	in	their
way.

Facebook	has	been	spectacularly	successful	as	a	company,	but	its	code	base
suffered	 because	 of	 the	 company’s	 tactical	 approach;	 much	 of	 the	 code	 was
unstable	and	hard	to	understand,	with	few	comments	or	tests,	and	painful	to	work
with.	 Over	 time	 the	 company	 realized	 that	 its	 culture	 was	 unsustainable.
Eventually,	Facebook	changed	its	motto	to	“Move	fast	with	solid	infrastructure”
to	encourage	 its	engineers	 to	 invest	more	 in	good	design.	 It	 remains	 to	be	seen
whether	Facebook	can	successfully	clean	up	the	problems	that	accumulated	over
years	of	tactical	programming.

In	 fairness	 to	 Facebook,	 I	 should	 point	 out	 that	 Facebook’s	 code	 probably
isn’t	 much	 worse	 than	 average	 among	 startups.	 Tactical	 programming	 is
commonplace	among	startups;	Facebook	just	happens	to	be	a	particularly	visible
example.

Fortunately,	 it	 is	 also	possible	 to	 succeed	 in	Silicon	Valley	with	 a	 strategic
approach.	Google	and	VMware	grew	up	around	the	same	time	as	Facebook,	but
both	of	 these	 companies	 embraced	a	more	 strategic	 approach.	Both	 companies
placed	 a	 heavy	 emphasis	 on	 high	 quality	 code	 and	 good	 design,	 and	 both
companies	 built	 sophisticated	 products	 that	 solved	 complex	 problems	 with
reliable	software	systems.	The	companies’	strong	technical	cultures	became	well

known	 in	 Silicon	 Valley.	 Few	 other	 companies	 could	 compete	 with	 them	 for
hiring	the	top	technical	talent.

These	 examples	 show	 that	 a	 company	 can	 succeed	 with	 either	 approach.
However,	 it’s	 a	 lot	 more	 fun	 to	 work	 in	 a	 company	 that	 cares	 about	 software
design	and	has	a	clean	code	base.

3.5				Conclusion
Good	 design	 doesn’t	 come	 for	 free.	 It	 has	 to	 be	 something	 you	 invest	 in
continually,	so	that	small	problems	don’t	accumulate	into	big	ones.	Fortunately,
good	design	eventually	pays	for	itself,	and	sooner	than	you	might	think.

It’s	crucial	to	be	consistent	in	applying	the	strategic	approach	and	to	think	of
investment	as	something	to	do	today,	not	tomorrow.	When	you	get	in	a	crunch	it
will	be	tempting	to	put	off	cleanups	until	after	the	crunch	is	over.	However,	this
is	a	slippery	slope;	after	the	current	crunch	there	will	almost	certainly	be	another
one,	 and	 another	 after	 that.	Once	 you	 start	 delaying	 design	 improvements,	 it’s
easy	 for	 the	 delays	 to	 become	 permanent	 and	 for	 your	 culture	 to	 slip	 into	 the
tactical	 approach.	 The	 longer	 you	wait	 to	 address	 design	 problems,	 the	 bigger
they	 become;	 the	 solutions	 become	more	 intimidating,	which	makes	 it	 easy	 to
put	 them	 off	 even	 more.	 The	 most	 effective	 approach	 is	 one	 where	 every
engineer	makes	continuous	small	investments	in	good	design.

Chapter	4

Modules	Should	Be	Deep

One	 of	 the	most	 important	 techniques	 for	managing	 software	 complexity	 is	 to
design	systems	so	that	developers	only	need	to	face	a	small	fraction	of	the	overall
complexity	at	any	given	time.	This	approach	is	called	modular	design,	and	 this
chapter	presents	its	basic	principles.

4.1				Modular	design
In	modular	design,	a	software	system	is	decomposed	into	a	collection	of	modules
that	are	 relatively	 independent.	Modules	can	 take	many	 forms,	 such	as	classes,
subsystems,	 or	 services.	 In	 an	 ideal	 world,	 each	module	 would	 be	 completely
independent	of	the	others:	a	developer	could	work	in	any	of	the	modules	without
knowing	anything	about	any	of	the	other	modules.	In	this	world,	the	complexity
of	a	system	would	be	the	complexity	of	its	worst	module.

Unfortunately,	 this	 ideal	 is	 not	 achievable.	Modules	must	work	 together	 by
calling	 each	 others’s	 functions	 or	 methods.	 As	 a	 result,	 modules	 must	 know
something	about	each	other.	There	will	be	dependencies	between	the	modules:	if
one	module	changes,	other	modules	may	need	to	change	to	match.	For	example,
the	 arguments	 for	 a	method	 create	 a	 dependency	 between	 the	method	 and	 any
code	that	invokes	the	method.	If	 the	required	arguments	change,	all	 invocations
of	the	method	must	be	modified	to	conform	to	the	new	signature.	Dependencies
can	 take	many	other	 forms,	 and	 they	can	be	quite	 subtle.	The	goal	of	modular
design	is	to	minimize	the	dependencies	between	modules.

In	order	to	manage	dependencies,	we	think	of	each	module	in	two	parts:	an
interface	 and	 an	 implementation.	 The	 interface	 consists	 of	 everything	 that	 a
developer	working	 in	 a	 different	module	must	 know	 in	 order	 to	 use	 the	 given
module.	Typically,	the	 interface	describes	what	 the	module	does	but	not	how	 it
does	 it.	 The	 implementation	 consists	 of	 the	 code	 that	 carries	 out	 the	 promises
made	 by	 the	 interface.	 A	 developer	 working	 in	 a	 particular	 module	 must

understand	the	interface	and	implementation	of	that	module,	plus	the	interfaces
of	any	other	modules	invoked	by	the	given	module.	A	developer	should	not	need
to	 understand	 the	 implementations	 of	modules	 other	 than	 the	 one	 he	 or	 she	 is
working	in.

Consider	 a	 module	 that	 implements	 balanced	 trees.	 The	 module	 probably
contains	sophisticated	code	for	ensuring	that	the	tree	remains	balanced.	However,
this	complexity	is	not	visible	to	users	of	the	module.	Users	see	a	relatively	simple
interface	for	invoking	operations	to	insert,	remove,	and	fetch	nodes	in	the	tree.	To
invoke	an	insert	operation,	the	caller	need	only	provide	the	key	and	value	for	the
new	 node;	 the	 mechanisms	 for	 traversing	 the	 tree	 and	 splitting	 nodes	 are	 not
visible	in	the	interface.

For	 the	 purposes	 of	 this	 book,	 a	 module	 is	 any	 unit	 of	 code	 that	 has	 an
interface	and	an	implementation.	Each	class	in	an	object-oriented	programming
language	 is	 a	module.	Methods	within	 a	 class,	 or	 functions	 in	 a	 language	 that
isn’t	 object-oriented,	 can	 also	 be	 thought	 of	 as	modules:	 each	 of	 these	 has	 an
interface	and	an	implementation,	and	modular	design	techniques	can	be	applied
to	them.	Higher-level	subsystems	and	services	are	also	modules;	their	interfaces
may	 take	 different	 forms,	 such	 as	 kernel	 calls	 or	HTTP	 requests.	Much	 of	 the
discussion	about	modular	design	in	this	book	focuses	on	designing	classes,	but
the	techniques	and	concepts	apply	to	other	kinds	of	modules	as	well.

The	 best	 modules	 are	 those	 whose	 interfaces	 are	 much	 simpler	 than	 their
implementations.	 Such	modules	 have	 two	 advantages.	 First,	 a	 simple	 interface
minimizes	 the	 complexity	 that	 a	 module	 imposes	 on	 the	 rest	 of	 the	 system.
Second,	if	a	module	is	modified	in	a	way	that	does	not	change	its	interface,	then
no	other	module	will	be	affected	by	the	modification.	If	a	module’s	interface	is
much	simpler	than	its	implementation,	there	will	be	many	aspects	of	the	module
that	can	be	changed	without	affecting	other	modules.

4.2				What’s	in	an	interface?
The	 interface	 to	 a	 module	 contains	 two	 kinds	 of	 information:	 formal	 and
informal.	The	formal	parts	of	an	interface	are	specified	explicitly	in	the	code,	and
some	of	these	can	be	checked	for	correctness	by	the	programming	language.	For
example,	 the	 formal	 interface	 for	 a	method	 is	 its	 signature,	which	 includes	 the
names	and	types	of	its	parameters,	 the	type	of	its	return	value,	and	information
about	 exceptions	 thrown	 by	 the	 method.	Most	 programming	 languages	 ensure
that	 each	 invocation	 of	 a	 method	 provides	 the	 right	 number	 and	 types	 of

arguments	to	match	its	signature.	The	formal	interface	for	a	class	consists	of	the
signatures	for	all	of	its	public	methods,	plus	the	names	and	types	of	any	public
variables.

Each	interface	also	includes	informal	elements.	These	are	not	specified	in	a
way	 that	 can	 be	 understood	 or	 enforced	 by	 the	 programming	 language.	 The
informal	parts	of	an	interface	include	its	high-level	behavior,	such	as	the	fact	that
a	function	deletes	the	file	named	by	one	of	its	arguments.	If	there	are	constraints
on	the	usage	of	a	class	(perhaps	one	method	must	be	called	before	another),	these
are	also	part	of	 the	class’s	 interface.	In	general,	 if	a	developer	needs	to	know	a
particular	piece	of	information	in	order	to	use	a	module,	then	that	information	is
part	of	the	module’s	interface.	The	informal	aspects	of	an	interface	can	only	be
described	 using	 comments,	 and	 the	 programming	 language	 cannot	 ensure	 that
the	description	is	complete	or	accurate1.	For	most	interfaces	the	informal	aspects
are	larger	and	more	complex	than	the	formal	aspects.

One	of	the	benefits	of	a	clearly	specified	interface	is	that	it	indicates	exactly
what	developers	need	to	know	in	order	to	use	the	associated	module.	This	helps
to	eliminate	the	“unknown	unknowns”	problem	described	in	Section	2.2.

4.3				Abstractions
The	 term	 abstraction	 is	 closely	 related	 to	 the	 idea	 of	 modular	 design.	 An
abstraction	 is	 a	 simplified	 view	 of	 an	 entity,	 which	 omits	 unimportant
details.	Abstractions	are	useful	because	they	make	it	easier	for	us	to	think	about
and	manipulate	complex	things.

In	modular	programming,	each	module	provides	an	abstraction	in	form	of	its
interface.	The	interface	presents	a	simplified	view	of	the	module’s	functionality;
the	 details	 of	 the	 implementation	 are	 unimportant	 from	 the	 standpoint	 of	 the
module’s	abstraction,	so	they	are	omitted	from	the	interface.

In	the	definition	of	abstraction,	the	word	“unimportant”	is	crucial.	The	more
unimportant	details	 that	are	omitted	from	an	abstraction,	 the	better.	However,	a
detail	can	only	be	omitted	from	an	abstraction	if	it	is	unimportant.	An	abstraction
can	 go	 wrong	 in	 two	 ways.	 First,	 it	 can	 include	 details	 that	 are	 not	 really
important;	when	 this	 happens,	 it	makes	 the	 abstraction	more	 complicated	 than
necessary,	 which	 increases	 the	 cognitive	 load	 on	 developers	 using	 the
abstraction.	The	second	error	is	when	an	abstraction	omits	details	that	really	are
important.	This	 results	 in	 obscurity:	 developers	 looking	 only	 at	 the	 abstraction
will	not	have	all	 the	 information	 they	need	 to	use	 the	abstraction	correctly.	An

abstraction	 that	 omits	 important	 details	 is	 a	 false	 abstraction:	 it	 might	 appear
simple,	but	in	reality	it	isn’t.	The	key	to	designing	abstractions	is	to	understand
what	 is	 important,	 and	 to	 look	 for	 designs	 that	 minimize	 the	 amount	 of
information	that	is	important.

As	 an	 example,	 consider	 a	 file	 system.	 The	 abstraction	 provided	 by	 a	 file
system	omits	many	details,	such	as	the	mechanism	for	choosing	which	blocks	on
a	storage	device	to	use	for	the	data	in	a	given	file.	These	details	are	unimportant
to	users	of	the	file	system	(as	long	as	the	system	provides	adequate	performance).
However,	some	of	the	details	of	a	file	system’s	implementation	are	important	to
users.	Most	file	systems	cache	data	in	main	memory,	and	they	may	delay	writing
new	 data	 to	 the	 storage	 device	 in	 order	 to	 improve	 performance.	 Some
applications,	 such	 as	 databases,	 need	 to	 know	 exactly	 when	 data	 is	 written
through	 to	 storage,	 so	 they	 can	 ensure	 that	 data	will	 be	preserved	 after	 system
crashes.	Thus,	the	rules	for	flushing	data	to	secondary	storage	must	be	visible	in
the	file	system’s	interface.

We	depend	on	abstractions	 to	manage	complexity	not	 just	 in	programming,
but	 pervasively	 in	 our	 everyday	 lives.	 A	 microwave	 oven	 contains	 complex
electronics	to	convert	alternating	current	into	microwave	radiation	and	distribute
that	 radiation	 throughout	 the	 cooking	 cavity.	 Fortunately,	 users	 see	 a	 much
simpler	 abstraction,	 consisting	 of	 a	 few	 buttons	 to	 control	 the	 timing	 and
intensity	of	the	microwaves.	Cars	provide	a	simple	abstraction	that	allows	us	to
drive	them	without	understanding	the	mechanisms	for	electrical	motors,	battery
power	management,	anti-lock	brakes,	cruise	control,	and	so	on.

4.4				Deep	modules
The	best	modules	are	 those	 that	provide	powerful	functionality	yet	have	simple
interfaces.	I	use	the	term	deep	to	describe	such	modules.	To	visualize	the	notion
of	 depth,	 imagine	 that	 each	module	 is	 represented	by	 a	 rectangle,	 as	 shown	 in
Figure	 4.1.	 The	 area	 of	 each	 rectangle	 is	 proportional	 to	 the	 functionality
implemented	by	the	module.	The	top	edge	of	a	rectangle	represents	the	module’s
interface;	 the	 length	of	 that	edge	 indicates	 the	complexity	of	 the	 interface.	The
best	modules	are	deep:	 they	have	a	 lot	of	 functionality	hidden	behind	a	 simple
interface.	A	deep	module	is	a	good	abstraction	because	only	a	small	fraction	of
its	internal	complexity	is	visible	to	its	users.

Figure	4.1:	Deep	and	shallow	modules.	The	best	modules	are	deep:	they	allow	a	lot	of	functionality	to	be
accessed	through	a	simple	interface.	A	shallow	module	is	one	with	a	relatively	complex	interface,	but	not
much	functionality:	it	doesn’t	hide	much	complexity.

Module	 depth	 is	 a	 way	 of	 thinking	 about	 cost	 versus	 benefit.	 The	 benefit
provided	 by	 a	 module	 is	 its	 functionality.	 The	 cost	 of	 a	 module	 (in	 terms	 of
system	 complexity)	 is	 its	 interface.	 A	 module’s	 interface	 represents	 the
complexity	 that	 the	module	 imposes	on	 the	 rest	of	 the	 system:	 the	 smaller	and
simpler	the	interface,	the	less	complexity	that	it	introduces.	The	best	modules	are
those	with	the	greatest	benefit	and	the	least	cost.	Interfaces	are	good,	but	more,
or	larger,	interfaces	are	not	necessarily	better!

The	mechanism	 for	 file	 I/O	provided	by	 the	Unix	 operating	 system	and	 its
descendants,	such	as	Linux,	is	a	beautiful	example	of	a	deep	interface.	There	are
only	five	basic	system	calls	for	I/O,	with	simple	signatures:
int	open(const	char*	path,	int	flags,	mode_t	permissions);

ssize_t	read(int	fd,	void*	buffer,	size_t	count);

ssize_t	write(int	fd,	const	void*	buffer,	size_t	count);

off_t	lseek(int	fd,	off_t	offset,	int	referencePosition);

int	close(int	fd);

The	open	system	call	takes	a	hierarchical	file	name	such	as	/a/b/c	and	returns	an
integer	 file	 descriptor,	 which	 is	 used	 to	 reference	 the	 open	 file.	 The	 other
arguments	for	open	provide	optional	information	such	as	whether	the	file	is	being
opened	for	reading	or	writing,	whether	a	new	file	should	be	created	if	there	is	no
existing	file,	and	access	permissions	for	the	file,	if	a	new	file	is	created.	The	read
and	 write	 system	 calls	 transfer	 information	 between	 buffer	 areas	 in	 the
application’s	memory	and	 the	file;	close	ends	 the	access	 to	 the	file.	Most	 files
are	accessed	sequentially,	so	that	 is	 the	default;	however,	random	access	can	be
achieved	by	invoking	the	lseek	system	call	to	change	the	current	access	position.

A	 modern	 implementation	 of	 the	 Unix	 I/O	 interface	 requires	 hundreds	 of

A	modern	 implementation	 of	 the	 Unix	 I/O	 interface	 requires	 hundreds	 of
thousands	of	lines	of	code,	which	address	complex	issues	such	as:

How	are	files	represented	on	disk	in	order	to	allow	efficient	access?
How	are	directories	stored,	and	how	are	hierarchical	path	names	processed
to	find	the	files	they	refer	to?
How	are	permissions	enforced,	so	that	one	user	cannot	modify	or	delete
another	user’s	files?
How	are	file	accesses	implemented?	For	example,	how	is	functionality
divided	between	interrupt	handlers	and	background	code,	and	how	do	these
two	elements	communicate	safely?
What	scheduling	policies	are	used	when	there	are	concurrent	accesses	to
multiple	files?
How	can	recently	accessed	file	data	be	cached	in	memory	in	order	to	reduce
the	number	of	disk	accesses?
How	can	a	variety	of	different	secondary	storage	devices,	such	as	disks	and
flash	drives,	be	incorporated	into	a	single	file	system?

All	 of	 these	 issues,	 and	 many	 more,	 are	 handled	 by	 the	 Unix	 file	 system
implementation;	they	are	invisible	to	programmers	who	invoke	the	system	calls.
Implementations	of	the	Unix	I/O	interface	have	evolved	radically	over	the	years,
but	the	five	basic	kernel	calls	have	not	changed.

Another	 example	 of	 a	 deep	module	 is	 the	 garbage	 collector	 in	 a	 language
such	as	Go	or	Java.	This	module	has	no	interface	at	all;	it	works	invisibly	behind
the	 scenes	 to	 reclaim	 unused	memory.	 Adding	 garbage	 collection	 to	 a	 system
actually	shrinks	its	overall	interface,	since	it	eliminates	the	interface	for	freeing
objects.	 The	 implementation	 of	 a	 garbage	 collector	 is	 quite	 complex,	 but	 that
complexity	is	hidden	from	programmers	using	the	language.

Deep	 modules	 such	 as	 Unix	 I/O	 and	 garbage	 collectors	 provide	 powerful
abstractions	 because	 they	 are	 easy	 to	 use,	 yet	 they	 hide	 significant
implementation	complexity.

4.5				Shallow	modules
On	the	other	hand,	a	shallow	module	is	one	whose	interface	is	relatively	complex
in	 comparison	 to	 the	 functionality	 that	 it	 provides.	 For	 example,	 a	 class	 that
implements	 linked	 lists	 is	 shallow.	 It	 doesn’t	 take	much	 code	 to	manipulate	 a
linked	list	(inserting	or	deleting	an	element	takes	only	a	few	lines),	so	the	linked
list	 abstraction	 doesn’t	 hide	 very	many	details.	The	 complexity	 of	 a	 linked	 list

interface	 is	 nearly	 as	 great	 as	 the	 complexity	 of	 its	 implementation.	 Shallow
classes	 are	 sometimes	 unavoidable,	 but	 they	 don’t	 provide	 help	 much	 in
managing	complexity.

Here	is	an	extreme	example	of	a	shallow	method,	 taken	from	a	project	 in	a
software	design	class:
private	void	addNullValueForAttribute(String	attribute)	{

							data.put(attribute,	null);
}

From	the	standpoint	of	managing	complexity,	 this	method	makes	 things	worse,
not	 better.	 The	 method	 offers	 no	 abstraction,	 since	 all	 of	 its	 functionality	 is
visible	through	its	interface.	For	example,	callers	probably	need	to	know	that	the
attribute	will	be	 stored	 in	 the	data	variable.	 It	 is	no	 simpler	 to	 think	about	 the
interface	 than	 to	 think	 about	 the	 full	 implementation.	 If	 the	 method	 is
documented	properly,	the	documentation	will	be	longer	than	the	method’s	code.
It	even	takes	more	keystrokes	to	invoke	the	method	than	it	would	take	for	a	caller
to	 manipulate	 the	 data	 variable	 directly.	 The	 method	 adds	 complexity	 (in	 the
form	of	 a	new	 interface	 for	developers	 to	 learn)	but	provides	no	 compensating
benefit.

	Red	Flag:	Shallow	Module	
A	 shallow	 module	 is	 one	 whose	 interface	 is	 complicated	 relative	 to	 the
functionality	 it	 provides.	 Shallow	 modules	 don’t	 help	 much	 in	 the	 battle
against	complexity,	because	the	benefit	they	provide	(not	having	to	learn	about
how	 they	work	 internally)	 is	 negated	by	 the	 cost	of	 learning	and	using	 their
interfaces.	Small	modules	tend	to	be	shallow.

4.6				Classitis
Unfortunately,	 the	 value	 of	 deep	 classes	 is	 not	 widely	 appreciated	 today.	 The
conventional	wisdom	in	programming	is	that	classes	should	be	small,	not	deep.
Students	are	often	taught	that	the	most	important	thing	in	class	design	is	to	break
up	 larger	 classes	 into	 smaller	 ones.	 The	 same	 advice	 is	 often	 given	 about
methods:	 “Any	 method	 longer	 than	 N	 lines	 should	 be	 divided	 into	 multiple

methods”	 (N	 can	 be	 as	 low	 as	 10).	 This	 approach	 results	 in	 large	 numbers	 of
shallow	classes	and	methods,	which	add	to	overall	system	complexity.

The	extreme	of	the	“classes	should	be	small”	approach	is	a	syndrome	I	call
classitis,	which	 stems	 from	 the	mistaken	 view	 that	 “classes	 are	 good,	 so	more
classes	are	better.”	In	systems	suffering	from	classitis,	developers	are	encouraged
to	minimize	 the	 amount	 of	 functionality	 in	 each	 new	 class:	 if	 you	want	more
functionality,	 introduce	 more	 classes.	 Classitis	 may	 result	 in	 classes	 that	 are
individually	simple,	but	it	increases	the	complexity	of	the	overall	system.	Small
classes	 don’t	 contribute	much	 functionality,	 so	 there	 have	 to	 be	 a	 lot	 of	 them,
each	with	 its	 own	 interface.	 These	 interfaces	 accumulate	 to	 create	 tremendous
complexity	 at	 the	 system	 level.	 Small	 classes	 also	 result	 in	 a	 verbose
programming	style,	due	to	the	boilerplate	required	for	each	class.

4.7				Examples:	Java	and	Unix	I/O
One	of	the	most	visible	examples	of	classitis	today	is	the	Java	class	library.	The
Java	 language	 doesn’t	 require	 lots	 of	 small	 classes,	 but	 a	 culture	 of	 classitis
seems	to	have	taken	root	 in	 the	Java	programming	community.	For	example,	 to
open	 a	 file	 in	 order	 to	 read	 serialized	 objects	 from	 it,	 you	 must	 create	 three
different	objects:
FileInputStream	fileStream	=

new	FileInputStream(fileName);

BufferedInputStream	bufferedStream	=

new	BufferedInputStream(fileStream);

ObjectInputStream	objectStream	=

new	ObjectInputStream(bufferedStream);

A	 FileInputStream	 object	 provides	 only	 rudimentary	 I/O:	 it	 is	 not	 capable	 of
performing	 buffered	 I/O,	 nor	 can	 it	 read	 or	 write	 serialized	 objects.	 The
BufferedInputStream	 object	 adds	 buffering	 to	 a	 FileInputStream,	 and	 the
ObjectInputStream	adds	the	ability	to	read	and	write	serialized	objects.	The	first
two	objects	 in	 the	code	above,	fileStream	 and	bufferedStream,	 are	never	used
once	the	file	has	been	opened;	all	future	operations	use	objectStream.

It	is	particularly	annoying	(and	error-prone)	that	buffering	must	be	requested
explicitly	 by	 creating	 a	 separate	 BufferedInputStream	 object;	 if	 a	 developer
forgets	 to	 create	 this	 object,	 there	 will	 be	 no	 buffering	 and	 I/O	 will	 be	 slow.
Perhaps	the	Java	developers	would	argue	that	not	everyone	wants	to	use	buffering

for	file	I/O,	so	it	shouldn’t	be	built	into	the	base	mechanism.	They	might	argue
that	it’s	better	to	keep	buffering	separate,	so	people	can	choose	whether	or	not	to
use	it.	Providing	choice	is	good,	but	interfaces	should	be	designed	to	make	the
common	case	as	simple	as	possible	(see	the	formula	on	page	6).	Almost	every
user	of	file	I/O	will	want	buffering,	so	it	should	be	provided	by	default.	For	those
few	 situations	 where	 buffering	 is	 not	 desirable,	 the	 library	 can	 provide	 a
mechanism	 to	 disable	 it.	 Any	 mechanism	 for	 disabling	 buffering	 should	 be
cleanly	 separated	 in	 the	 interface	 (for	 example,	 by	 providing	 a	 different
constructor	 for	FileInputStream,	 or	 through	a	method	 that	disables	or	 replaces
the	buffering	mechanism),	so	that	most	developers	do	not	even	need	to	be	aware
of	its	existence.

In	 contrast,	 the	 designers	 of	 the	Unix	 system	calls	made	 the	 common	 case
simple.	 For	 example,	 they	 recognized	 that	 sequential	 I/O	 is	most	 common,	 so
they	made	that	the	default	behavior.	Random	access	is	still	relatively	easy	to	do,
using	 the	lseek	 system	call,	but	a	developer	doing	only	 sequential	access	need
not	 be	 aware	 of	 that	 mechanism.	 If	 an	 interface	 has	 many	 features,	 but	 most
developers	only	need	to	be	aware	of	a	few	of	 them,	 the	effective	complexity	of
that	interface	is	just	the	complexity	of	the	commonly	used	features.

4.8				Conclusion
By	separating	the	interface	of	a	module	from	its	implementation,	we	can	hide	the
complexity	of	the	implementation	from	the	rest	of	the	system.	Users	of	a	module
need	 only	 understand	 the	 abstraction	 provided	 by	 its	 interface.	 The	 most
important	issue	in	designing	classes	and	other	modules	is	to	make	them	deep,	so
that	 they	 have	 simple	 interfaces	 for	 the	 common	 use	 cases,	 yet	 still	 provide
significant	 functionality.	 This	 maximizes	 the	 amount	 of	 complexity	 that	 is
concealed.

1There	exist	 languages,	mostly	 in	 the	 research	community,	where	 the	overall	behavior	of	a	method	or
function	 can	 be	 described	 formally	 using	 a	 specification	 language.	 The	 specification	 can	 be	 checked
automatically	to	ensure	that	it	matches	the	implementation.	An	interesting	question	is	whether	such	a	formal
specification	 could	 replace	 the	 informal	 parts	 of	 an	 interface.	 My	 current	 opinion	 is	 that	 an	 interface
described	in	English	is	likely	to	be	more	intuitive	and	understandable	for	developers	than	one	written	in	a
formal	specification	language.

Chapter	5

Information	Hiding	(and	Leakage)

Chapter	4	 argued	 that	modules	 should	be	deep.	This	 chapter,	 and	 the	next	 few
that	follow,	discuss	techniques	for	creating	deep	modules.

5.1				Information	hiding
The	most	important	technique	for	achieving	deep	modules	is	information	hiding.
This	technique	was	first	described	by	David	Parnas1.	The	basic	idea	is	that	each
module	 should	 encapsulate	 a	 few	pieces	of	knowledge,	which	 represent	design
decisions.	The	knowledge	is	embedded	in	the	module’s	implementation	but	does
not	appear	in	its	interface,	so	it	is	not	visible	to	other	modules.

The	 information	 hidden	 within	 a	 module	 usually	 consists	 of	 details	 about
how	to	implement	some	mechanism.	Here	are	some	examples	of	information	that
might	be	hidden	within	a	module:

How	to	store	information	in	a	B-tree,	and	how	to	access	it	efficiently.
How	to	identify	the	physical	disk	block	corresponding	to	each	logical	block
within	a	file.
How	to	implement	the	TCP	network	protocol.
How	to	schedule	threads	on	a	multi-core	processor.
How	to	parse	JSON	documents.

The	 hidden	 information	 includes	 data	 structures	 and	 algorithms	 related	 to	 the
mechanism.	It	can	also	include	lower-level	details	such	as	the	size	of	a	page,	and
it	can	include	higher-level	concepts	that	are	more	abstract,	such	as	an	assumption
that	most	files	are	small.

Information	 hiding	 reduces	 complexity	 in	 two	ways.	 First,	 it	 simplifies	 the
interface	to	a	module.	The	interface	reflects	a	simpler,	more	abstract	view	of	the
module’s	 functionality	and	hides	 the	details;	 this	 reduces	 the	cognitive	 load	on
developers	who	use	 the	module.	For	 instance,	 a	developer	using	 a	B-tree	 class
need	not	worry	about	 the	 ideal	 fanout	 for	nodes	 in	 the	 tree	or	how	to	keep	 the

tree	balanced.	Second,	information	hiding	makes	it	easier	to	evolve	the	system.	If
a	piece	of	information	is	hidden,	there	are	no	dependencies	on	that	information
outside	the	module	containing	the	information,	so	a	design	change	related	to	that
information	will	 affect	only	 the	one	module.	For	 example,	 if	 the	TCP	protocol
changes	(to	introduce	a	new	mechanism	for	congestion	control,	for	instance),	the
protocol’s	 implementation	will	 have	 to	 be	modified,	 but	 no	 changes	 should	 be
needed	in	higher-level	code	that	uses	TCP	to	send	and	receive	data.

When	 designing	 a	 new	 module,	 you	 should	 think	 carefully	 about	 what
information	can	be	hidden	in	that	module.	If	you	can	hide	more	information,	you
should	also	be	able	to	simplify	the	module’s	interface,	and	this	makes	the	module
deeper.

Note:	hiding	variables	and	methods	in	a	class	by	declaring	them	private	isn’t
the	same	thing	as	information	hiding.	Private	elements	can	help	with	information
hiding,	since	they	make	it	impossible	for	the	items	to	be	accessed	directly	from
outside	 the	 class.	 However,	 information	 about	 the	 private	 items	 can	 still	 be
exposed	 through	 public	methods	 such	 as	 getter	 and	 setter	methods.	When	 this
happens	 the	 nature	 and	 usage	 of	 the	 variables	 are	 just	 as	 exposed	 as	 if	 the
variables	were	public.

The	 best	 form	 of	 information	 hiding	 is	when	 information	 is	 totally	 hidden
within	 a	 module,	 so	 that	 it	 is	 irrelevant	 and	 invisible	 to	 users	 of	 the	 module.
However,	partial	 information	hiding	also	has	value.	For	example,	 if	a	particular
feature	or	piece	of	information	is	only	needed	by	a	few	of	a	class’s	users,	and	it	is
accessed	 through	 separate	methods	 so	 that	 it	 isn’t	 visible	 in	 the	most	 common
use	cases,	 then	 that	 information	 is	mostly	hidden.	Such	 information	will	create
fewer	dependencies	than	information	that	is	visible	to	every	user	of	the	class.

5.2				Information	leakage
The	opposite	of	information	hiding	is	information	leakage.	 Information	 leakage
occurs	when	a	design	decision	 is	 reflected	 in	multiple	modules.	This	 creates	 a
dependency	between	the	modules:	any	change	to	that	design	decision	will	require
changes	to	all	of	 the	involved	modules.	If	a	piece	of	 information	is	reflected	in
the	 interface	 for	 a	module,	 then	by	definition	 it	 has	been	 leaked;	 thus,	 simpler
interfaces	tend	to	correlate	with	better	information	hiding.	However,	information
can	 be	 leaked	 even	 if	 it	 doesn’t	 appear	 in	 a	 module’s	 interface.	 Suppose	 two
classes	both	have	knowledge	of	a	particular	file	format	(perhaps	one	class	reads
files	in	that	format	and	the	other	class	writes	them).	Even	if	neither	class	exposes

that	information	in	its	interface,	they	both	depend	on	the	file	format:	if	the	format
changes,	 both	 classes	will	 need	 to	 be	modified.	Back-door	 leakage	 like	 this	 is
more	pernicious	than	leakage	through	an	interface,	because	it	isn’t	obvious.

Information	 leakage	 is	 one	 of	 the	 most	 important	 red	 flags	 in	 software
design.	One	of	the	best	skills	you	can	learn	as	a	software	designer	is	a	high	level
of	 sensitivity	 to	 information	 leakage.	 If	 you	 encounter	 information	 leakage
between	 classes,	 ask	 yourself	 “How	 can	 I	 reorganize	 these	 classes	 so	 that	 this
particular	piece	of	knowledge	only	affects	a	single	class?”	If	the	affected	classes
are	relatively	small	and	closely	tied	to	the	leaked	information,	it	may	make	sense
to	 merge	 them	 into	 a	 single	 class.	 Another	 possible	 approach	 is	 to	 pull	 the
information	 out	 of	 all	 of	 the	 affected	 classes	 and	 create	 a	 new	 class	 that
encapsulates	just	that	information.	However,	this	approach	will	be	effective	only
if	you	can	find	a	simple	interface	that	abstracts	away	from	the	details;	if	the	new
class	exposes	most	of	the	knowledge	through	its	interface,	then	it	won’t	provide
much	value	(you’ve	simply	replaced	back-door	leakage	with	leakage	through	an
interface).

	Red	Flag:	Information	Leakage	
Information	 leakage	 occurs	 when	 the	 same	 knowledge	 is	 used	 in	 multiple
places,	 such	 as	 two	 different	 classes	 that	 both	 understand	 the	 format	 of	 a
particular	type	of	file.

5.3				Temporal	decomposition
One	 common	 cause	 of	 information	 leakage	 is	 a	 design	 style	 I	 call	 temporal
decomposition.	In	temporal	decomposition,	the	structure	of	a	system	corresponds
to	 the	 time	 order	 in	which	 operations	will	 occur.	 Consider	 an	 application	 that
reads	 a	 file	 in	 a	 particular	 format,	modifies	 the	 contents	 of	 the	 file,	 and	 then
writes	the	file	out	again.	With	temporal	decomposition,	this	application	might	be
broken	 into	 three	 classes:	 one	 to	 read	 the	 file,	 another	 to	 perform	 the
modifications,	and	a	third	to	write	out	the	new	version.	Both	the	file	reading	and
file	 writing	 steps	 have	 knowledge	 about	 the	 file	 format,	 which	 results	 in
information	leakage.	The	solution	is	to	combine	the	core	mechanisms	for	reading
and	 writing	 files	 into	 a	 single	 class.	 This	 class	 will	 get	 used	 during	 both	 the

reading	 and	writing	 phases	 of	 the	 application.	 It’s	 easy	 to	 fall	 into	 the	 trap	 of
temporal	 decomposition,	 because	 the	 order	 in	 which	 operations	must	 occur	 is
often	 on	 your	mind	when	 you	 code.	However,	most	 design	 decisions	manifest
themselves	at	several	different	times	over	the	life	of	the	application;	as	a	result,
temporal	decomposition	often	results	in	information	leakage.

Order	 usually	 does	 matter,	 so	 it	 will	 be	 reflected	 somewhere	 in	 the
application.	However,	it	shouldn’t	be	reflected	in	the	module	structure	unless	that
structure	 is	consistent	with	 information	hiding	(perhaps	 the	different	stages	use
totally	 different	 information).	 When	 designing	 modules,	 focus	 on	 the
knowledge	that’s	needed	to	perform	each	task,	not	the	order	in	which	tasks
occur.

	Red	Flag:	Temporal	Decomposition	
In	temporal	decomposition,	execution	order	is	reflected	in	the	code	structure:
operations	that	happen	at	different	times	are	in	different	methods	or	classes.	If
the	same	knowledge	is	used	at	different	points	in	execution,	it	gets	encoded	in
multiple	places,	resulting	in	information	leakage.

5.4				Example:	HTTP	server
To	illustrate	the	issues	in	information	hiding,	let’s	consider	the	design	decisions
made	by	students	implementing	the	HTTP	protocol	in	a	software	design	course.
It’s	 useful	 to	 see	 both	 the	 things	 they	 did	well	 and	 they	 areas	where	 they	 had
problems.

HTTP	 is	 a	 mechanism	 used	 by	 Web	 browsers	 to	 communicate	 with	 Web
servers.	When	a	user	clicks	on	a	 link	 in	a	Web	browser	or	submits	a	 form,	 the
browser	uses	HTTP	to	send	a	request	over	the	network	to	a	Web	server.	Once	the
server	 has	 processed	 the	 request,	 it	 sends	 a	 response	 back	 to	 the	 browser;	 the
response	 normally	 contains	 a	 new	 Web	 page	 to	 display.	 The	 HTTP	 protocol
specifies	 the	 format	 of	 requests	 and	 responses,	 both	 of	 which	 are	 represented
textually.	Figure	5.1	shows	a	sample	HTTP	request	describing	a	form	submission.
The	students	in	the	course	were	asked	to	implement	one	or	more	classes	to	make
it	easy	for	Web	servers	to	receive	incoming	HTTP	requests	and	send	responses.

Figure	5.1:	A	POST	 request	 in	 the	HTTP	protocol	 consists	of	 text	 sent	over	a	TCP	socket.	Each	 request
contains	an	initial	line,	a	collection	of	headers	terminated	by	an	empty	line,	and	an	optional	body.	The	initial
line	 contains	 the	 request	 type	 (POST	 is	 used	 for	 submitting	 form	 data),	 a	 URL	 indicating	 an	 operation
(/comments/create)	and	optional	parameters	(photo_id	has	 the	value	246),	and	 the	HTTP	protocol	version
used	by	the	sender.	Each	header	line	consists	of	a	name	such	as	Content-Length	followed	by	its	value.	For
this	request,	the	body	contains	additional	parameters	(comment	and	priority).

5.5				Example:	too	many	classes
The	most	common	mistake	made	by	students	was	to	divide	their	code	into	a	large
number	of	shallow	classes,	which	led	to	information	leakage	between	the	classes.
One	team	used	two	different	classes	for	receiving	HTTP	requests;	the	first	class
read	the	request	from	the	network	connection	into	a	string,	and	the	second	class
parsed	the	string.	This	is	an	example	of	a	temporal	decomposition	(“first	we	read
the	request,	 then	we	parse	it”).	Information	leakage	occurred	because	an	HTTP
request	 can’t	 be	 read	 without	 parsing	 much	 of	 the	 message;	 for	 example,	 the
Content-Length	 header	 specifies	 the	 length	of	 the	 request	body,	 so	 the	headers
must	 be	 parsed	 in	 order	 to	 compute	 the	 total	 request	 length.	As	 a	 result,	 both
classes	needed	to	understand	most	of	the	structure	of	HTTP	requests,	and	parsing
code	was	duplicated	in	both	classes.	This	approach	also	created	extra	complexity
for	 callers,	who	had	 to	 invoke	 two	methods	 in	different	 classes,	 in	 a	particular
order,	to	receive	a	request.

Because	the	classes	shared	so	much	information,	it	would	have	been	better	to
merge	 them	 into	 a	 single	 class	 that	 handles	 both	 request	 reading	 and	 parsing.
This	 provides	 better	 information	 hiding,	 since	 it	 isolates	 all	 knowledge	 of	 the
request	format	in	one	class,	and	it	also	provides	a	simpler	interface	to	callers	(just
one	method	to	invoke).

This	 example	 illustrates	 a	 general	 theme	 in	 software	 design:	 information
hiding	can	often	be	 improved	by	making	a	class	slightly	 larger.	One	reason
for	doing	this	is	to	bring	together	all	of	the	code	related	to	a	particular	capability
(such	as	parsing	an	HTTP	request),	so	that	the	resulting	class	contains	everything

related	to	that	capability.	A	second	reason	for	increasing	the	size	of	a	class	is	to
raise	the	level	of	the	interface;	for	example,	rather	than	having	separate	methods
for	each	of	three	steps	of	a	computation,	have	a	single	method	that	performs	the
entire	computation.	This	can	result	in	a	simpler	interface.	Both	of	these	benefits
apply	 in	 the	 example	 of	 the	 previous	 paragraph:	 combining	 the	 classes	 brings
together	all	of	the	code	related	to	parsing	an	HTTP	request,	and	it	replaces	two
externally-visible	 methods	 with	 one.	 The	 combined	 class	 is	 deeper	 than	 the
original	classes.

Of	course,	it	is	possible	to	take	the	notion	of	larger	classes	too	far	(such	as	a
single	class	 for	 the	entire	application).	Chapter	9	will	discuss	conditions	under
which	it	makes	sense	to	separate	code	into	multiple	smaller	classes.

5.6				Example:	HTTP	parameter	handling
After	an	HTTP	request	has	been	received	by	a	server,	the	server	needs	to	access
some	of	 the	 information	from	the	request.	The	code	 that	handles	 the	request	 in
Figure	5.1	might	need	to	know	the	value	of	the	photo_id	parameter.	Parameters
can	 be	 specified	 in	 the	 first	 line	 of	 the	 request	 (photo_id	 in	 Figure	 5.1)	 or,
sometimes,	 in	 the	 body	 (comment	 and	priority	 in	 Figure	 5.1).	 Each	 parameter
has	a	name	and	a	value.	The	values	of	parameters	use	a	special	encoding	called
URL	encoding;	for	example,	in	the	value	for	comment	in	Figure	5.1,	“+”	is	used	to
represent	a	space	character,	and	“%21”	is	used	instead	of	“!”.	In	order	to	process
a	request,	the	server	will	need	the	values	for	some	of	the	parameters,	and	it	will
want	them	in	unencoded	form.

Most	 of	 the	 student	 projects	 made	 two	 good	 choices	 with	 respect	 to
parameter	 handling.	 First,	 they	 recognized	 that	 server	 applications	 don’t	 care
whether	a	parameter	is	specified	in	the	header	line	or	the	body	of	the	request,	so
they	 hid	 this	 distinction	 from	 callers	 and	 merged	 the	 parameters	 from	 both
locations	 together.	 Second,	 they	 hid	 knowledge	 of	 URL	 encoding:	 the	 HTTP
parser	decodes	parameter	values	before	returning	them	to	the	Web	server,	so	that
the	value	of	the	comment	parameter	in	Figure	5.1	will	be	returned	as	“What	a	cute
baby!”,	 not	 “What+a+cute+baby%21”).	 In	 both	 of	 these	 cases,	 information
hiding	resulted	in	simpler	APIs	for	the	code	using	the	HTTP	module.

However,	most	of	the	students	used	an	interface	for	returning	parameters	that
was	 too	 shallow,	 and	 this	 resulted	 in	 lost	 opportunities	 for	 information	 hiding.
Most	 projects	 used	 an	 object	 of	 type	 HTTPRequest	 to	 hold	 the	 parsed	 HTTP

request,	and	the	HTTPRequest	class	had	a	single	method	like	the	following	one	to
return	parameters:
public	Map<String,	String>	getParams()	{

							return	this.params;
}

Rather	 than	 returning	a	 single	parameter,	 the	method	 returns	a	 reference	 to	 the
Map	used	internally	to	store	all	of	the	parameters.	This	method	is	shallow,	and	it
exposes	 the	 internal	 representation	 used	 by	 the	 HTTPRequest	 class	 to	 store
parameters.	 Any	 change	 to	 that	 representation	 will	 result	 in	 a	 change	 to	 the
interface,	which	will	require	modifications	to	all	callers.	When	implementations
are	modified,	the	changes	often	involve	changes	in	the	representation	of	key	data
structures	 (to	 improve	performance,	 for	 example).	Thus,	 it’s	 important	 to	avoid
exposing	internal	data	structures	as	much	as	possible.	This	approach	also	makes
more	 work	 for	 callers:	 a	 caller	 must	 first	 invoke	 getParams,	 then	 it	 must	 call
another	 method	 to	 retrieve	 a	 specific	 parameter	 from	 the	 Map.	 Finally,	 callers
must	 realize	 that	 they	 should	 not	modify	 the	 Map	 returned	 by	getParams,	 since
that	will	affect	the	internal	state	of	the	HTTPRequest.

Here	is	a	better	interface	for	retrieving	parameter	values:
public	String	getParameter(String	name)	{	...	}

public	int	getIntParameter(String	name)	{	...	}

getParameter	returns	a	parameter	value	as	a	string.	It	provides	a	slightly	deeper
interface	 than	 getParams	 above;	 more	 importantly,	 it	 hides	 the	 internal
representation	of	parameters.	getIntParameter	converts	the	value	of	a	parameter
from	 its	 string	 form	 in	 the	 HTTP	 request	 to	 an	 integer	 (e.g.,	 the	 photo_id
parameter	in	Figure	5.1).	This	saves	 the	caller	 from	having	 to	 request	string-to-
integer	 conversion	 separately,	 and	 hides	 that	 mechanism	 from	 the	 caller.
Additional	methods	for	other	data	 types,	such	as	getDoubleParameter,	could	be
defined	 if	 needed.	 (All	 of	 these	 methods	 will	 throw	 exceptions	 if	 the	 desired
parameter	 doesn’t	 exist,	 or	 if	 it	 can’t	 be	 converted	 to	 the	 requested	 type;	 the
exception	declarations	have	been	omitted	in	the	code	above).

5.7				Example:	defaults	in	HTTP	responses
The	HTTP	projects	also	had	to	provide	support	for	generating	HTTP	responses.
The	most	common	mistake	students	made	 in	 this	area	was	 inadequate	defaults.
Each	HTTP	response	must	specify	an	HTTP	protocol	version;	one	team	required

callers	 to	 specify	 this	 version	 explicitly	 when	 creating	 a	 response	 object.
However,	the	response	version	must	correspond	to	that	in	the	request	object,	and
the	request	must	already	be	passed	as	an	argument	when	sending	the	response	(it
indicates	where	to	send	the	response).	Thus,	it	makes	more	sense	for	the	HTTP
classes	 to	 provide	 the	 response	 version	 automatically.	 The	 caller	 is	 unlikely	 to
know	what	version	to	specify,	and	if	the	caller	does	specify	a	value,	it	probably
results	 in	 information	 leakage	between	 the	HTTP	 library	 and	 the	 caller.	HTTP
responses	also	include	a	Date	header	specifying	the	time	when	the	response	was
sent;	the	HTTP	library	should	provide	a	sensible	default	for	this	as	well.

Defaults	 illustrate	 the	 principle	 that	 interfaces	 should	 be	 designed	 to	make
the	 common	 case	 as	 simple	 as	 possible.	 They	 are	 also	 an	 example	 of	 partial
information	 hiding:	 in	 the	 normal	 case,	 the	 caller	 need	 not	 be	 aware	 of	 the
existence	of	the	defaulted	item.	In	the	rare	cases	where	a	caller	needs	to	override
a	default,	it	will	have	to	know	about	the	value,	and	it	can	invoke	a	special	method
to	modify	it.

Whenever	 possible,	 classes	 should	 “do	 the	 right	 thing”	 without	 being
explicitly	asked.	Defaults	are	an	example	of	this.	The	Java	I/O	example	on	page
26	illustrates	this	point	in	a	negative	way.	Buffering	in	file	I/O	is	so	universally
desirable	that	noone	should	ever	have	to	ask	explicitly	for	it,	or	even	be	aware	of
its	 existence;	 the	 I/O	 classes	 should	 do	 the	 right	 thing	 and	 provide	 it
automatically.	The	best	features	are	the	ones	you	get	without	even	knowing	they
exist.

	Red	Flag:	Overexposure	
If	 the	 API	 for	 a	 commonly	 used	 feature	 forces	 users	 to	 learn	 about	 other
features	 that	 are	 rarely	 used,	 this	 increases	 the	 cognitive	 load	 on	 users	who
don’t	need	the	rarely	used	features.

5.8				Information	hiding	within	a	class
The	examples	 in	 this	 chapter	 focused	on	 information	hiding	as	 it	 relates	 to	 the
externally	visible	APIs	for	classes,	but	information	hiding	can	also	be	applied	at
other	 levels	 in	 the	 system,	 such	 as	 within	 a	 class.	 Try	 to	 design	 the	 private
methods	within	 a	 class	 so	 that	 each	method	 encapsulates	 some	 information	 or

capability	and	hides	it	from	the	rest	of	the	class.	In	addition,	try	to	minimize	the
number	of	places	where	each	instance	variable	is	used.	Some	variables	may	need
to	be	accessed	widely	across	 the	class,	but	others	may	be	needed	in	only	a	few
places;	if	you	can	reduce	the	number	of	places	where	a	variable	is	used,	you	will
eliminate	dependencies	within	the	class	and	reduce	its	complexity.

5.9				Taking	it	too	far
Information	hiding	only	makes	sense	when	the	information	being	hidden	is	not
needed	outside	its	module.	If	the	information	is	needed	outside	the	module,	then
you	must	not	hide	 it.	Suppose	 that	 the	performance	of	a	module	 is	 affected	by
certain	 configuration	 parameters,	 and	 that	 different	 uses	 of	 the	 module	 will
require	different	 settings	of	 the	parameters.	 In	 this	case	 it	 is	 important	 that	 the
parameters	are	exposed	in	the	interface	of	the	module,	so	that	they	can	be	turned
appropriately.	 As	 a	 software	 designer,	 your	 goal	 should	 be	 to	 minimize	 the
amount	of	 information	needed	outside	a	module;	 for	example,	 if	 a	module	can
automatically	adjust	its	configuration,	that	is	better	than	exposing	configuration
parameters.	But,	it’s	important	to	recognize	which	information	is	needed	outside
a	module	and	make	sure	it	is	exposed.

5.10					Conclusion
Information	hiding	and	deep	modules	are	closely	related.	If	a	module	hides	a	lot
of	information,	that	tends	to	increase	the	amount	of	functionality	provided	by	the
module	 while	 also	 reducing	 its	 interface.	 This	 makes	 the	 module	 deeper.
Conversely,	 if	 a	 module	 doesn’t	 hide	 much	 information,	 then	 either	 it	 doesn’t
have	much	functionality,	or	it	has	a	complex	interface;	either	way,	the	module	is
shallow.

When	decomposing	a	 system	 into	modules,	 try	not	 to	be	 influenced	by	 the
order	in	which	operations	will	occur	at	runtime;	that	will	lead	you	down	the	path
of	temporal	decomposition,	which	will	result	in	information	leakage	and	shallow
modules.	Instead,	think	about	the	different	pieces	of	knowledge	that	are	needed
to	carry	out	the	tasks	of	your	application,	and	design	each	module	to	encapsulate
one	or	a	few	of	those	pieces	of	knowledge.	This	will	produce	a	clean	and	simple
design	with	deep	modules.

1David	Parnas,	“On	the	Criteria	to	be	Used	in	Decomposing	Systems	into	Modules,”	Communications
of	the	ACM,	December	1972.

Chapter	6

General-Purpose	Modules	are	Deeper

One	 of	 the	most	 common	 decisions	 that	 you	will	 face	when	 designing	 a	 new
module	 is	 whether	 to	 implement	 it	 in	 a	 general-purpose	 or	 special-purpose
fashion.	Some	might	argue	that	you	should	take	a	general-purpose	approach,	in
which	you	implement	a	mechanism	that	can	be	used	to	address	a	broad	range	of
problems,	 not	 just	 the	 ones	 that	 are	 important	 today.	 In	 this	 case,	 the	 new
mechanism	may	find	unanticipated	uses	 in	 the	future,	 thereby	saving	time.	The
general-purpose	 approach	 seems	 consistent	 with	 the	 investment	 mindset
discussed	 in	Chapter	3,	where	you	spend	a	bit	more	 time	up	front	 to	save	 time
later	on.

On	 the	 other	 hand,	we	 know	 that	 it’s	 hard	 to	 predict	 the	 future	 needs	 of	 a
software	 system,	 so	 a	general-purpose	 solution	might	 include	 facilities	 that	 are
never	 actually	 needed.	 Furthermore,	 if	 you	 implement	 something	 that	 is	 too
general-purpose,	it	might	not	do	a	good	job	of	solving	the	particular	problem	you
have	 today.	 As	 a	 result,	 some	 might	 argue	 that	 it’s	 better	 to	 focus	 on	 today’s
needs,	building	just	what	you	know	you	need,	and	specializing	it	for	the	way	you
plan	 to	 use	 it	 today.	 If	 you	 take	 the	 special-purpose	 approach	 and	 discover
additional	uses	later,	you	can	always	refactor	it	to	make	it	general-purpose.	The
special-purpose	 approach	 seems	 consistent	 with	 an	 incremental	 approach	 to
software	development.

6.1				Make	classes	somewhat	general-purpose
In	my	experience,	 the	 sweet	 spot	 is	 to	 implement	new	modules	 in	 a	 somewhat
general-purpose	 fashion.	 The	 phrase	 “somewhat	 general-purpose”	 means	 that
the	 module’s	 functionality	 should	 reflect	 your	 current	 needs,	 but	 its	 interface
should	not.	 Instead,	 the	 interface	should	be	general	enough	 to	support	multiple
uses.	The	 interface	 should	 be	 easy	 to	 use	 for	 today’s	 needs	without	 being	 tied
specifically	to	them.	The	word	“somewhat”	is	important:	don’t	get	carried	away

and	build	something	so	general-purpose	that	it	is	difficult	to	use	for	your	current
needs.

The	most	 important	(and	perhaps	surprising)	benefit	of	 the	general-purpose
approach	is	that	it	results	in	simpler	and	deeper	interfaces	than	a	special-purpose
approach.	The	general-purpose	approach	can	also	save	you	time	in	the	future,	if
you	reuse	the	class	for	other	purposes.	However,	even	if	the	module	is	only	used
for	its	original	purpose,	the	general-purpose	approach	is	still	better	because	of	its
simplicity.

6.2				Example:	storing	text	for	an	editor
Let’s	consider	an	example	from	a	software	design	class	 in	which	students	were
asked	to	build	simple	GUI	text	editors.	The	editors	had	to	display	a	file	and	allow
users	to	point,	click,	and	type	to	edit	the	file.	The	editors	had	to	support	multiple
simultaneous	 views	 of	 the	 same	 file	 in	 different	 windows;	 they	 also	 had	 to
support	multi-level	undo	and	redo	for	modifications	to	the	file.

Each	of	the	student	projects	included	a	class	that	managed	the	underlying	text
of	 the	 file.	 The	 text	 classes	 typically	 provided	methods	 for	 loading	 a	 file	 into
memory,	reading	and	modifying	the	text	of	the	file,	and	writing	the	modified	text
back	to	a	file.

Many	 of	 the	 student	 teams	 implemented	 special-purpose	 APIs	 for	 the	 text
class.	They	knew	that	the	class	was	going	to	be	used	in	an	interactive	editor,	so
they	thought	about	the	features	that	the	editor	had	to	provide	and	tailored	the	API
of	 the	 text	 class	 to	 those	 specific	 features.	For	 example,	 if	 a	 user	 of	 the	 editor
typed	the	backspace	key,	the	editor	deleted	the	character	immediately	to	the	left
of	 the	 cursor;	 if	 the	 user	 typed	 the	 delete	 key,	 the	 editor	 deleted	 the	 character
immediately	to	the	right	of	the	cursor.	Knowing	this,	some	of	the	teams	created
one	method	in	the	text	class	to	support	each	of	these	specific	features:
void	backspace(Cursor	cursor);

void	delete(Cursor	cursor);

Each	of	 these	methods	 takes	 the	cursor	position	as	 its	argument;	a	special	 type
Cursor	 represents	 this	 position.	The	 editor	 also	 had	 to	 support	 a	 selection	 that
could	be	 copied	or	deleted.	The	 students	handled	 this	by	defining	 a	Selection
class	and	passing	an	object	of	this	class	to	the	text	class	during	deletions:
void	deleteSelection(Selection	selection);

The	students	probably	thought	that	it	would	be	easier	to	implement	the	user
interface	if	the	methods	of	the	text	class	corresponded	to	the	features	visible	to

users.	 In	 reality,	however,	 this	 specialization	provided	 little	benefit	 for	 the	user
interface	 code,	 and	 it	 created	 a	 high	 cognitive	 load	 for	 developers	working	 on
either	 the	user	 interface	or	 the	 text	 class.	The	 text	 class	 ended	up	with	 a	 large
number	 of	 shallow	 methods,	 each	 of	 which	 was	 only	 suitable	 for	 one	 user
interface	operation.	Many	of	the	methods,	such	as	delete,	were	only	invoked	in	a
single	place.	As	a	result,	a	developer	working	on	the	user	interface	had	to	learn
about	a	large	number	of	methods	for	the	text	class.

This	approach	created	information	leakage	between	the	user	interface	and	the
text	class.	Abstractions	related	to	the	user	interface,	such	as	the	selection	or	the
backspace	key,	were	reflected	in	the	text	class;	this	increased	the	cognitive	load
for	 developers	 working	 on	 the	 text	 class.	 Each	 new	 user	 interface	 operation
required	a	new	method	to	be	defined	in	the	text	class,	so	a	developer	working	on
the	user	interface	was	likely	to	end	up	working	on	the	text	class	as	well.	One	of
the	goals	in	class	design	is	to	allow	each	class	to	be	developed	independently,	but
the	specialized	approach	tied	the	user	interface	and	text	classes	together.

6.3				A	more	general-purpose	API
A	 better	 approach	 is	 to	 make	 the	 text	 class	 more	 generic.	 Its	 API	 should	 be
defined	only	 in	 terms	of	 basic	 text	 features,	without	 reflecting	 the	higher-level
operations	that	will	be	implemented	with	it.	For	example,	only	two	methods	are
needed	for	modifying	text:
void	insert(Position	position,	String	newText);

void	delete(Position	start,	Position	end);

The	 first	method	 inserts	 an	 arbitrary	 string	 at	 an	 arbitrary	 position	within	 the
text,	and	the	second	method	deletes	all	of	the	characters	at	positions	greater	than
or	 equal	 to	 start	 but	 less	 than	 end.	 This	 API	 also	 uses	 a	 more	 generic	 type
Position	 instead	 of	 Cursor,	 which	 reflects	 a	 specific	 user	 interface.	 The	 text
class	 should	 also	 provide	 general-purpose	 facilities	 for	 manipulating	 positions
within	the	text,	such	as	the	following:
Position	changePosition(Position	position,	int	numChars);

This	method	 returns	 a	 new	position	 that	 is	 a	 given	number	 of	 characters	 away
from	a	given	position.	If	the	numChars	argument	 is	positive,	 the	new	position	is
later	in	the	file	than	position;	if	numChars	is	negative,	the	new	position	is	before
position.	 The	 method	 automatically	 skips	 to	 the	 next	 or	 previous	 line	 when

necessary.	 With	 these	 methods,	 the	 delete	 key	 can	 be	 implemented	 with	 the
following	code	(assuming	the	cursor	variable	holds	the	current	cursor	position):
text.delete(cursor,	text.changePosition(cursor,	1));

Similarly,	the	backspace	key	can	be	implemented	as	follows:
text.delete(text.changePosition(cursor,	-1),	cursor);

With	 the	 general-purpose	 text	 API,	 the	 code	 to	 implement	 user	 interface
functions	 such	 as	 delete	 and	 backspace	 is	 a	 bit	 longer	 than	 with	 the	 original
approach	using	a	specialized	 text	API.	However,	 the	new	code	 is	more	obvious
than	 the	 old	 code.	A	developer	working	 in	 the	 user	 interface	module	 probably
cares	 about	 which	 characters	 are	 deleted	 by	 the	 backspace	 key.	With	 the	 new
code,	this	is	obvious.	With	the	old	code,	the	developer	had	to	go	to	the	text	class
and	read	 the	documentation	and/or	code	of	 the	backspace	method	 to	verify	 the
behavior.	Furthermore,	 the	general-purpose	approach	has	 less	code	overall	 than
the	 specialized	 approach,	 since	 it	 replaces	 a	 large	 number	 of	 special-purpose
methods	in	the	text	class	with	a	smaller	number	of	general-purpose	ones.

A	text	class	implemented	with	the	general-purpose	interface	could	potentially
be	used	for	other	purposes	besides	an	interactive	editor.	As	one	example,	suppose
you	were	building	an	application	 that	modified	a	specified	file	by	replacing	all
occurrences	 of	 a	 particular	 string	 with	 another	 string.	 Methods	 from	 the
specialized	text	class,	such	as	backspace	and	delete,	would	have	little	value	for
this	 application.	 However,	 the	 general-purpose	 text	 class	 would	 already	 have
most	of	the	functionality	needed	for	the	new	application.	All	that	is	missing	is	a
method	to	search	for	the	next	occurrence	of	a	given	string,	such	as	this:
Position	findNext(Position	start,	String	string);

Of	course,	an	interactive	text	editor	is	likely	to	have	a	mechanism	for	searching
and	replacing,	in	which	case	the	text	class	would	already	include	this	method.

6.4				Generality	leads	to	better	information	hiding
The	general-purpose	approach	provides	a	cleaner	separation	between	the	text	and
user	 interface	classes,	which	results	 in	better	 information	hiding.	The	text	class
need	not	be	aware	of	specifics	of	the	user	interface,	such	as	how	the	backspace
key	 is	 handled;	 these	 details	 are	 now	 encapsulated	 in	 the	 user	 interface	 class.
New	 user	 interface	 features	 can	 be	 added	 without	 creating	 new	 supporting
functions	in	the	text	class.	The	general-purpose	interface	also	reduces	cognitive
load:	a	developer	working	on	the	user	interface	only	needs	to	learn	a	few	simple
methods,	which	can	be	reused	for	a	variety	of	purposes.

The	backspace	method	 in	 the	 original	 version	 of	 the	 text	 class	was	 a	 false
abstraction.	It	purported	to	hide	information	about	which	characters	are	deleted,
but	the	user	interface	module	really	needs	to	know	this;	user	interface	developers
are	 likely	 to	 read	 the	 code	 of	 the	 backspace	 method	 in	 order	 to	 confirm	 its
precise	behavior.	Putting	the	method	in	the	text	class	just	makes	it	harder	for	user
interface	developers	to	get	the	information	they	need.	One	of	the	most	important
elements	of	software	design	is	determining	who	needs	to	know	what,	and	when.
When	the	details	are	important,	it	is	better	to	make	them	explicit	and	as	obvious
as	 possible,	 such	 as	 the	 revised	 implementation	 of	 the	 backspace	 operation.
Hiding	this	information	behind	an	interface	just	creates	obscurity.

6.5				Questions	to	ask	yourself
It	is	easier	to	recognize	a	clean	general-purpose	class	design	than	it	is	to	create
one.	Here	are	some	questions	you	can	ask	yourself,	which	will	help	you	to	find
the	right	balance	between	general-purpose	and	special-purpose	for	an	interface.

What	 is	 the	 simplest	 interface	 that	will	 cover	all	my	current	needs?	 If	 you
reduce	the	number	of	methods	in	an	API	without	reducing	its	overall	capabilities,
then	 you	 are	 probably	 creating	 more	 general-purpose	 methods.	 The	 special-
purpose	text	API	had	at	least	three	methods	for	deleting	text:	backspace,	delete,
and	deleteSelection.	The	more	general-purpose	API	had	only	one	method	 for
deleting	text,	which	served	all	three	purposes.	Reducing	the	number	of	methods
makes	sense	only	as	long	as	the	API	for	each	individual	method	stays	simple;	if
you	have	to	introduce	lots	of	additional	arguments	in	order	to	reduce	the	number
of	methods,	then	you	may	not	really	be	simplifying	things.

In	how	many	situations	will	this	method	be	used?	If	a	method	is	designed	for
one	particular	use,	such	as	the	backspace	method,	that	is	a	red	flag	that	it	may	be
too	special-purpose.	See	if	you	can	replace	several	special-purpose	methods	with
a	single	general-purpose	method.

Is	 this	API	easy	to	use	for	my	current	needs?	This	question	can	help	you	 to
determine	when	 you	 have	 gone	 too	 far	 in	making	 an	API	 simple	 and	 general-
purpose.	 If	 you	 have	 to	 write	 a	 lot	 of	 additional	 code	 to	 use	 a	 class	 for	 your
current	 purpose,	 that’s	 a	 red	 flag	 that	 the	 interface	 doesn’t	 provide	 the	 right
functionality.	For	example,	one	approach	for	the	text	class	would	be	to	design	it
around	single-character	operations:	insert	 inserts	a	single	character	and	delete
deletes	 a	 single	 character.	 This	 API	 is	 both	 simple	 and	 general-purpose.

However,	 it	would	not	be	particularly	easy	 to	use	 for	a	 text	editor:	higher-level
code	would	 contain	 lots	 of	 loops	 to	 insert	 or	 delete	 ranges	 of	 characters.	 The
single-character	approach	would	also	be	inefficient	for	large	operations.	Thus	it’s
better	 for	 the	 text	 class	 to	 have	 built-in	 support	 for	 operations	 on	 ranges	 of
characters.

6.6				Conclusion
General-purpose	 interfaces	 have	 many	 advantages	 over	 special-purpose	 ones.
They	tend	to	be	simpler,	with	fewer	methods	that	are	deeper.	They	also	provide	a
cleaner	 separation	 between	 classes,	 whereas	 special-purpose	 interfaces	 tend	 to
leak	 information	 between	 classes.	 Making	 your	 modules	 somewhat	 general-
purpose	is	one	of	the	best	ways	to	reduce	overall	system	complexity.

Chapter	7

Different	Layer,	Different	Abstraction

Software	systems	are	composed	 in	 layers,	where	higher	 layers	use	 the	 facilities
provided	 by	 lower	 layers.	 In	 a	 well-designed	 system,	 each	 layer	 provides	 a
different	 abstraction	 from	 the	 layers	 above	and	below	 it;	 if	 you	 follow	a	 single
operation	 as	 it	 moves	 up	 and	 down	 through	 layers	 by	 invoking	 methods,	 the
abstractions	change	with	each	method	call.	For	example:

In	a	file	system,	the	uppermost	layer	implements	a	file	abstraction.	A	file
consists	of	a	variable-length	array	of	bytes,	which	can	be	updated	by
reading	and	writing	variable-length	byte	ranges.	The	next	lower	layer	in	the
file	system	implements	a	cache	in	memory	of	fixed-size	disk	blocks;	callers
can	assume	that	frequently	used	blocks	will	stay	in	memory	where	they	can
be	accessed	quickly.	The	lowest	layer	consists	of	device	drivers,	which	move
blocks	between	secondary	storage	devices	and	memory.
In	a	network	transport	protocol	such	as	TCP,	the	abstraction	provided	by	the
topmost	layer	is	a	stream	of	bytes	delivered	reliably	from	one	machine	to
another.	This	level	is	built	on	a	lower	level	that	transmits	packets	of	bounded
size	between	machines	on	a	best-effort	basis:	most	packets	will	be	delivered
successfully,	but	some	packets	may	be	lost	or	delivered	out	of	order.
If	 a	 system	 contains	 adjacent	 layers	with	 similar	 abstractions,	 this	 is	 a	 red

flag	that	suggests	a	problem	with	the	class	decomposition.	This	chapter	discusses
situations	where	 this	 happens,	 the	 problems	 that	 result,	 and	 how	 to	 refactor	 to
eliminate	the	problems.

7.1				Pass-through	methods
When	 adjacent	 layers	 have	 similar	 abstractions,	 the	 problem	 often	 manifests
itself	 in	 the	 form	of	pass-through	methods.	A	pass-through	method	 is	 one	 that
does	little	except	invoke	another	method,	whose	signature	is	similar	or	identical
to	that	of	the	calling	method.	For	example,	a	student	project	implementing	a	GUI

text	editor	contained	a	class	consisting	almost	entirely	of	pass-through	methods.
Here	is	an	extract	from	that	class:
public	class	TextDocument	...	{

								private	TextArea	textArea;
								private	TextDocumentListener	listener;
								...
								public	Character	getLastTypedCharacter()	{
																return	textArea.getLastTypedCharacter();
								}
								public	int	getCursorOffset()	{
																return	textArea.getCursorOffset();
								}
								public	void	insertString(String	textToInsert,

int	offset)	{

																textArea.insertString(textToInsert,	offset);
								}
								public	void	willInsertString(String	stringToInsert,	int	offset)	{
																if	(listener	!=	null)	{
																					listener.willInsertString(this,	stringToInsert,	offset);
																}
								}
								...
}

13	of	the	15	public	methods	in	that	class	were	pass-through	methods.

	Red	Flag:	Pass-Through	Method	
A	pass-through	method	is	one	that	does	nothing	except	pass	its	arguments	to
another	method,	usually	with	the	same	API	as	the	pass-through	method.	This
typically	indicates	that	there	is	not	a	clean	division	of	responsibility	between
the	classes.

Pass-through	 methods	 make	 classes	 shallower:	 they	 increase	 the	 interface

Pass-through	 methods	 make	 classes	 shallower:	 they	 increase	 the	 interface
complexity	of	the	class,	which	adds	complexity,	but	they	don’t	increase	the	total
functionality	of	the	system.	Of	the	four	methods	above,	only	the	last	one	has	any
functionality,	and	even	 there	 it	 is	 trivial:	 the	method	checks	 the	validity	of	one
variable.	Pass-through	methods	also	create	dependencies	between	classes:	if	the
signature	 changes	 for	 the	 insertString	 method	 in	 TextArea,	 then	 the
insertString	method	in	TextDocument	will	have	to	change	to	match.

Pass-through	methods	 indicate	 that	 there	 is	 confusion	 over	 the	 division	 of
responsibility	 between	 classes.	 In	 the	 example	 above,	 the	 TextDocument	 class
offers	 an	 insertString	 method,	 but	 the	 functionality	 for	 inserting	 text	 is
implemented	entirely	 in	TextArea.	This	 is	usually	a	bad	 idea:	 the	 interface	 to	a
piece	 of	 functionality	 should	 be	 in	 the	 same	 class	 that	 implements	 the
functionality.	When	 you	 see	 pass-through	 methods	 from	 one	 class	 to	 another,
consider	 the	 two	 classes	 and	 ask	 yourself	 “Exactly	 which	 features	 and
abstractions	 is	each	of	 these	classes	 responsible	 for?”	You	will	probably	notice
that	there	is	an	overlap	in	responsibility	between	the	classes.

The	 solution	 is	 to	 refactor	 the	 classes	 so	 that	 each	 class	 has	 a	 distinct	 and
coherent	set	of	responsibilities.	Figure	7.1	illustrates	several	ways	to	do	this.	One
approach,	shown	in	Figure	7.1(b),	is	to	expose	the	lower	level	class	directly	to	the
callers	of	the	higher	level	class,	removing	all	responsibility	for	the	feature	from
the	 higher	 level	 class.	 Another	 approach	 is	 to	 redistribute	 the	 functionality
between	 the	 classes,	 as	 in	 Figure	 7.1(c).	 Finally,	 if	 the	 classes	 can’t	 be
disentangled,	the	best	solution	may	be	to	merge	them	as	in	Figure	7.1(d).

In	 the	 example	 above,	 there	 were	 three	 classes	 with	 intertwined
responsibilities:	 TextDocument,	 TextArea,	 and	 TextDocumentListener.	 The
student	 eliminated	 the	 pass-through	 methods	 by	 moving	 methods	 between
classes	and	collapsing	the	three	classes	into	just	two,	whose	responsibilities	were
more	clearly	differentiated.

7.2				When	is	interface	duplication	OK?
Having	methods	with	the	same	signature	is	not	always	bad.	The	important	thing
is	that	each	new	method	should	contribute	significant	functionality.	Pass-through
methods	are	bad	because	they	contribute	no	new	functionality.

One	example	where	it’s	useful	for	a	method	to	call	another	method	with	the
same	signature	is	a	dispatcher.	A	dispatcher	is	a	method	that	uses	its	arguments

to	select	one	of	several	other	methods	to	invoke;	then	it	passes	most	or	all	of	its
arguments	 to	 the	 chosen	method.	 The	 signature	 for	 the	 dispatcher	 is	 often	 the
same	 as	 the	 signature	 for	 the	 methods	 that	 it	 calls.	 Even	 so,	 the	 dispatcher
provides	useful	functionality:	 it	chooses	which	of	several	other	methods	should
carry	out	each	task.

Figure	7.1:	Pass-through	methods.	In	(a),	class	C1	contains	three	pass-through	methods,	which	do	nothing
but	invoke	methods	with	the	same	signature	in	C2	(each	symbol	represents	a	particular	method	signature).
The	 pass-through	 methods	 can	 be	 eliminated	 by	 having	 C1’s	 callers	 invoke	 C2	 directly	 as	 in	 (b),	 by
redistributing	functionality	between	C1	and	C2	to	avoid	calls	between	the	classes	as	in	(c),	or	by	combining
the	classes	as	in	(d).

For	example,	when	a	Web	server	receives	an	incoming	HTTP	request	from	a
Web	 browser,	 it	 invokes	 a	 dispatcher	 that	 examines	 the	 URL	 in	 the	 incoming
request	and	selects	a	specific	method	to	handle	the	request.	Some	URLs	might	be
handled	by	returning	the	contents	of	a	file	on	disk;	others	might	be	handled	by
invoking	 a	 procedure	 in	 a	 language	 such	 as	 PHP	 or	 JavaScript.	 The	 dispatch
process	 can	 be	 quite	 intricate,	 and	 is	 usually	 driven	 by	 a	 set	 of	 rules	 that	 are
matched	against	the	incoming	URL.

It	 is	 fine	for	several	methods	 to	have	 the	same	signature	as	 long	as	each	of
them	 provides	 useful	 and	 distinct	 functionality.	 The	 methods	 invoked	 by	 a
dispatcher	 have	 this	 property.	 Another	 example	 is	 interfaces	 with	 multiple
implementations,	 such	 as	 disk	 drivers	 in	 an	 operating	 system.	 Each	 driver
provides	support	for	a	different	kind	of	disk,	but	they	all	have	the	same	interface.
When	several	methods	provide	different	 implementations	of	 the	same	interface,
it	reduces	cognitive	load.	Once	you	have	worked	with	one	of	these	methods,	it’s
easier	 to	work	with	 the	 others,	 since	 you	 don’t	 need	 to	 learn	 a	 new	 interface.
Methods	like	this	are	usually	in	the	same	layer	and	they	don’t	invoke	each	other.

7.3				Decorators
The	decorator	design	pattern	(also	known	as	a	“wrapper”)	is	one	that	encourages
API	 duplication	 across	 layers.	A	 decorator	 object	 takes	 an	 existing	 object	 and
extends	its	functionality;	it	provides	an	API	similar	or	identical	to	the	underlying
object,	and	its	methods	invoke	the	methods	of	the	underlying	object.	In	the	Java
I/O	example	from	Chapter	4,	the	BufferedInputStream	class	is	a	decorator:	given
an	InputStream	 object,	 it	 provides	 the	 same	API	 but	 introduces	 buffering.	 For
example,	when	its	read	method	 is	 invoked	 to	 read	a	single	character,	 it	 invokes
read	on	 the	underlying	InputStream	 to	 read	a	much	 larger	block,	and	saves	 the
extra	 characters	 to	 satisfy	 future	 read	 calls.	 Another	 example	 occurs	 in
windowing	systems:	a	Window	class	implements	a	simple	form	of	window	that	is
not	 scrollable,	 and	 a	 ScrollableWindow	 class	 decorates	 the	 Window	 class	 by
adding	horizontal	and	vertical	scrollbars.

The	motivation	for	decorators	 is	 to	separate	special-purpose	extensions	of	a
class	from	a	more	generic	core.	However,	decorator	classes	 tend	to	be	shallow:
they	 introduce	 a	 large	 amount	 of	 boilerplate	 for	 a	 small	 amount	 of	 new
functionality.	Decorator	 classes	 often	 contain	many	 pass-through	methods.	 It’s
easy	 to	overuse	 the	decorator	pattern,	creating	a	new	class	for	every	small	new
feature.	 This	 results	 in	 an	 explosion	 of	 shallow	 classes,	 such	 as	 the	 Java	 I/O
example.

Before	creating	a	decorator	class,	consider	alternatives	such	as	the	following:
Could	you	add	the	new	functionality	directly	to	the	underlying	class,	rather
than	creating	a	decorator	class?	This	makes	sense	if	the	new	functionality	is
relatively	general-purpose,	or	if	it	is	logically	related	to	the	underlying	class,
or	if	most	uses	of	the	underlying	class	will	also	use	the	new	functionality.
For	example,	virtually	everyone	who	creates	a	Java	InputStream	will	also
create	a	BufferedInputStream,	and	buffering	is	a	natural	part	of	I/O,	so
these	classes	should	have	been	combined.
If	the	new	functionality	is	specialized	for	a	particular	use	case,	would	it
make	sense	to	merge	it	with	the	use	case,	rather	than	creating	a	separate
class?
Could	you	merge	the	new	functionality	with	an	existing	decorator,	rather
than	creating	a	new	decorator?	This	would	result	in	a	single	deeper
decorator	class	rather	than	multiple	shallow	ones.
Finally,	ask	yourself	whether	the	new	functionality	really	needs	to	wrap	the

existing	functionality:	could	you	implement	it	as	a	stand-alone	class	that	is
independent	of	the	base	class?	In	the	windowing	example,	the	scrollbars
could	probably	be	implemented	separately	from	the	main	window,	without
wrapping	all	of	its	existing	functionality.

Sometimes	decorators	make	sense,	but	there	is	usually	a	better	alternative.

7.4				Interface	versus	implementation
Another	application	of	the	“different	layer,	different	abstraction”	rule	is	that	the
interface	 of	 a	 class	 should	 normally	 be	 different	 from	 its	 implementation:	 the
representations	 used	 internally	 should	 be	 different	 from	 the	 abstractions	 that
appear	 in	 the	 interface.	 If	 the	 two	 have	 similar	 abstractions,	 then	 the	 class
probably	 isn’t	 very	 deep.	 For	 example,	 in	 the	 text	 editor	 project	 discussed	 in
Chapter	6,	most	of	 the	 teams	implemented	 the	 text	module	 in	 terms	of	 lines	of
text,	with	each	line	stored	separately.	Some	of	the	teams	also	designed	the	APIs
for	 the	 text	 class	 around	 lines,	 with	 methods	 such	 as	 getLine	 and	 putLine.
However,	this	made	the	text	class	shallow	and	awkward	to	use.	In	the	higher-level
user	interface	code,	it’s	common	to	insert	text	in	the	middle	of	a	line	(e.g.,	when
the	 user	 is	 typing)	 or	 to	 delete	 a	 range	 of	 text	 that	 spans	 lines.	 With	 a	 line-
oriented	 API	 for	 the	 text	 class,	 callers	 were	 forced	 to	 split	 and	 join	 lines	 to
implement	 the	 user-interface	 operations.	 This	 code	 was	 nontrivial	 and	 it	 was
duplicated	and	scattered	across	the	implementation	of	the	user	interface.

The	 text	 classes	 were	much	 easier	 to	 use	when	 they	 provided	 a	 character-
oriented	 interface,	 such	as	 an	insert	method	 that	 inserts	 an	 arbitrary	 string	 of
text	 (which	 may	 include	 newlines)	 at	 an	 arbitrary	 position	 in	 the	 text	 and	 a
delete	method	 that	deletes	 the	 text	between	 two	arbitrary	positions	 in	 the	 text.
Internally,	 the	 text	was	 still	 represented	 in	 terms	 of	 lines.	A	 character-oriented
interface	encapsulates	the	complexity	of	line	splitting	and	joining	inside	the	text
class,	which	makes	 the	 text	 class	 deeper	 and	 simplifies	 higher	 level	 code	 that
uses	the	class.	With	this	approach,	the	text	API	is	quite	different	from	the	line-
oriented	 storage	 mechanism;	 the	 difference	 represents	 valuable	 functionality
provided	by	the	class.

7.5				Pass-through	variables
Another	form	of	API	duplication	across	layers	is	a	pass-through	variable,	which
is	a	variable	that	is	passed	down	through	a	long	chain	of	methods.	Figure	7.2(a)

shows	 an	 example	 from	 a	 datacenter	 service.	 A	 command-line	 argument
describes	certificates	to	use	for	secure	communication.	This	information	is	only
needed	by	a	low-level	method	m3,	which	calls	a	library	method	to	open	a	socket,
but	it	is	passed	down	through	all	the	methods	on	the	path	between	main	and	m3.
The	cert	variable	appears	in	the	signature	of	each	of	the	intermediate	methods.

Pass-through	 variables	 add	 complexity	 because	 they	 force	 all	 of	 the
intermediate	methods	 to	 be	 aware	 of	 their	 existence,	 even	 though	 the	methods
have	 no	 use	 for	 the	 variables.	 Furthermore,	 if	 a	 new	 variable	 comes	 into
existence	(for	example,	a	system	is	initially	built	without	support	for	certificates,
but	you	later	decide	to	add	that	support),	you	may	have	to	modify	a	large	number
of	interfaces	and	methods	to	pass	the	variable	through	all	of	the	relevant	paths.

Eliminating	 pass-through	 variables	 can	 be	 challenging.	One	 approach	 is	 to
see	 if	 there	 is	 already	 an	 object	 shared	 between	 the	 topmost	 and	 bottommost
methods.	 In	 the	 datacenter	 service	 example	 of	 Figure	 7.2,	 perhaps	 there	 is	 an
object	 containing	 other	 information	 about	 network	 communication,	 which	 is
available	to	both	main	and	m3.	If	so,	main	can	store	the	certificate	information	in
that	object,	so	it	needn’t	be	passed	through	all	of	the	intervening	methods	on	the
path	 to	m3	 (see	Figure	7.2(b)).	However,	 if	 there	 is	 such	 an	 object,	 then	 it	may
itself	be	a	pass-through	variable	(how	else	does	m3	get	access	to	it?).

Another	approach	is	to	store	the	information	in	a	global	variable,	as	in	Figure
7.2(c).	This	avoids	the	need	to	pass	the	information	from	method	to	method,	but
global	 variables	 almost	 always	 create	 other	 problems.	 For	 example,	 global
variables	 make	 it	 impossible	 to	 create	 two	 independent	 instances	 of	 the	 same
system	in	the	same	process,	since	accesses	to	the	global	variables	will	conflict.	It
may	 seem	 unlikely	 that	 you	 would	 need	multiple	 instances	 in	 production,	 but
they	are	often	useful	in	testing.

The	 solution	 I	 use	most	 often	 is	 to	 introduce	 a	 context	 object	 as	 in	 Figure
7.2(d).	A	context	stores	all	of	the	application’s	global	state	(anything	that	would
otherwise	be	a	pass-through	variable	or	global	variable).	Most	applications	have
multiple	variables	in	their	global	state,	representing	things	such	as	configuration
options,	 shared	 subsystems,	 and	 performance	 counters.	 There	 is	 one	 context
object	per	 instance	of	 the	 system.	The	context	 allows	multiple	 instances	of	 the
system	to	coexist	in	a	single	process,	each	with	its	own	context.

Unfortunately,	the	context	will	probably	be	needed	in	many	places,	so	it	can
potentially	 become	 a	 pass-through	 variable.	 To	 reduce	 the	 number	 of	methods
that	must	be	aware	of	 it,	a	reference	to	 the	context	can	be	saved	in	most	of	 the

system’s	major	objects.	In	the	example	of	Figure	7.2(d),	 the	class	containing	m3
stores	 a	 reference	 to	 the	 context	 as	 an	 instance	variable	 in	 its	 objects.	When	 a
new	object	is	created,	the	creating	method	retrieves	the	context	reference	from	its
object	and	passes	it	to	the	constructor	for	the	new	object.	With	this	approach,	the
context	 is	 available	 everywhere,	 but	 it	 only	 appears	 as	 an	 explicit	 argument	 in
constructors.

Figure	 7.2:	 Possible	 techniques	 for	 dealing	 with	 a	 pass-through	 variable.	 In	 (a),	 cert	 is	 passed	 through
methods	m1	and	m2	even	though	they	don’t	use	it.	In	(b),	main	and	m3	have	shared	access	to	an	object,	so
the	variable	can	be	stored	there	instead	of	passing	it	 through	m1	and	m2.	 In	(c),	cert	 is	stored	as	a	global
variable.	 In	 (d),	 cert	 is	 stored	 in	 a	 context	 object	 along	 with	 other	 system-wide	 information,	 such	 as	 a
timeout	value	and	performance	counters;	a	reference	to	the	context	is	stored	in	all	objects	whose	methods
need	access	to	it.

The	context	object	unifies	the	handling	of	all	system-global	information	and
eliminates	 the	 need	 for	 pass-through	 variables.	 If	 a	 new	 variable	 needs	 to	 be
added,	it	can	be	added	to	the	context	object;	no	existing	code	is	affected	except
for	 the	constructor	and	destructor	 for	 the	context.	The	context	makes	 it	easy	 to
identify	and	manage	 the	global	 state	of	 the	system,	since	 it	 is	all	 stored	 in	one

place.	The	context	is	also	convenient	for	testing:	test	code	can	change	the	global
configuration	of	the	application	by	modifying	fields	in	the	context.	It	would	be
much	more	difficult	to	implement	such	changes	if	the	system	used	pass-through
variables.

Contexts	are	far	from	an	ideal	solution.	The	variables	stored	in	a	context	have
most	of	the	disadvantages	of	global	variables;	for	example,	it	may	not	be	obvious
why	 a	 particular	 variable	 is	 present,	 or	where	 it	 is	 used.	Without	 discipline,	 a
context	 can	 turn	 into	 a	 huge	 grab-bag	 of	 data	 that	 creates	 nonobvious
dependencies	 throughout	 the	 system.	 Contexts	 may	 also	 create	 thread-safety
issues;	 the	 best	 way	 to	 avoid	 problems	 is	 for	 variables	 in	 a	 context	 to	 be
immutable.	Unfortunately,	I	haven’t	found	a	better	solution	than	contexts.

7.6				Conclusion
Each	 piece	 of	 design	 infrastructure	 added	 to	 a	 system,	 such	 as	 an	 interface,
argument,	function,	class,	or	definition,	adds	complexity,	since	developers	must
learn	 about	 this	 element.	 In	 order	 for	 an	 element	 to	 provide	 a	 net	 gain	 against
complexity,	 it	 must	 eliminate	 some	 complexity	 that	 would	 be	 present	 in	 the
absence	of	 the	design	element.	Otherwise,	you	are	better	off	 implementing	 the
system	 without	 that	 particular	 element.	 For	 example,	 a	 class	 can	 reduce
complexity	 by	 encapsulating	 functionality	 so	 that	 users	 of	 the	 class	 needn’t	 be
aware	of	it.

The	“different	 layer,	different	abstraction”	 rule	 is	 just	an	application	of	 this
idea:	if	different	layers	have	the	same	abstraction,	such	as	pass-through	methods
or	 decorators,	 then	 there’s	 a	 good	 chance	 that	 they	 haven’t	 provided	 enough
benefit	 to	compensate	for	 the	additional	 infrastructure	they	represent.	Similarly,
pass-through	 arguments	 require	 each	 of	 several	 methods	 to	 be	 aware	 of	 their
existence	 (which	 adds	 to	 complexity)	 without	 contributing	 additional
functionality.

Chapter	8

Pull	Complexity	Downwards

This	 chapter	 introduces	 another	 way	 of	 thinking	 about	 how	 to	 create	 deeper
classes.	Suppose	that	you	are	developing	a	new	module,	and	you	discover	a	piece
of	unavoidable	complexity.	Which	is	better:	should	you	let	users	of	 the	module
deal	with	the	complexity,	or	should	you	handle	the	complexity	internally	within
the	 module?	 If	 the	 complexity	 is	 related	 to	 the	 functionality	 provided	 by	 the
module,	 then	 the	 second	 answer	 is	 usually	 the	 right	 one.	Most	 modules	 have
more	users	 than	developers,	 so	 it	 is	better	 for	 the	developers	 to	 suffer	 than	 the
users.	As	a	module	developer,	you	should	strive	to	make	life	as	easy	as	possible
for	the	users	of	your	module,	even	if	that	means	extra	work	for	you.	Another	way
of	 expressing	 this	 idea	 is	 that	 it	 is	more	 important	 for	 a	module	 to	 have	 a
simple	interface	than	a	simple	implementation.

As	a	developer,	it’s	tempting	to	behave	in	the	opposite	fashion:	solve	the	easy
problems	 and	 punt	 the	 hard	 ones	 to	 someone	 else.	 If	 a	 condition	 arises	 that
you’re	not	certain	how	to	deal	with,	the	easiest	thing	is	to	throw	an	exception	and
let	the	caller	handle	it.	If	you	are	not	certain	what	policy	to	implement,	you	can
define	a	few	configuration	parameters	to	control	the	policy	and	leave	it	up	to	the
system	administrator	to	figure	out	the	best	values	for	them.

Approaches	 like	 these	will	make	your	 life	easier	 in	 the	short	 term,	but	 they
amplify	complexity,	so	that	many	people	must	deal	with	a	problem,	rather	than
just	one	person.	For	example,	if	a	class	throws	an	exception,	every	caller	of	the
class	will	have	to	deal	with	it.	If	a	class	exports	configuration	parameters,	every
system	administrator	in	every	installation	will	have	to	learn	how	to	set	them.

8.1				Example:	editor	text	class
Consider	the	class	that	manages	the	text	of	a	file	for	a	GUI	text	editor,	which	was
discussed	 in	Chapters	6	 and	7.	The	 class	provides	methods	 to	 read	 a	 file	 from
disk	into	memory,	query	and	modify	the	in-memory	copy	of	the	file,	and	write

the	modified	version	back	 to	disk.	When	 students	had	 to	 implement	 this	 class,
many	of	them	chose	a	line-oriented	interface,	with	methods	to	read,	 insert,	and
delete	whole	lines	of	text.	This	resulted	in	a	simple	implementation	for	the	class,
but	 it	 created	 complexity	 for	 higher	 level	 software.	 At	 the	 level	 of	 the	 user
interface,	 operations	 rarely	 involve	whole	 lines.	 For	 example,	 keystrokes	 cause
individual	characters	 to	be	 inserted	within	an	existing	 line;	copying	or	deleting
the	 selection	can	modify	parts	of	 several	different	 lines.	With	 the	 line-oriented
text	 interface,	 higher-level	 software	 had	 to	 split	 and	 join	 lines	 in	 order	 to
implement	the	user	interface.

A	character-oriented	interface	such	as	the	one	described	in	Section	6.3	pulls
complexity	 downward.	 The	 user	 interface	 software	 can	 now	 insert	 and	 delete
arbitrary	 ranges	 of	 text	 without	 splitting	 and	 merging	 lines,	 so	 it	 becomes
simpler.	The	implementation	of	the	text	class	probably	becomes	more	complex:
if	it	represents	the	text	internally	as	a	collection	of	lines,	it	will	have	to	split	and
merge	 lines	 to	 implement	 the	 character-oriented	 operations.	 This	 approach	 is
better	because	it	encapsulates	the	complexity	of	splitting	and	merging	within	the
text	class,	which	reduces	the	overall	complexity	of	the	system.

8.2				Example:	configuration	parameters
Configuration	parameters	are	an	example	of	moving	complexity	upwards	instead
of	 down.	 Rather	 than	 determining	 a	 particular	 behavior	 internally,	 a	 class	 can
export	a	few	parameters	that	control	its	behavior,	such	as	the	size	of	a	cache	or
the	number	of	times	to	retry	a	request	before	giving	up.	Users	of	the	class	must
then	 specify	 appropriate	 values	 for	 the	 parameters.	 Configuration	 parameters
have	 become	 very	 popular	 in	 systems	 today;	 some	 systems	 have	 hundreds	 of
them.

Advocates	argue	 that	configuration	parameters	are	good	because	 they	allow
users	to	tune	the	system	for	their	particular	requirements	and	workloads.	In	some
situations	 it	 is	hard	 for	 low-level	 infrastructure	code	 to	know	the	best	policy	 to
apply,	whereas	users	are	much	more	familiar	with	their	domains.	For	instance,	a
user	 might	 know	 that	 some	 requests	 are	 more	 time-critical	 than	 others,	 so	 it
makes	 sense	 for	 the	 user	 to	 specify	 a	 higher	 priority	 for	 those	 requests.	 In
situations	 like	 this,	 configuration	 parameters	 can	 result	 in	 better	 performance
across	a	broader	variety	of	domains.

However,	 configuration	 parameters	 also	 provide	 an	 easy	 excuse	 to	 avoid
dealing	with	important	issues	and	pass	them	on	to	someone	else.	In	many	cases,

it’s	 difficult	 or	 impossible	 for	 users	 or	 administrators	 to	 determine	 the	 right
values	 for	 the	 parameters.	 In	 other	 cases,	 the	 right	 values	 could	 have	 been
determined	automatically	with	a	little	extra	work	in	the	system	implementation.
Consider	a	network	protocol	that	must	deal	with	lost	packets.	If	it	sends	a	request
but	doesn’t	receive	a	response	within	a	certain	time	period,	it	resends	the	request.
One	way	to	determine	the	retry	interval	is	to	introduce	a	configuration	parameter.
However,	the	transport	protocol	could	compute	a	reasonable	value	on	its	own	by
measuring	the	response	time	for	requests	that	succeed	and	then	using	a	multiple
of	this	for	the	retry	interval.	This	approach	pulls	complexity	downward	and	saves
users	 from	 having	 to	 figure	 out	 the	 right	 retry	 interval.	 It	 has	 the	 additional
advantage	 of	 computing	 the	 retry	 interval	 dynamically,	 so	 it	 will	 adjust
automatically	 if	 operating	 conditions	 change.	 In	 contrast,	 configuration
parameters	can	easily	become	out	of	date.

Thus,	you	should	avoid	configuration	parameters	as	much	as	possible.	Before
exporting	 a	 configuration	 parameter,	 ask	 yourself:	 “will	 users	 (or	 higher-level
modules)	be	able	to	determine	a	better	value	than	we	can	determine	here?”	When
you	 do	 create	 configuration	 parameters,	 see	 if	 you	 can	 compute	 reasonable
defaults	 automatically,	 so	 users	 will	 only	 need	 to	 provide	 values	 under
exceptional	conditions.	Ideally,	each	module	should	solve	a	problem	completely;
configuration	parameters	result	in	an	incomplete	solution,	which	adds	to	system
complexity.

8.3				Taking	it	too	far
Use	discretion	when	pulling	complexity	downward;	this	is	an	idea	that	can	easily
be	overdone.	An	extreme	approach	would	be	to	pull	all	of	the	functionality	of	the
entire	 application	 down	 into	 a	 single	 class,	 which	 clearly	 doesn’t	make	 sense.
Pulling	complexity	down	makes	the	most	sense	if	(a)	the	complexity	being	pulled
down	 is	 closely	 related	 to	 the	 class’s	 existing	 functionality,	 (b)	 pulling	 the
complexity	down	will	result	in	many	simplifications	elsewhere	in	the	application,
and	(c)	pulling	the	complexity	down	simplifies	 the	class’s	 interface.	Remember
that	the	goal	is	to	minimize	overall	system	complexity.

Chapter	6	described	how	some	students	defined	methods	in	the	text	class	that
reflected	the	user	 interface,	such	as	a	method	that	 implements	 the	functionality
of	 the	backspace	key.	 It	might	seem	that	 this	 is	good,	since	 it	pulls	complexity
downward.	However,	 adding	 knowledge	 of	 the	 user	 interface	 to	 the	 text	 class
doesn’t	simplify	higher-level	code	very	much,	and	the	user-interface	knowledge

doesn’t	 relate	 to	 the	 core	 functions	 of	 the	 text	 class.	 In	 this	 case,	 pulling
complexity	down	just	resulted	in	information	leakage.

8.4				Conclusion
When	 developing	 a	module,	 look	 for	 opportunities	 to	 take	 a	 little	 bit	 of	 extra
suffering	upon	yourself	in	order	to	reduce	the	suffering	of	your	users.

Chapter	9

Better	Together	Or	Better	Apart?

One	 of	 the	 most	 fundamental	 questions	 in	 software	 design	 is	 this:	 given	 two
pieces	of	functionality,	should	they	be	implemented	together	in	the	same	place,
or	should	their	implementations	be	separated?	This	question	applies	at	all	levels
in	 a	 system,	 such	 as	 functions,	 methods,	 classes,	 and	 services.	 For	 example,
should	buffering	be	included	in	the	class	that	provides	stream-oriented	file	I/O,
or	 should	 it	 be	 in	 a	 separate	 class?	Should	 the	parsing	of	 an	HTTP	 request	 be
implemented	 entirely	 in	 one	 method,	 or	 should	 it	 be	 divided	 among	 multiple
methods	(or	even	multiple	classes)?	This	chapter	discusses	the	factors	to	consider
when	making	these	decisions.	Some	of	these	factors	have	already	been	discussed
in	previous	chapters,	but	they	will	be	revisited	here	for	completeness.

When	 deciding	 whether	 to	 combine	 or	 separate,	 the	 goal	 is	 to	 reduce	 the
complexity	of	the	system	as	a	whole	and	improve	its	modularity.	It	might	appear
that	the	best	way	to	achieve	this	goal	is	to	divide	the	system	into	a	large	number
of	 small	 components:	 the	 smaller	 the	 components,	 the	 simpler	 each	 individual
component	 is	 likely	 to	 be.	 However,	 the	 act	 of	 subdividing	 creates	 additional
complexity	that	was	not	present	before	subdivision:

Some	complexity	comes	just	from	the	number	of	components:	the	more
components,	the	harder	to	keep	track	of	them	all	and	the	harder	to	find	a
desired	component	within	the	large	collection.	Subdivision	usually	results
in	more	interfaces,	and	every	new	interface	adds	complexity.
Subdivision	can	result	in	additional	code	to	manage	the	components.	For
example,	a	piece	of	code	that	used	a	single	object	before	subdivision	might
now	have	to	manage	multiple	objects.
Subdivision	creates	separation:	the	subdivided	components	will	be	farther
apart	than	they	were	before	subdivision.	For	example,	methods	that	were
together	in	a	single	class	before	subdivision	may	be	in	different	classes	after
subdivision,	and	possibly	in	different	files.	Separation	makes	it	harder	for
developers	to	see	the	components	at	the	same	time,	or	even	to	be	aware	of

their	existence.	If	the	components	are	truly	independent,	then	separation	is
good:	it	allows	the	developer	to	focus	on	a	single	component	at	a	time,
without	being	distracted	by	the	other	components.	On	the	other	hand,	if
there	are	dependencies	between	the	components,	then	separation	is	bad:
developers	will	end	up	flipping	back	and	forth	between	the	components.
Even	worse,	they	may	not	be	aware	of	the	dependencies,	which	can	lead	to
bugs.
Subdivision	can	result	in	duplication:	code	that	was	present	in	a	single
instance	before	subdivision	may	need	to	be	present	in	each	of	the
subdivided	components.
Bringing	pieces	of	code	together	is	most	beneficial	if	they	are	closely	related.

If	 the	 pieces	 are	 unrelated,	 they	 are	 probably	 better	 off	 apart.	 Here	 are	 a	 few
indications	that	two	pieces	of	code	are	related:

They	share	information;	for	example,	both	pieces	of	code	might	depend	on
the	syntax	of	a	particular	type	of	document.
They	are	used	together:	anyone	using	one	of	the	pieces	of	code	is	likely	to
use	the	other	as	well.	This	form	of	relationship	is	only	compelling	if	it	is
bidirectional.	As	a	counter-example,	a	disk	block	cache	will	almost	always
involve	a	hash	table,	but	hash	tables	can	be	used	in	many	situations	that
don’t	involve	block	caches;	thus,	these	modules	should	be	separate.
They	overlap	conceptually,	in	that	there	is	a	simple	higher-level	category
that	includes	both	of	the	pieces	of	code.	For	example,	searching	for	a
substring	and	case	conversion	both	fall	under	the	category	of	string
manipulation;	flow	control	and	reliable	delivery	both	fall	under	the	category
of	network	communication.
It	is	hard	to	understand	one	of	the	pieces	of	code	without	looking	at	the
other.
The	rest	of	this	chapter	uses	more	specific	rules	as	well	as	examples	to	show

when	it	makes	sense	to	bring	pieces	of	code	together	and	when	it	makes	sense	to
separate	them.

9.1				Bring	together	if	information	is	shared
Section	5.4	introduced	this	principle	in	the	context	of	a	project	implementing	an
HTTP	server.	In	its	first	implementation,	the	project	used	two	different	methods
in	different	classes	to	read	in	and	parse	HTTP	requests.	The	first	method	read	the
text	 of	 an	 incoming	 request	 from	 a	 network	 socket	 and	 placed	 it	 in	 a	 string

object.	The	second	method	parsed	the	string	to	extract	the	various	components	of
the	 request.	 With	 this	 decomposition,	 both	 of	 the	 methods	 ended	 up	 with
considerable	 knowledge	 of	 the	 format	 of	HTTP	 requests:	 the	 first	method	was
only	trying	to	read	the	request,	not	parse	it,	but	it	couldn’t	identify	the	end	of	the
request	without	doing	most	of	the	work	of	parsing	it	(for	example,	it	had	to	parse
header	lines	in	order	to	identify	the	header	containing	the	overall	request	length).
Because	of	this	shared	information,	it	is	better	to	both	read	and	parse	the	request
in	 the	same	place;	when	 the	 two	classes	were	combined	 into	one,	 the	code	got
shorter	and	simpler.

9.2				Bring	together	if	it	will	simplify	the	interface
When	 two	 or	 more	 modules	 are	 combined	 into	 a	 single	 module,	 it	 may	 be
possible	to	define	an	interface	for	the	new	module	that	is	simpler	or	easier	to	use
than	the	original	interfaces.	This	often	happens	when	the	original	modules	each
implement	part	of	the	solution	to	a	problem.	In	the	HTTP	server	example	from
the	 preceding	 section,	 the	 original	methods	 required	 an	 interface	 to	 return	 the
HTTP	request	string	from	the	first	method	and	pass	it	 to	 the	second.	When	the
methods	were	combined,	these	interfaces	were	eliminated.

In	 addition,	when	 the	 functionality	 of	 two	 or	more	 classes	 is	 combined,	 it
may	 be	 possible	 to	 perform	 some	 functions	 automatically,	 so	 that	 most	 users
need	not	be	aware	of	them.	The	Java	I/O	library	illustrates	this	opportunity.	If	the
FileInputStream	and	BufferedInputStream	classes	were	combined	and	buffering
were	provided	by	default,	the	vast	majority	of	users	would	never	even	need	to	be
aware	 of	 the	 existence	 of	 buffering.	A	 combined	 FileInputStream	 class	might
provide	methods	to	disable	or	replace	the	default	buffering	mechanism,	but	most
users	would	not	need	to	learn	about	them.

9.3				Bring	together	to	eliminate	duplication
If	 you	 find	 the	 same	 pattern	 of	 code	 repeated	 over	 and	 over,	 see	 if	 you	 can
reorganize	 the	 code	 to	 eliminate	 the	 repetition.	 One	 approach	 is	 to	 factor	 the
repeated	code	out	into	a	separate	method	and	replace	the	repeated	code	snippets
with	 calls	 to	 the	method.	 This	 approach	 is	most	 effective	 if	 the	 repeated	 code
snippet	is	long	and	the	replacement	method	has	a	simple	signature.	If	the	snippet
is	only	one	or	two	lines	long,	there	may	not	be	much	benefit	in	replacing	it	with	a
method	call.	If	the	snippet	interacts	in	complex	ways	with	its	environment	(such
as	by	accessing	numerous	 local	variables),	 then	 the	 replacement	method	might

require	a	complex	signature	(such	as	many	pass-by-reference	arguments),	which
would	reduce	its	value.

Another	 way	 to	 eliminate	 duplication	 is	 to	 refactor	 the	 code	 so	 that	 the
snippet	 in	 question	 only	 needs	 to	 be	 executed	 in	 one	 place.	 Suppose	 you	 are
writing	a	method	 that	needs	 to	 return	errors	at	 several	different	points,	and	 the
same	 cleanup	 actions	 need	 to	 be	 performed	 at	 each	 of	 these	 points	 before
returning	(see	Figure	9.1	for	an	example).	If	the	programming	language	supports
goto,	you	can	move	the	cleanup	code	to	the	very	end	of	the	method	and	then	goto
that	snippet	at	each	of	the	points	where	an	error	return	is	required,	as	in	Figure
9.2.	Goto	statements	are	generally	considered	a	bad	 idea,	and	they	can	result	 in
indecipherable	code	if	used	indiscriminately,	but	they	are	useful	in	situations	like
this	where	they	are	used	to	escape	from	nested	code.

9.4				Separate	general-purpose	and	special-purpose	code
If	a	module	contains	a	mechanism	that	can	be	used	for	several	different	purposes,
then	 it	 should	 provide	 just	 that	 one	 general-purpose	mechanism.	 It	 should	 not
include	 code	 that	 specializes	 the	mechanism	 for	 a	 particular	 use,	 nor	 should	 it
contain	 other	 general-purpose	 mechanisms.	 Special-purpose	 code	 associated
with	 a	 general-purpose	 mechanism	 should	 normally	 go	 in	 a	 different	 module
(typically	one	associated	with	the	particular	purpose).	The	GUI	editor	discussion
in	Chapter	 6	 illustrated	 this	 principle:	 the	 best	 design	was	 one	where	 the	 text
class	provided	general-purpose	text	operations,	while	operations	particular	to	the
user	 interface	 (such	 as	 deleting	 the	 selection)	 were	 implemented	 in	 the	 user
interface	module.	This	 approach	eliminated	 information	 leakage	and	additional
interfaces	 that	 were	 present	 in	 an	 earlier	 design	 where	 the	 specialized	 user
interface	operations	were	implemented	in	the	text	class.

	Red	Flag:	Repetition	
If	the	same	piece	of	code	(or	code	that	is	almost	the	same)	appears	over	and
over	again,	that’s	a	red	flag	that	you	haven’t	found	the	right	abstractions.

Figure	9.1:	This	code	processes	incoming	network	packets	of	different	types;	for	each	type,	if	the	packet	is
too	short	for	that	type,	a	message	gets	logged.	In	this	version	of	the	code,	the	LOG	statement	is	duplicated
for	several	different	packet	types.

Figure	 9.2:	 A	 reorganization	 of	 the	 code	 from	 Figure	 9.1	 so	 that	 there	 is	 only	 one	 copy	 of	 the	 LOG
statement.

In	general,	the	lower	layers	of	a	system	tend	to	be	more	general-purpose	and
the	 upper	 layers	 more	 special-purpose.	 For	 example,	 the	 topmost	 layer	 of	 an
application	 consists	 of	 features	 totally	 specific	 to	 that	 application.	 The	way	 to
separate	special-purpose	code	from	general-purpose	code	 is	 to	pull	 the	special-
purpose	code	upwards,	 into	 the	higher	 layers,	 leaving	 the	 lower	 layers	general-
purpose.	When	 you	 encounter	 a	 class	 that	 includes	 both	 general-purpose	 and
special-purpose	 features	 for	 the	 same	 abstraction,	 see	 if	 the	 class	 can	 be
separated	into	two	classes,	one	containing	the	general-purpose	features,	and	the
other	layered	on	top	of	it	to	provide	the	special-purpose	features.

9.5				Example:	insertion	cursor	and	selection
The	 next	 sections	 work	 through	 three	 examples	 that	 illustrate	 the	 principles
discussed	 above.	 In	 two	 of	 the	 examples	 the	 best	 approach	 is	 to	 separate	 the
relevant	pieces	of	code;	in	the	third	example	it	is	better	to	join	them	together.

The	first	example	consists	of	the	insertion	cursor	and	the	selection	in	the	GUI
editor	 project	 from	 Chapter	 6.	 The	 editor	 displayed	 a	 blinking	 vertical	 line
indicating	where	 text	 typed	 by	 the	 user	would	 appear	 in	 the	 document.	 It	 also
displayed	a	highlighted	range	of	characters	called	the	selection,	which	was	used
for	 copying	or	deleting	 text.	The	 insertion	 cursor	was	 always	visible,	 but	 there
could	be	times	when	no	text	was	selected.	If	the	selection	existed,	the	insertion
cursor	was	always	positioned	at	one	end	of	it.

The	selection	and	insertion	cursor	are	related	in	some	ways.	For	example,	the
cursor	 is	 always	 positioned	 at	 one	 end	 of	 the	 selection,	 and	 the	 cursor	 and
selection	tend	to	be	manipulated	together:	clicking	and	dragging	the	mouse	sets
both	of	them,	and	text	insertion	first	deletes	the	selected	text,	if	there	is	any,	and
then	inserts	new	text	at	the	cursor	position.	Thus,	it	might	seem	logical	to	use	a
single	object	to	manage	both	the	selection	and	the	cursor,	and	one	project	team
took	 this	 approach.	 The	 object	 stored	 two	 positions	 in	 the	 file,	 along	 with
booleans	indicating	which	end	was	the	cursor	and	whether	the	selection	existed.

However,	 the	 combined	 object	 was	 awkward.	 It	 provided	 no	 benefit	 for
higher-level	 code,	 since	 the	 higher-level	 code	 still	 needed	 to	 be	 aware	 of	 the
selection	 and	 cursor	 as	 distinct	 entities,	 and	 it	 manipulated	 them	 separately
(during	text	insertion,	it	first	invoked	a	method	on	the	combined	object	to	delete

the	selected	text;	then	it	invoked	another	method	to	retrieve	the	cursor	position	in
order	 to	 insert	 new	 text).	 The	 combined	 object	 was	 actually	more	 complex	 to
implement	 than	 separate	 objects.	 It	 avoided	 storing	 the	 cursor	 position	 as	 a
separate	 entity,	 but	 instead	 had	 to	 store	 a	 boolean	 indicating	which	 end	 of	 the
selection	was	 the	 cursor.	 In	order	 to	 retrieve	 the	 cursor	position,	 the	 combined
object	 had	 to	 first	 test	 the	boolean	 and	 then	 choose	 the	 appropriate	 end	of	 the
selection.

	Red	Flag:	Special-General	Mixture	
This	 red	 flag	 occurs	when	 a	 general-purpose	mechanism	 also	 contains	 code
specialized	for	a	particular	use	of	that	mechanism.	This	makes	the	mechanism
more	 complicated	 and	 creates	 information	 leakage	 between	 the	 mechanism
and	the	particular	use	case:	future	modifications	 to	 the	use	case	are	 likely	to
require	changes	to	the	underlying	mechanism	as	well.

In	 this	 case,	 the	 selection	 and	 cursor	 were	 not	 closely	 enough	 related	 to
combine	 them.	 When	 the	 code	 was	 revised	 to	 separate	 the	 selection	 and	 the
cursor,	both	the	usage	and	the	implementation	became	simpler.	Separate	objects
provided	 a	 simpler	 interface	 than	 a	 combined	object	 from	which	 selection	 and
cursor	 information	 had	 to	 be	 extracted.	 The	 cursor	 implementation	 also	 got
simpler	 because	 the	 cursor	 position	 was	 represented	 directly,	 rather	 than
indirectly	 through	 a	 selection	 and	 a	 boolean.	 In	 fact,	 in	 the	 revised	 version	 no
special	 classes	were	 used	 for	 either	 the	 selection	 or	 the	 cursor.	 Instead,	 a	 new
Position	class	was	introduced	to	represent	a	location	in	the	file	(a	line	number
and	character	within	line).	The	selection	was	represented	with	two	Positions	and
the	cursor	with	one.	Positions	also	found	other	uses	in	the	project.	This	example
also	 demonstrates	 the	 benefits	 of	 a	 lower-level	 but	 more	 general-purpose
interface,	which	were	discussed	in	Chapter	6.

9.6				Example:	separate	class	for	logging
The	 second	 example	 involved	 error	 logging	 in	 a	 student	 project.	 A	 class
contained	several	code	sequences	like	the	following:
try	{

						rpcConn	=	connectionPool.getConnection(dest);
}	catch	(IOException	e)	{

						NetworkErrorLogger.logRpcOpenError(req,	dest,	e);
						return	null;
}

Rather	 than	 logging	 the	 error	 at	 the	 point	 where	 it	 was	 detected,	 a	 separate
method	in	a	special	error	logging	class	was	invoked.	The	error	logging	class	was
defined	at	the	end	of	the	same	source	file:
private	static	class	NetworkErrorLogger	{

					/**
						*		Output	information	relevant	to	an	error	that	occurs	when	trying
						*		to	open	a	connection	to	send	an	RPC.
						*
						*		@param	req
						*							The	RPC	request	that	would	have	been	sent	through	the

connection

						*		@param	dest
						*							The	destination	of	the	RPC
						*		@param	e
						*							The	caught	error
						*/
					public	static	void	logRpcOpenError(RpcRequest	req,	AddrPortTuple

dest,	Exception	e)	{

									logger.log(Level.WARNING,	"Cannot	send	message:	"	+	req	+	".	\n"	+
"Unable	to	find	or	open	connection	to	"	+	dest	+	"	:"	+

e);

						}
...

}

The	 NetworkErrorLogger	 class	 contained	 several	 methods	 such	 as
logRpcSendError	and	logRpcReceiveError,	each	of	which	logged	a	different	kind
of	error.

This	separation	added	complexity	with	no	benefit.	The	logging	methods	were
shallow:	most	consisted	of	a	single	line	of	code,	but	they	required	a	considerable
amount	of	documentation.	Each	method	was	only	invoked	in	a	single	place.	The

logging	methods	were	highly	dependent	on	 their	 invocations:	 someone	 reading
the	 invocation	would	most	 likely	 flip	over	 to	 the	 logging	method	 to	make	 sure
that	 the	 right	 information	 was	 being	 logged;	 similarly,	 someone	 reading	 the
logging	method	would	probably	flip	over	to	the	invocation	site	to	understand	the
purpose	of	the	method.

In	 this	 example,	 it	 would	 be	 better	 to	 eliminate	 the	 logging	 methods	 and
place	the	logging	statements	at	the	locations	where	the	errors	were	detected.	This
would	make	the	code	easier	to	read	and	eliminate	the	interfaces	required	for	the
logging	methods.

9.7				Example:	editor	undo	mechanism
In	 the	 GUI	 editor	 project	 from	 Section	 6.2,	 one	 of	 the	 requirements	 was	 to
support	multi-level	undo/redo,	not	just	for	changes	to	the	text	itself,	but	also	for
changes	 in	 the	 selection,	 insertion	 cursor,	 and	 view.	 For	 example,	 if	 a	 user
selected	 some	 text,	deleted	 it,	 scrolled	 to	a	different	place	 in	 the	 file,	 and	 then
invoked	 undo,	 the	 editor	 had	 to	 restore	 its	 state	 to	what	 it	was	 just	 before	 the
deletion.	 This	 included	 restoring	 the	 deleted	 text,	 selecting	 it	 again,	 and	 also
making	the	selected	text	visible	in	the	window.

Some	of	the	student	projects	implemented	the	entire	undo	mechanism	as	part
of	the	text	class.	The	text	class	maintained	a	list	of	all	the	undoable	changes.	It
automatically	 added	 entries	 to	 this	 list	 whenever	 the	 text	 was	 changed.	 For
changes	 to	 the	 selection,	 insertion	 cursor,	 and	 view,	 the	 user	 interface	 code
invoked	additional	methods	in	the	text	class,	which	then	added	entries	for	those
changes	to	the	undo	list.	When	undo	or	redo	was	requested	by	the	user,	the	user
interface	 code	 invoked	 a	 method	 in	 the	 text	 class,	 which	 then	 processed	 the
entries	in	the	undo	list.	For	entries	related	to	text,	it	updated	the	internals	of	the
text	class;	for	entries	related	to	other	things,	such	as	the	selection,	the	text	class
called	back	to	the	user	interface	code	to	carry	out	the	undo	or	redo.

This	 approach	 resulted	 in	 an	 awkward	 set	 of	 features	 in	 the	 text	 class.	The
core	of	undo/redo	consists	of	a	general-purpose	mechanism	for	managing	a	 list
of	actions	 that	have	been	executed	and	stepping	 through	them	during	undo	and
redo	 operations.	 The	 core	 was	 located	 in	 the	 text	 class	 along	 with	 special-
purpose	handlers	that	implemented	undo	and	redo	for	specific	things	such	as	text
and	 the	 selection.	The	 special-purpose	 undo	 handlers	 for	 the	 selection	 and	 the
cursor	 had	 nothing	 to	 do	with	 anything	 else	 in	 the	 text	 class;	 they	 resulted	 in
information	leakage	between	the	text	class	and	the	user	interface,	as	well	as	extra

methods	in	each	module	to	pass	undo	information	back	and	forth.	If	a	new	sort
of	 undoable	 entity	 were	 added	 to	 the	 system	 in	 the	 future,	 it	 would	 require
changes	 to	 the	 text	 class,	 including	 new	 methods	 specific	 to	 that	 entity.	 In
addition,	the	general-purpose	undo	core	had	little	to	do	with	the	general-purpose
text	facilities	in	the	class.

These	problems	can	be	solved	by	extracting	the	general-purpose	core	of	the
undo/redo	mechanism	and	placing	it	in	a	separate	class:
public	class	History	{

								public	interface	Action	{
															public	void	redo();
															public	void	undo();
								}

								History()	{...}

								void	addAction(Action	action)	{...}
								void	addFence()	{...}

								void	undo()	{...}
								void	redo()	{...}
}

In	this	design,	the	History	class	manages	a	collection	of	objects	that	implement
the	interface	History.Action.	Each	History.Action	describes	a	single	operation,
such	 as	 a	 text	 insertion	 or	 a	 change	 in	 the	 cursor	 location,	 and	 it	 provides
methods	that	can	undo	or	redo	the	operation.	The	History	class	knows	nothing
about	the	information	stored	in	the	actions	or	how	they	implement	their	undo	and
redo	 methods.	 History	 maintains	 a	 history	 list	 describing	 all	 of	 the	 actions
executed	 over	 the	 lifetime	 of	 an	 application,	 and	 it	 provides	 undo	 and	 redo
methods	that	walk	backwards	and	forwards	through	the	list	in	response	to	user-
requested	 undos	 and	 redos,	 calling	 undo	 and	 redo	 methods	 in	 the
History.Actions.

History.Actions	 are	 special-purpose	 objects:	 each	 one	 understands	 a
particular	kind	of	undoable	operation.	They	are	implemented	outside	the	History
class,	in	modules	that	understand	particular	kinds	of	undoable	actions.	The	text
class	might	 implement	UndoableInsert	 and	UndoableDelete	 objects	 to	describe

text	insertions	and	deletions.	Whenever	it	inserts	text,	the	text	class	creates	a	new
UndoableInsert	 object	 describing	 the	 insertion	 and	 invokes	History.addAction
to	 add	 it	 to	 the	 history	 list.	 The	 editor’s	 user	 interface	 code	 might	 create
UndoableSelection	 and	 UndoableCursor	 objects	 that	 describe	 changes	 to	 the
selection	and	insertion	cursor.

The	History	class	also	allows	actions	 to	be	grouped	so	 that,	 for	example,	a
single	 undo	 request	 from	 the	 user	 can	 restore	 deleted	 text,	 reselect	 the	 deleted
text,	 and	 reposition	 the	 insertion	 cursor.	There	 are	 a	 number	 of	ways	 to	 group
actions;	 the	History	 class	uses	 fences,	which	 are	markers	placed	 in	 the	history
list	 to	 separate	 groups	 of	 related	 actions.	 Each	 call	 to	 History.redo	 walks
backwards	 through	 the	 history	 list,	 undoing	 actions	 until	 it	 reaches	 the	 next
fence.	The	placement	of	 fences	 is	determined	by	higher-level	code	by	 invoking
History.addFence.

This	approach	divides	the	functionality	of	undo	into	three	categories,	each	of
which	is	implemented	in	a	different	place:

A	general-purpose	mechanism	for	managing	and	grouping	actions	and
invoking	undo/redo	operations	(implemented	by	the	History	class).
The	specifics	of	particular	actions	(implemented	by	a	variety	of	classes,
each	of	which	understands	a	small	number	of	action	types).
The	policy	for	grouping	actions	(implemented	by	high-level	user	interface
code	to	provide	the	right	overall	application	behavior).

Each	of	 these	categories	can	be	 implemented	without	any	understanding	of	 the
other	categories.	The	History	class	does	not	know	what	kind	of	actions	are	being
undone;	 it	 could	 be	 used	 in	 a	 variety	 of	 applications.	 Each	 action	 class
understands	only	a	 single	kind	of	action,	and	neither	 the	History	 class	nor	 the
action	classes	needs	to	be	aware	of	the	policy	for	grouping	actions.

The	key	design	decision	was	the	one	that	separated	the	general-purpose	part
of	 the	 undo	 mechanism	 from	 the	 special-purpose	 parts	 and	 put	 the	 general-
purpose	part	 in	a	class	by	itself.	Once	that	was	done,	 the	rest	of	the	design	fell
out	naturally.

Note:	 the	suggestion	to	separate	general-purpose	code	from	special-purpose
code	 refers	 to	 code	 related	 to	 a	 particular	 mechanism.	 For	 example,	 special-
purpose	undo	code	 (such	as	code	 to	undo	a	 text	 insertion)	should	be	separated
from	 general-purpose	 undo	 code	 (such	 as	 code	 to	 manage	 the	 history	 list).
However,	 it	 often	 makes	 sense	 to	 combine	 special-purpose	 code	 for	 one

mechanism	with	general-purpose	code	for	another.	The	text	class	is	an	example
of	 this:	 it	 implements	 a	 general-purpose	 mechanism	 for	 managing	 text,	 but	 it
includes	 special-purpose	 code	 related	 to	 undoing.	 The	 undo	 code	 is	 special-
purpose	because	it	only	handles	undo	operations	for	text	modifications.	It	doesn’t
make	sense	to	combine	this	code	with	the	general-purpose	undo	infrastructure	in
the	History	 class,	 but	 it	 does	make	 sense	 to	 put	 it	 in	 the	 text	 class,	 since	 it	 is
closely	related	to	other	text	functions.

9.8				Splitting	and	joining	methods
The	issue	of	when	to	subdivide	applies	not	just	to	classes,	but	also	to	methods:
are	 there	 times	 when	 it	 is	 better	 to	 divide	 an	 existing	 method	 into	 multiple
smaller	methods?	Or,	should	 two	smaller	methods	be	combined	 into	one	 larger
one?	Long	methods	tend	to	be	more	difficult	to	understand	than	shorter	ones,	so
many	 people	 argue	 that	 length	 alone	 is	 a	 good	 justification	 for	 breaking	 up	 a
method.	Students	in	classes	are	often	given	rigid	criteria,	such	as	“Split	up	any
method	longer	than	20	lines!”

However,	length	by	itself	is	rarely	a	good	reason	for	splitting	up	a	method.	In
general,	developers	 tend	 to	break	up	methods	 too	much.	Splitting	up	a	method
introduces	 additional	 interfaces,	which	 add	 to	 complexity.	 It	 also	 separates	 the
pieces	of	the	original	method,	which	makes	the	code	harder	to	read	if	the	pieces
are	actually	related.	You	shouldn’t	break	up	a	method	unless	it	makes	the	overall
system	simpler;	I’ll	discuss	how	this	might	happen	below.

Long	methods	 aren’t	 always	 bad.	 For	 example,	 suppose	 a	method	 contains
five	20-line	blocks	of	code	that	are	executed	in	order.	If	the	blocks	are	relatively
independent,	 then	 the	method	can	be	 read	and	understood	one	block	at	a	 time;
there’s	not	much	benefit	in	moving	each	of	the	blocks	into	a	separate	method.	If
the	 blocks	 have	 complex	 interactions,	 it’s	 even	 more	 important	 to	 keep	 them
together	so	readers	can	see	all	of	the	code	at	once;	if	each	block	is	in	a	separate
method,	 readers	 will	 have	 to	 flip	 back	 and	 forth	 between	 these	 spread-out
methods	 in	 order	 to	 understand	 how	 they	 work	 together.	 Methods	 containing
hundreds	of	lines	of	code	are	fine	if	they	have	a	simple	signature	and	are	easy	to
read.	These	methods	are	deep	 (lots	of	 functionality,	 simple	 interface),	which	 is
good.

Figure	9.3:	A	method	(a)	can	be	split	either	by	by	extracting	a	subtask	(b)	or	by	dividing	its	functionality
into	two	separate	methods	(c).	A	method	should	not	be	split	if	it	results	in	shallow	methods,	as	in	(d).

When	 designing	methods,	 the	most	 important	 goal	 is	 to	 provide	 clean	 and
simple	abstractions.	Each	method	should	do	one	thing	and	do	 it	completely.
The	method	should	have	a	clean	and	simple	interface,	so	that	users	don’t	need	to
have	much	 information	 in	 their	 heads	 in	 order	 to	 use	 it	 correctly.	 The	method
should	be	deep:	its	interface	should	be	much	simpler	than	its	implementation.	If
a	method	has	all	of	these	properties,	then	it	probably	doesn’t	matter	whether	it	is
long	or	not.

Splitting	up	a	method	only	makes	sense	 if	 it	 results	 in	cleaner	abstractions,
overall.	There	are	two	ways	to	do	this,	which	are	diagrammed	in	Figure	9.3.	The
best	way	is	by	factoring	out	a	subtask	into	a	separate	method,	as	shown	in	Figure
9.3(b).	The	 subdivision	 results	 in	 a	 child	method	 containing	 the	 subtask	 and	 a
parent	 method	 containing	 the	 remainder	 of	 the	 original	 method;	 the	 parent
invokes	 the	 child.	 The	 interface	 of	 the	 new	 parent	 method	 is	 the	 same	 as	 the
original	method.	This	form	of	subdivision	makes	sense	if	there	is	a	subtask	that
is	 cleanly	 separable	 from	 the	 rest	 of	 the	 original	 method,	 which	 means	 (a)
someone	 reading	 the	 child	 method	 doesn’t	 need	 to	 know	 anything	 about	 the
parent	 method	 and	 (b)	 someone	 reading	 the	 parent	 method	 doesn’t	 need	 to
understand	the	implementation	of	the	child	method.	Typically	this	means	that	the
child	method	is	relatively	general-purpose:	it	could	conceivably	be	used	by	other
methods	 besides	 the	 parent.	 If	 you	 make	 a	 split	 of	 this	 form	 and	 then	 find
yourself	flipping	back	and	forth	between	the	parent	and	child	to	understand	how
they	work	together,	that	is	a	red	flag	(“Conjoined	Methods”)	indicating	that	the
split	was	probably	a	bad	idea.

The	second	way	to	break	up	a	method	is	to	split	it	into	two	separate	methods,
each	 visible	 to	 callers	 of	 the	 original	method,	 as	 in	 Figure	9.3(c).	 This	makes
sense	if	the	original	method	had	an	overly	complex	interface	because	it	tried	to
do	multiple	 things	 that	 were	 not	 closely	 related.	 If	 this	 is	 the	 case,	 it	 may	 be

possible	to	divide	the	method’s	functionality	into	two	or	more	smaller	methods,
each	of	which	has	only	a	part	of	the	original	method’s	functionality.	If	you	make
a	split	like	this,	the	interface	for	each	of	the	resulting	methods	should	be	simpler
than	the	interface	of	the	original	method.	Ideally,	most	callers	should	only	need
to	 invoke	one	of	 the	 two	new	methods;	 if	 callers	must	 invoke	both	of	 the	new
methods,	then	that	adds	complexity,	which	makes	it	less	likely	that	the	split	is	a
good	idea.	The	new	methods	will	be	more	focused	in	what	they	do.	It	is	a	good
sign	if	the	new	methods	are	more	general-purpose	than	the	original	method	(i.e.,
you	can	imagine	using	them	separately	in	other	situations).

Splits	 of	 the	 form	 shown	 in	 Figure	 9.3(c)	 don’t	 make	 sense	 very	 often,
because	 they	 result	 in	 callers	 having	 to	 deal	with	multiple	methods	 instead	 of
one.	When	you	split	this	way,	you	run	the	risk	of	ending	up	with	several	shallow
methods,	 as	 in	 Figure	 9.3(d).	 If	 the	 caller	 has	 to	 invoke	 each	 of	 the	 separate
methods,	passing	state	back	and	forth	between	them,	then	splitting	is	not	a	good
idea.	If	you’re	considering	a	split	like	the	one	in	Figure	9.3(c),	you	should	judge
it	based	on	whether	it	simplifies	things	for	callers.

There	 are	 also	 situations	 where	 a	 system	 can	 be	 made	 simpler	 by	 joining
methods	 together.	 For	 example,	 joining	 methods	 might	 replace	 two	 shallow
methods	 with	 one	 deeper	 method;	 it	 might	 eliminate	 duplication	 of	 code;	 it
might	eliminate	dependencies	between	the	original	methods,	or	intermediate	data
structures;	 it	 might	 result	 in	 better	 encapsulation,	 so	 that	 knowledge	 that	 was
previously	present	in	multiple	places	is	now	isolated	in	a	single	place;	or	it	might
result	in	a	simpler	interface,	as	discussed	in	Section	9.2.

	Red	Flag:	Conjoined	Methods	
It	 should	 be	 possible	 to	 understand	 each	method	 independently.	 If	 you	 can’t
understand	the	implementation	of	one	method	without	also	understanding	the
implementation	of	another,	 that’s	a	red	flag.	This	red	flag	can	occur	in	other
contexts	as	well:	 if	 two	pieces	of	code	are	physically	separated,	but	each	can
only	be	understood	by	looking	at	the	other,	that	is	a	red	flag.

9.9				Conclusion

The	decision	 to	 split	 or	 join	modules	 should	be	based	on	 complexity.	Pick	 the

The	decision	 to	 split	 or	 join	modules	 should	be	based	on	 complexity.	Pick	 the
structure	that	results	in	the	best	information	hiding,	the	fewest	dependencies,	and
the	deepest	interfaces.

Chapter	10

Define	Errors	Out	Of	Existence

Exception	 handling	 is	 one	 of	 the	 worst	 sources	 of	 complexity	 in	 software
systems.	 Code	 that	 deals	 with	 special	 conditions	 is	 inherently	 harder	 to	 write
than	code	 that	deals	with	normal	cases,	and	developers	often	define	exceptions
without	 considering	 how	 they	 will	 be	 handled.	 This	 chapter	 discusses	 why
exceptions	 contribute	 disproportionately	 to	 complexity,	 then	 it	 shows	 how	 to
simplify	exception	handling.	The	key	overall	lesson	from	this	chapter	is	to	reduce
the	 number	 of	 places	 where	 exceptions	 must	 be	 handled;	 in	 many	 cases	 the
semantics	of	operations	can	be	modified	so	that	the	normal	behavior	handles	all
situations	and	there	is	no	exceptional	condition	to	report	(hence	the	title	of	this
chapter).

10.1		Why	exceptions	add	complexity
I	 use	 the	 term	 exception	 to	 refer	 to	 any	 uncommon	 condition	 that	 alters	 the
normal	 flow	of	 control	 in	 a	 program.	Many	programming	 languages	 include	 a
formal	exception	mechanism	that	allows	exceptions	to	be	thrown	by	lower-level
code	and	caught	by	enclosing	code.	However,	exceptions	can	occur	even	without
using	a	formal	exception	reporting	mechanism,	such	as	when	a	method	returns	a
special	value	indicating	that	it	didn’t	complete	its	normal	behavior.	All	of	these
forms	of	exceptions	contribute	to	complexity.

A	 particular	 piece	 of	 code	 may	 encounter	 exceptions	 in	 several	 different
ways:

A	caller	may	provide	bad	arguments	or	configuration	information.
An	invoked	method	may	not	be	able	to	complete	a	requested	operation.	For
example,	an	I/O	operation	may	fail,	or	a	required	resource	may	not	be
available.
In	a	distributed	system,	network	packets	may	be	lost	or	delayed,	servers	may
not	respond	in	a	timely	fashion,	or	peers	may	communicate	in	unexpected
ways.

The	code	may	detect	bugs,	internal	inconsistencies,	or	situations	it	is	not
prepared	to	handle.

Large	systems	have	to	deal	with	many	exceptional	conditions,	particularly	if	they
are	distributed	or	need	to	be	fault-tolerant.	Exception	handling	can	account	for	a
significant	fraction	of	all	the	code	in	a	system.

Exception	 handling	 code	 is	 inherently	more	 difficult	 to	write	 than	 normal-
case	code.	An	exception	disrupts	the	normal	flow	of	the	code;	it	usually	means
that	 something	 didn’t	 work	 as	 expected.	 When	 an	 exception	 occurs,	 the
programmer	can	deal	with	it	in	two	ways,	each	of	which	can	be	complicated.	The
first	approach	is	to	move	forward	and	complete	the	work	in	progress	in	spite	of
the	exception.	For	example,	if	a	network	packet	is	lost,	it	can	be	resent;	if	data	is
corrupted,	 perhaps	 it	 can	 be	 recovered	 from	 a	 redundant	 copy.	 The	 second
approach	is	to	abort	the	operation	in	progress	and	report	the	exception	upwards.
However,	aborting	can	be	complicated	because	the	exception	may	have	occurred
at	 a	 point	where	 system	 state	 is	 inconsistent	 (a	 data	 structure	might	 have	been
partially	initialized);	the	exception	handling	code	must	restore	consistency,	such
as	by	unwinding	any	changes	made	before	the	exception	occurred.

Furthermore,	 exception	 handling	 code	 creates	 opportunities	 for	 more
exceptions.	 Consider	 the	 case	 of	 resending	 a	 lost	 network	 packet.	 Perhaps	 the
packet	wasn’t	 actually	 lost,	 but	was	 simply	delayed.	 In	 this	 case,	 resending	 the
packet	will	result	in	duplicate	packets	arriving	at	the	peer;	this	introduces	a	new
exceptional	 condition	 that	 the	 peer	 must	 handle.	 Or,	 consider	 the	 case	 of
recovering	lost	data	from	a	redundant	copy:	what	if	the	redundant	copy	has	also
been	lost?	Secondary	exceptions	occurring	during	recovery	are	often	more	subtle
and	complex	than	the	primary	exceptions.	If	an	exception	is	handled	by	aborting
the	 operation	 in	 progress,	 then	 this	 must	 be	 reported	 to	 the	 caller	 as	 another
exception.	 To	 prevent	 an	 unending	 cascade	 of	 exceptions,	 the	 developer	 must
eventually	find	a	way	to	handle	exceptions	without	introducing	more	exceptions.

Language	 support	 for	 exceptions	 tends	 to	 be	 verbose	 and	 clunky,	 which
makes	exception	handling	code	hard	to	read.	For	example,	consider	the	following
code,	 which	 reads	 a	 collection	 of	 tweets	 from	 a	 file	 using	 Java’s	 support	 for
object	serialization	and	deserialization:
try	(

						FileInputStream	fileStream	=
																			new	FileInputStream(fileName);
						BufferedInputStream	bufferedStream	=

																			new	BufferedInputStream(fileStream);
						ObjectInputStream	objectStream	=
																			new	ObjectInputStream(bufferedStream);
)	{

						for	(int	i	=	0;	i	<	tweetsPerFile;	i++)	{
												tweets.add((Tweet)	objectStream.readObject());
						}
}

catch	(FileNotFoundException	e)	{

						...
}

catch	(ClassNotFoundException	e)	{

						...
}

catch	(EOFException	e)	{

						//	Not	a	problem:	not	all	tweet	files	have	full
						//	set	of	tweets.
}

catch	(IOException	e)	{

						...
}

catch	(ClassCastException	e)	{

						...
}

Just	 the	 basic	 try-catch	 boilerplate	 accounts	 for	 more	 lines	 of	 code	 than	 the
code	for	normal-case	operation,	without	even	considering	the	code	that	actually
handles	 the	 exceptions.	 It	 is	 hard	 to	 relate	 the	 exception	 handling	 code	 to	 the
normal-case	 code:	 for	 example,	 it’s	 not	 obvious	 where	 each	 exception	 is
generated.	An	alternative	approach	is	to	break	up	the	code	into	many	distinct	try
blocks;	 in	 the	extreme	case	 there	could	be	a	try	 for	each	 line	of	code	 that	can
generate	an	exception.	This	would	make	it	clear	where	exceptions	occur,	but	the
try	blocks	themselves	break	up	the	flow	of	the	code	and	make	it	harder	to	read;
in	addition,	some	exception	handling	code	might	end	up	duplicated	 in	multiple
try	blocks.

It’s	 difficult	 to	 ensure	 that	 exception	 handling	 code	 really	 works.	 Some

It’s	 difficult	 to	 ensure	 that	 exception	 handling	 code	 really	 works.	 Some
exceptions,	such	as	I/O	errors,	can’t	easily	be	generated	in	a	test	environment,	so
it’s	hard	to	test	the	code	that	handles	them.	Exceptions	don’t	occur	very	often	in
running	 systems,	 so	 exception	 handling	 code	 rarely	 executes.	 Bugs	 can	 go
undetected	 for	 a	 long	 time,	 and	 when	 the	 exception	 handling	 code	 is	 finally
needed,	 there’s	 a	 good	 chance	 that	 it	won’t	work	 (one	 of	my	 favorite	 sayings:
“code	that	hasn’t	been	executed	doesn’t	work”).	A	recent	study	found	that	more
than	 90%	 of	 catastrophic	 failures	 in	 distributed	 data-intensive	 systems	 were
caused	 by	 incorrect	 error	 handling1.	 When	 exception	 handling	 code	 fails,	 it’s
difficult	to	debug	the	problem,	since	it	occurs	so	infrequently.

10.2		Too	many	exceptions
Programmers	exacerbate	the	problems	related	to	exception	handling	by	defining
unnecessary	 exceptions.	 Most	 programmers	 are	 taught	 that	 it’s	 important	 to
detect	 and	 report	 errors;	 they	 often	 interpret	 this	 to	 mean	 “the	 more	 errors
detected,	 the	 better.”	 This	 leads	 to	 an	 over-defensive	 style	where	 anything	 that
looks	 even	 a	 bit	 suspicious	 is	 rejected	 with	 an	 exception,	 which	 results	 in	 a
proliferation	 of	 unnecessary	 exceptions	 that	 increase	 the	 complexity	 of	 the
system.

I	made	 this	mistake	myself	 in	 the	design	of	 the	Tcl	 scripting	 language.	Tcl
contains	 an	 unset	 command	 that	 can	 be	 used	 to	 remove	 a	 variable.	 I	 defined
unset	so	that	it	throws	an	error	if	the	variable	doesn’t	exist.	At	the	time	I	thought
that	it	must	be	a	bug	if	someone	tries	to	delete	a	variable	that	doesn’t	exist,	so	Tcl
should	report	it.	However,	one	of	the	most	common	uses	of	unset	is	to	clean	up
temporary	 state	 created	 by	 some	 previous	 operation.	 It’s	 often	 hard	 to	 predict
exactly	 what	 state	 was	 created,	 particularly	 if	 the	 operation	 aborted	 partway
through.	 Thus,	 the	 simplest	 thing	 is	 to	 delete	 all	 of	 the	 variables	 that	 might
possibly	 have	 been	 created.	 The	 definition	 of	 unset	 makes	 this	 awkward:
developers	 end	 up	 enclosing	 calls	 to	 unset	 in	 catch	 statements	 to	 catch	 and
ignore	 errors	 thrown	 by	 unset.	 In	 retrospect,	 the	 definition	 of	 the	 unset
command	is	one	of	the	biggest	mistakes	I	made	in	the	design	of	Tcl.

It’s	 tempting	 to	 use	 exceptions	 to	 avoid	 dealing	 with	 difficult	 situations:
rather	than	figuring	out	a	clean	way	to	handle	it,	just	throw	an	exception	and	punt
the	problem	to	the	caller.	Some	might	argue	that	this	approach	empowers	callers,
since	it	allows	each	caller	to	handle	the	exception	in	a	different	way.	However,	if
you	are	having	trouble	figuring	out	what	to	do	for	the	particular	situation,	there’s

a	 good	 chance	 that	 the	 caller	 won’t	 know	 what	 to	 do	 either.	 Generating	 an
exception	 in	 a	 situation	 like	 this	 just	 passes	 the	 problem	 to	 someone	 else	 and
adds	to	the	system’s	complexity.

The	exceptions	thrown	by	a	class	are	part	of	its	interface;	classes	with	lots	of
exceptions	have	complex	interfaces,	and	they	are	shallower	than	classes	with
fewer	exceptions.	An	exception	is	a	particularly	complex	element	of	an	interface.
It	can	propagate	up	through	several	stack	levels	before	being	caught,	so	it	affects
not	 just	 the	method’s	 caller,	 but	 potentially	 also	 higher-level	 callers	 (and	 their
interfaces).

Throwing	exceptions	is	easy;	handling	them	is	hard.	Thus,	the	complexity	of
exceptions	comes	from	the	exception	handling	code.	The	best	way	to	reduce	the
complexity	damage	caused	by	exception	handling	 is	 to	reduce	 the	number	 of
places	 where	 exceptions	 have	 to	 be	 handled.	 The	 rest	 of	 this	 chapter	 will
discuss	four	techniques	for	reducing	the	number	of	exception	handlers.

10.3		Define	errors	out	of	existence
The	best	way	to	eliminate	exception	handling	complexity	is	to	define	your	APIs
so	 that	 there	are	no	exceptions	 to	handle:	define	errors	out	of	existence.	This
may	seem	sacrilegious,	but	it	is	very	effective	in	practice.	Consider	the	Tcl	unset
command	discussed	above.	Rather	than	throwing	an	error	when	unset	is	asked	to
delete	 an	 unknown	 variable,	 it	 should	 have	 simply	 returned	 without	 doing
anything.	 I	 should	 have	 changed	 the	 definition	 of	 unset	 slightly:	 rather	 than
deleting	a	variable,	unset	should	ensure	that	a	variable	no	longer	exists.	With	the
first	definition,	unset	can’t	do	its	job	if	the	variable	doesn’t	exist,	so	generating
an	exception	makes	sense.	With	the	second	definition,	it	 is	perfectly	natural	for
unset	to	be	invoked	with	the	name	of	a	variable	that	doesn’t	exist.	In	this	case,	its
work	is	already	done,	so	it	can	simply	return.	There	is	no	longer	an	error	case	to
report.

10.4		Example:	file	deletion	in	Windows
File	deletion	provides	another	example	of	how	errors	can	be	defined	away.	The
Windows	operating	system	does	not	permit	a	file	to	be	deleted	if	it	is	open	in	a
process.	 This	 is	 a	 continual	 source	 of	 frustration	 for	 developers	 and	 users.	 In
order	 to	delete	a	 file	 that	 is	 in	use,	 the	user	must	 search	 through	 the	 system	 to

find	 the	 process	 that	 has	 the	 file	 open,	 and	 then	 kill	 that	 process.	 Sometimes
users	give	up	and	reboot	their	system,	just	so	they	can	delete	a	file.

The	Unix	operating	system	defines	file	deletion	more	elegantly.	In	Unix,	if	a
file	is	open	when	it	is	deleted,	Unix	does	not	delete	the	file	immediately.	Instead,
it	marks	the	file	for	deletion,	then	the	delete	operation	returns	successfully.	The
file	name	has	been	removed	from	its	directory,	so	no	other	processes	can	open
the	old	file	and	a	new	file	with	the	same	name	can	be	created,	but	 the	existing
file	data	persists.	Processes	that	already	have	the	file	open	can	continue	to	read	it
and	 write	 it	 normally.	 Once	 the	 file	 has	 been	 closed	 by	 all	 of	 the	 accessing
processes,	its	data	is	freed.

The	 Unix	 approach	 defines	 away	 two	 different	 kinds	 of	 errors.	 First,	 the
delete	 operation	 no	 longer	 returns	 an	 error	 if	 the	 file	 is	 currently	 in	 use;	 the
delete	 succeeds,	 and	 the	 file	will	 eventually	be	deleted.	Second,	deleting	a	 file
that’s	 in	 use	 does	 not	 create	 exceptions	 for	 the	 processes	 using	 the	 file.	 One
possible	approach	to	this	problem	would	have	been	to	delete	the	file	immediately
and	 mark	 all	 of	 the	 opens	 of	 the	 file	 to	 disable	 them;	 any	 attempts	 by	 other
processes	 to	 read	 or	 write	 the	 deleted	 file	 would	 fail.	 However,	 this	 approach
would	create	new	errors	for	those	processes	to	handle.	Instead,	Unix	allows	them
to	keep	accessing	the	file	normally;	delaying	the	file	deletion	defines	errors	out
of	existence.

It	may	seem	strange	that	Unix	allows	a	process	to	continue	to	read	and	write
a	 doomed	 file,	 but	 I	 have	 never	 encountered	 a	 situation	 where	 this	 caused
significant	 problems.	 The	 Unix	 definition	 of	 file	 deletion	 is	 much	 simpler	 to
work	with,	both	for	developers	and	users,	than	the	Windows	definition.

10.5		Example:	Java	substring	method
As	 a	 final	 example,	 consider	 the	 Java	 String	 class	 and	 its	 substring	 method.
Given	 two	 indexes	 into	 a	 string,	substring	 returns	 the	 substring	 starting	at	 the
character	given	by	 the	 first	 index	and	ending	with	 the	character	 just	before	 the
second	 index.	However,	 if	 either	 index	 is	 outside	 the	 range	 of	 the	 string,	 then
substring	 throws	 IndexOutOfBoundsException.	 This	 exception	 is	 unnecessary
and	complicates	the	use	of	this	method.	I	often	find	myself	in	a	situation	where
one	or	both	of	the	indices	may	be	outside	the	range	of	the	string,	and	I	would	like
to	 extract	 all	 of	 the	 characters	 in	 the	 string	 that	 overlap	 the	 specified	 range.
Unfortunately,	this	requires	me	to	check	each	of	the	indices	and	round	them	up	to

zero	or	down	to	the	end	of	the	string;	a	one-line	method	call	now	becomes	5–10
lines	of	code.

The	 Java	 substring	 method	 would	 be	 easier	 to	 use	 if	 it	 performed	 this
adjustment	automatically,	so	that	it	implemented	the	following	API:	“returns	the
characters	of	 the	 string	 (if	 any)	with	 index	greater	 than	or	equal	 to	beginIndex
and	 less	 than	 endIndex.”	 This	 is	 a	 simple	 and	 natural	 API,	 and	 it	 defines	 the
IndexOutOfBoundsException	exception	out	of	existence.	The	method’s	behavior	is
now	well-defined	even	if	one	or	both	of	the	indexes	are	negative,	or	if	beginIndex
is	greater	than	endIndex.	This	approach	simplifies	the	API	for	the	method	while
increasing	its	functionality,	so	it	makes	the	method	deeper.	Many	other	languages
have	taken	the	error-free	approach;	for	example,	Python	returns	an	empty	result
for	out-of-range	list	slices.

When	I	argue	for	defining	errors	out	of	existence,	people	sometimes	counter
that	throwing	errors	will	catch	bugs;	if	errors	are	defined	out	of	existence,	won’t
that	result	in	buggier	software?	Perhaps	this	is	why	the	Java	developers	decided
that	substring	should	throw	exceptions.	The	error-ful	approach	may	catch	some
bugs,	but	it	also	increases	complexity,	which	results	in	other	bugs.	In	the	error-
ful	approach,	developers	must	write	additional	code	to	avoid	or	ignore	the	errors,
and	 this	 increases	 the	 likelihood	 of	 bugs;	 or,	 they	 may	 forget	 to	 write	 the
additional	code,	 in	which	case	unexpected	errors	may	be	 thrown	at	 runtime.	 In
contrast,	 defining	 errors	 out	 of	 existence	 simplifies	 APIs	 and	 it	 reduces	 the
amount	of	code	that	must	be	written.

Overall,	the	best	way	to	reduce	bugs	is	to	make	software	simpler.

10.6		Mask	exceptions
The	second	technique	for	reducing	the	number	of	places	where	exceptions	must
be	handled	is	exception	masking.	With	this	approach,	an	exceptional	condition	is
detected	 and	 handled	 at	 a	 low	 level	 in	 the	 system,	 so	 that	 higher	 levels	 of
software	need	not	be	aware	of	 the	condition.	Exception	masking	 is	particularly
common	 in	 distributed	 systems.	 For	 instance,	 in	 a	 network	 transport	 protocol
such	as	TCP,	packets	can	be	dropped	for	various	reasons	such	as	corruption	and
congestion.	 TCP	 masks	 packet	 loss	 by	 resending	 lost	 packets	 within	 its
implementation,	so	all	data	eventually	gets	through	and	clients	are	unaware	of	the
dropped	packets.

A	more	 controversial	 example	 of	masking	 occurs	 in	 the	NFS	 network	 file

A	more	 controversial	 example	 of	masking	 occurs	 in	 the	NFS	 network	 file
system.	If	an	NFS	file	server	crashes	or	 fails	 to	 respond	for	any	reason,	clients
reissue	 their	 requests	 to	 the	 server	 over	 and	 over	 again	 until	 the	 problem	 is
eventually	resolved.	The	low-level	file	system	code	on	the	client	does	not	report
any	exceptions	to	the	invoking	application.	The	operation	in	progress	(and	hence
the	application)	 just	hangs	until	 the	operation	can	complete	 successfully.	 If	 the
hang	lasts	more	than	a	short	time,	the	NFS	client	prints	messages	on	the	user’s
console	of	the	form	“NFS	server	xyzzy	not	responding	still	trying.”

NFS	users	often	complain	 about	 the	 fact	 that	 their	 applications	hang	while
waiting	 for	 an	 NFS	 server	 to	 resume	 normal	 operation.	 Many	 people	 have
suggested	 that	 NFS	 should	 abort	 operations	 with	 an	 exception	 rather	 than
hanging.	 However,	 reporting	 exceptions	 would	 make	 things	 worse,	 not	 better.
There’s	 not	 much	 an	 application	 can	 do	 if	 it	 loses	 access	 to	 its	 files.	 One
possibility	would	be	for	the	application	to	retry	the	file	operation,	but	this	would
still	hang	the	application,	and	it’s	easier	to	perform	the	retry	in	one	place	in	the
NFS	layer,	rather	than	at	every	file	system	call	 in	every	application	(a	compiler
shouldn’t	have	to	worry	about	this!).	The	other	alternative	is	for	applications	to
abort	and	return	errors	to	their	callers.	It’s	unlikely	that	the	callers	would	know
what	to	do	either,	so	they	would	abort	as	well,	resulting	in	a	collapse	of	the	user’s
working	environment.	Users	still	wouldn’t	be	able	to	get	any	work	done	while	the
file	server	was	down,	and	they	would	have	to	restart	all	of	their	applications	once
the	file	server	came	back	to	life.

Thus,	 the	 best	 alternative	 is	 for	 NFS	 to	 mask	 the	 errors	 and	 hang
applications.	With	 this	approach,	applications	don’t	need	any	code	 to	deal	with
server	problems,	and	they	can	resume	seamlessly	once	the	server	comes	back	to
life.	If	users	get	tired	of	waiting,	they	can	always	abort	applications	manually.

Exception	masking	doesn’t	work	in	all	situations,	but	it	is	a	powerful	tool	in
the	 situations	where	 it	 works.	 It	 results	 in	 deeper	 classes,	 since	 it	 reduces	 the
class’s	 interface	 (fewer	 exceptions	 for	 users	 to	 be	 aware	 of)	 and	 adds
functionality	 in	 the	 form	 of	 the	 code	 that	 masks	 the	 exception.	 Exception
masking	is	an	example	of	pulling	complexity	downward.

10.7		Exception	aggregation
The	 third	 technique	 for	 reducing	 complexity	 related	 to	 exceptions	 is	 exception
aggregation.	The	idea	behind	exception	aggregation	is	to	handle	many	exceptions

with	 a	 single	 piece	 of	 code;	 rather	 than	 writing	 distinct	 handlers	 for	 many
individual	exceptions,	handle	them	all	in	one	place	with	a	single	handler.

Consider	how	to	handle	missing	parameters	 in	a	Web	server.	A	Web	server
implements	a	collection	of	URLs.	When	the	server	receives	an	incoming	URL,	it
dispatches	to	a	URL-specific	service	method	to	process	that	URL	and	generate	a
response.	 The	 URL	 contains	 various	 parameters	 that	 are	 used	 to	 generate	 the
response.	 Each	 service	 method	 will	 call	 a	 lower-level	 method	 (let’s	 call	 it
getParameter)	to	extract	the	parameters	that	it	needs	from	the	URL.	If	the	URL
does	not	contain	the	desired	parameter,	getParameter	throws	an	exception.

When	students	in	a	software	design	class	implemented	such	a	server,	many	of
them	wrapped	each	distinct	call	to	getParameter	in	a	separate	exception	handler
to	catch	NoSuchParameter	exceptions,	as	 in	Figure	10.1.	This	 resulted	 in	a	 large
number	of	handlers,	all	of	which	did	essentially	the	same	thing	(generate	an	error
response).

Figure	 10.1:	 The	 code	 at	 the	 top	 dispatches	 to	 one	 of	 several	methods	 in	 a	Web	 server,	 each	 of	 which
handles	 a	 particular	 URL.	 Each	 of	 those	 methods	 (bottom)	 uses	 parameters	 from	 the	 incoming	 HTTP
request.	 In	 this	 figure,	 there	 is	 a	 separate	 exception	 handler	 for	 each	 call	 to	getParameter;	 this	 results	 in
duplicated	code.

A	 better	 approach	 is	 to	 aggregate	 the	 exceptions.	 Instead	 of	 catching	 the
exceptions	 in	 the	 individual	service	methods,	 let	 them	propagate	up	 to	 the	 top-
level	dispatch	method	for	the	Web	server,	as	in	Figure	10.2.	A	single	handler	in

this	 method	 can	 catch	 all	 of	 the	 exceptions	 and	 generate	 an	 appropriate	 error
response	for	missing	parameters.

The	 aggregation	 approach	 can	 be	 taken	 even	 further	 in	 the	Web	 example.
There	 are	 many	 other	 errors	 besides	 missing	 parameters	 that	 can	 occur	 while
processing	a	Web	page;	for	example,	a	parameter	might	not	have	the	right	syntax
(the	 service	method	 expected	 an	 integer,	 but	 the	value	was	 “xyz”),	 or	 the	user
might	 not	 have	 permission	 for	 the	 requested	 operation.	 In	 each	 case,	 the	 error
should	result	in	an	error	response;	the	errors	differ	only	in	the	error	message	to
include	 in	 the	 response	 (“parameter	 'quantity'	 not	 present	 in	 URL”	 or	 “bad
value	 'xyz'	 for	 'quantity'	 parameter;	 must	 be	 positive	 integer”).	 Thus,	 all
conditions	resulting	in	an	error	response	can	be	handled	with	a	single	top-level
exception	handler.	The	error	message	can	be	generated	at	the	time	the	exception
is	 thrown	 and	 included	 as	 a	 variable	 in	 the	 exception	 record;	 for	 example,
getParameter	 will	 generate	 the	 “parameter	 'quantity'	 not	 present	 in	 URL”
message.	 The	 top-level	 handler	 extracts	 the	 message	 from	 the	 exception	 and
incorporates	it	into	the	error	response.

Figure	 10.2:	 This	 code	 is	 functionally	 equivalent	 to	 Figure	 10.1,	 but	 exception	 handling	 has	 been
aggregated:	a	single	exception	handler	in	the	dispatcher	catches	all	of	the	NoSuchParameter	exceptions	from
all	of	the	URL-specific	methods.

The	 aggregation	 described	 in	 the	 preceding	 paragraph	 has	 good	 properties
from	 the	 standpoint	 of	 encapsulation	 and	 information	 hiding.	 The	 top-level
exception	 handler	 encapsulates	 knowledge	 about	 how	 to	 generate	 error
responses,	 but	 it	 knows	 nothing	 about	 specific	 errors;	 it	 just	 uses	 the	 error
message	 provided	 in	 the	 exception.	 The	 getParameter	 method	 encapsulates
knowledge	about	how	to	extract	a	parameter	from	a	URL,	and	it	also	knows	how

to	 describe	 extraction	 errors	 in	 a	 human-readable	 form.	 These	 two	 pieces	 of
information	 are	 closely	 related,	 so	 it	 makes	 sense	 for	 them	 to	 be	 in	 the	 same
place.	However,	getParameter	knows	nothing	about	the	syntax	of	an	HTTP	error
response.	 As	 new	 functionality	 is	 added	 to	 the	Web	 server,	 new	methods	 like
getParameter	may	be	 created	with	 their	 own	errors.	 If	 the	new	methods	 throw
exceptions	 in	 the	 same	 way	 as	 getParameter	 (by	 generating	 exceptions	 that
inherit	 from	 the	 same	 superclass	 and	 including	 an	 error	 message	 in	 each
exception),	they	can	plug	into	the	existing	system	with	no	other	changes:	the	top-
level	handler	will	automatically	generate	error	responses	for	them.

This	 example	 illustrates	 a	 generally-useful	 design	 pattern	 for	 exception
handling.	 If	 a	 system	 processes	 a	 series	 of	 requests,	 it’s	 useful	 to	 define	 an
exception	 that	 aborts	 the	 current	 request,	 cleans	 up	 the	 system’s	 state,	 and
continues	with	the	next	request.	The	exception	is	caught	in	a	single	place	near	the
top	of	 the	system’s	request-handling	 loop.	This	exception	can	be	 thrown	at	any
point	 in	 the	processing	of	a	request	 to	abort	 the	request;	different	subclasses	of
the	 exception	 can	 be	 defined	 for	 different	 conditions.	 Exceptions	 of	 this	 type
should	be	clearly	distinguished	from	exceptions	that	are	fatal	to	the	entire	system.

Exception	aggregation	works	best	if	an	exception	propagates	several	levels	up
the	stack	before	it	is	handled;	this	allows	more	exceptions	from	more	methods	to
be	 handled	 in	 the	 same	 place.	 This	 is	 the	 opposite	 of	 exception	 masking:
masking	usually	works	best	if	an	exception	is	handled	in	a	low-level	method.	For
masking,	the	low-level	method	is	typically	a	library	method	used	by	many	other
methods,	 so	allowing	 the	exception	 to	propagate	would	 increase	 the	number	of
places	 where	 it	 is	 handled.	 Masking	 and	 aggregation	 are	 similar	 in	 that	 both
approaches	position	an	exception	handler	where	it	can	catch	the	most	exceptions,
eliminating	many	handlers	that	would	otherwise	need	to	be	created.

Another	example	of	exception	aggregation	occurs	in	the	RAMCloud	storage
system	 for	 crash	 recovery.	 A	 RAMCloud	 system	 consists	 of	 a	 collection	 of
storage	 servers	 that	 keep	 multiple	 copies	 of	 each	 object,	 so	 the	 system	 can
recover	from	a	variety	of	failures.	For	example,	if	a	server	crashes	and	loses	all	of
its	 data,	 RAMCloud	 reconstructs	 the	 lost	 data	 using	 copies	 stored	 on	 other
servers.	 Errors	 can	 also	 happen	 on	 a	 smaller	 scale;	 for	 example,	 a	 server	may
discover	that	an	individual	object	is	corrupted.

RAMCloud	does	not	 have	 separate	 recovery	mechanisms	 for	 each	different
kind	 of	 error.	 Instead,	RAMCloud	 “promotes”	many	 smaller	 errors	 into	 larger
ones.	RAMCloud	could,	in	principle,	handle	a	corrupted	object	by	restoring	that

one	 object	 from	 a	 backup	 copy.	 However,	 it	 doesn’t	 do	 this.	 Instead,	 if	 it
discovers	 a	 corrupted	 object	 it	 crashes	 the	 server	 containing	 the	 object.
RAMCloud	uses	this	approach	because	crash	recovery	is	quite	complex	and	this
approach	minimized	the	number	of	different	recovery	mechanisms	that	had	to	be
created.	Creating	a	recovery	mechanism	for	crashed	servers	was	unavoidable,	so
RAMCloud	uses	the	same	mechanism	for	other	kinds	of	recovery	as	well.	This
reduced	the	amount	of	code	that	had	to	be	written,	and	it	also	meant	that	server
crash	recovery	gets	 invoked	more	often.	As	a	result,	bugs	 in	recovery	are	more
likely	to	be	discovered	and	fixed.

One	disadvantage	of	promoting	a	corrupted	object	into	a	server	crash	is	that
it	 increases	 the	 cost	 of	 recovery	 considerably.	 This	 is	 not	 a	 problem	 in
RAMCloud,	since	object	corruption	is	quite	rare.	However,	error	promotion	may
not	make	sense	for	errors	that	happen	frequently.	As	one	example,	 it	would	not
be	practical	to	crash	a	server	anytime	one	of	its	network	packets	is	lost.

One	way	of	 thinking	about	 exception	aggregation	 is	 that	 it	 replaces	 several
special-purpose	 mechanisms,	 each	 tailored	 for	 a	 particular	 situation,	 with	 a
single	 general-purpose	 mechanism	 that	 can	 handle	 multiple	 situations.	 This
provides	another	illustration	of	the	benefits	of	general-purpose	mechanisms.

10.8		Just	crash?
The	fourth	technique	for	reducing	complexity	related	to	exception	handling	is	to
crash	the	application.	In	most	applications	there	will	be	certain	errors	that	it’s	not
worth	 trying	 to	 handle.	 Typically,	 these	 errors	 are	 difficult	 or	 impossible	 to
handle	and	don’t	occur	very	often.	The	simplest	thing	to	do	in	response	to	these
errors	is	to	print	diagnostic	information	and	then	abort	the	application.

One	example	is	“out	of	memory”	errors	that	occur	during	storage	allocation.
Consider	 the	malloc	 function	 in	C,	which	 returns	NULL	 if	 it	 cannot	 allocate	 the
desired	 block	 of	memory.	 This	 is	 an	 unfortunate	 behavior,	 because	 it	 assumes
that	every	single	caller	of	malloc	will	check	the	return	value	and	take	appropriate
action	if	there	is	no	memory.	Applications	contain	numerous	calls	to	malloc,	so
checking	 the	 result	 after	 each	 call	 would	 add	 significant	 complexity.	 If	 a
programmer	 forgets	 the	 check	 (which	 is	 fairly	 likely),	 then	 the	 application	will
dereference	 a	 null	 pointer	 if	 memory	 runs	 out,	 resulting	 in	 a	 crash	 that
camouflages	the	real	problem.

Furthermore,	 there	 isn’t	much	 an	 application	 can	do	when	 it	 discovers	 that
memory	 is	 exhausted.	 In	 principle	 the	 application	 could	 look	 for	 unneeded

memory	 to	 free,	 but	 if	 the	 application	 had	 unneeded	memory	 it	 could	 already
have	 freed	 it,	which	would	have	prevented	 the	out-of-memory	error	 in	 the	 first
place.	Today’s	 systems	 have	 so	much	memory	 that	memory	 almost	 never	 runs
out;	if	it	does,	it	usually	indicates	a	bug	in	the	application.	Thus,	it	rarely	make
sense	 to	 try	 to	handle	out-of-memory	 errors;	 this	 creates	 too	much	 complexity
for	too	little	benefit.

A	 better	 approach	 is	 to	 define	 a	 new	method	 ckalloc,	 which	 calls	 malloc,
checks	the	result,	and	aborts	the	application	with	an	error	message	if	memory	is
exhausted.	 The	 application	 never	 invokes	 malloc	 directly;	 it	 always	 invokes
ckalloc.

In	 newer	 languages	 such	 as	 C++	 and	 Java,	 the	 new	 operator	 throws	 an
exception	 if	 memory	 is	 exhausted.	 There’s	 not	 much	 point	 in	 catching	 this
exception,	since	there’s	a	good	chance	that	the	exception	handler	will	also	try	to
allocate	memory,	which	will	also	fail.	Dynamically	allocated	memory	is	such	a
fundamental	 element	 of	 any	modern	 application	 that	 it	 doesn’t	make	 sense	 for
the	application	to	continue	if	memory	is	exhausted;	it’s	better	to	crash	as	soon	as
the	error	is	detected.

There	 are	 many	 other	 examples	 of	 errors	 where	 crashing	 the	 application
makes	sense.	For	most	programs,	if	an	I/O	error	occurs	while	reading	or	writing
an	open	file	(such	as	a	disk	hard	error),	or	if	a	network	socket	cannot	be	opened,
there’s	not	much	the	application	can	do	to	recover,	so	aborting	with	a	clear	error
message	is	a	sensible	approach.	These	errors	are	infrequent,	so	they	are	unlikely
to	affect	the	overall	usability	of	the	application.	Aborting	with	an	error	message
is	 also	 appropriate	 if	 an	 application	 encounters	 an	 internal	 error	 such	 as	 an
inconsistent	 data	 structure.	 Conditions	 like	 this	 probably	 indicate	 bugs	 in	 the
program.

Whether	or	not	it	is	acceptable	to	crash	on	a	particular	error	depends	on	the
application.	For	a	replicated	storage	system,	it	isn’t	appropriate	to	abort	on	an	I/O
error.	Instead,	the	system	must	use	replicated	data	to	recover	any	information	that
was	 lost.	 The	 recovery	 mechanisms	 will	 add	 considerable	 complexity	 to	 the
program,	 but	 recovering	 lost	 data	 is	 an	 essential	 part	 of	 the	 value	 the	 system
provides	to	its	users.

10.9		Design	special	cases	out	of	existence

For	the	same	reason	that	it	makes	sense	to	define	errors	out	of	existence,	it	also

For	the	same	reason	that	it	makes	sense	to	define	errors	out	of	existence,	it	also
makes	 sense	 to	 define	 other	 special	 cases	 out	 of	 existence.	 Special	 cases	 can
result	 in	 code	 that	 is	 riddled	with	if	 statements,	which	make	 the	 code	hard	 to
understand	and	lead	to	bugs.	Thus,	special	cases	should	be	eliminated	wherever
possible.	The	best	way	to	do	this	is	by	designing	the	normal	case	in	a	way	that
automatically	handles	the	special	cases	without	any	extra	code.

In	the	text	editor	project	described	in	Chapter	6,	students	had	to	implement	a
mechanism	for	selecting	text	and	copying	or	deleting	the	selection.	Most	students
introduced	a	state	variable	in	their	selection	implementation	to	indicate	whether
or	not	the	selection	exists.	They	probably	chose	this	approach	because	there	are
times	when	no	selection	is	visible	on	the	screen,	so	it	seemed	natural	to	represent
this	notion	in	the	implementation.	However,	this	approach	resulted	in	numerous
checks	to	detect	the	“no	selection”	condition	and	handle	it	specially.

The	 selection	 handling	 code	 can	 be	 simplified	 by	 eliminating	 the	 “no
selection”	 special	 case,	 so	 that	 the	 selection	 always	 exists.	 When	 there	 is	 no
selection	 visible	 on	 the	 screen,	 it	 can	 be	 represented	 internally	with	 an	 empty
selection,	whose	starting	and	ending	positions	are	the	same.	With	this	approach,
the	 selection	 management	 code	 can	 be	 written	 without	 any	 checks	 for	 “no
selection”.	When	copying	the	selection,	if	the	selection	is	empty	then	0	bytes	will
be	inserted	at	the	new	location	(if	implemented	correctly,	there	will	be	no	need	to
check	for	0	bytes	as	a	special	case).	Similarly,	it	should	be	possible	to	design	the
code	 for	 deleting	 the	 selection	 so	 that	 the	 empty	 case	 is	 handled	 without	 any
special-case	 checks.	 Consider	 a	 selection	 all	 on	 a	 single	 line.	 To	 delete	 the
selection,	extract	the	portion	of	the	line	preceding	the	selection	and	concatenate
it	with	the	portion	of	the	line	following	the	selection	to	form	the	new	line.	If	the
selection	is	empty,	this	approach	will	regenerate	the	original	line.

This	 example	also	 illustrates	 the	“different	 layer,	different	 abstraction”	 idea
from	Chapter	7.	The	notion	of	“no	selection”	makes	sense	 in	 terms	of	how	the
user	 thinks	about	 the	application’s	 interface,	but	 that	doesn’t	mean	 it	has	 to	be
represented	 explicitly	 inside	 the	 application.	 Having	 a	 selection	 that	 always
exists,	 but	 is	 sometimes	 empty	 and	 thus	 invisible,	 results	 in	 a	 simpler
implementation.

10.10		Taking	it	too	far
Defining	away	exceptions,	or	masking	them	inside	a	module,	only	makes	sense	if
the	exception	information	isn’t	needed	outside	the	module.	This	was	true	for	the

examples	 in	 this	 chapter,	 such	 the	Tcl	unset	 command	 and	 the	 Java	substring
method;	 in	 the	 rare	 situations	 where	 a	 caller	 cares	 about	 the	 special	 cases
detected	by	the	exceptions,	there	are	other	ways	for	it	to	get	this	information.

However,	 it	 is	 possible	 to	 take	 this	 idea	 too	 far.	 In	 a	 module	 for	 network
communication,	a	student	team	masked	all	network	exceptions:	if	a	network	error
occurred,	 the	module	caught	 it,	discarded	 it,	 and	continued	as	 if	 there	were	no
problem.	This	meant	that	applications	using	the	module	had	no	way	to	find	out	if
messages	 were	 lost	 or	 a	 peer	 server	 failed;	 without	 this	 information,	 it	 was
impossible	to	build	robust	applications.	In	this	case,	it	is	essential	for	the	module
to	 expose	 the	 exceptions,	 even	 though	 they	 add	 complexity	 to	 the	 module’s
interface.

With	 exceptions,	 as	 with	 many	 other	 areas	 in	 software	 design,	 you	 must
determine	 what	 is	 important	 and	 what	 is	 not	 important.	 Things	 that	 are	 not
important	 should	 be	 hidden,	 and	 the	 more	 of	 them	 the	 better.	 But	 when
something	is	important,	it	must	be	exposed.

10.11		Conclusion
Special	 cases	 of	 any	 form	 make	 code	 harder	 to	 understand	 and	 increase	 the
likelihood	 of	 bugs.	 This	 chapter	 focused	 on	 exceptions,	 which	 are	 one	 of	 the
most	significant	 sources	of	special-case	code,	and	discussed	how	to	 reduce	 the
number	of	places	where	exceptions	must	be	handled.	The	best	way	to	do	this	is
by	 redefining	semantics	 to	eliminate	error	conditions.	For	exceptions	 that	can’t
be	defined	away,	you	should	look	for	opportunities	to	mask	them	at	a	low	level,
so	their	impact	is	limited,	or	aggregate	several	special-case	handlers	into	a	single
more	generic	handler.	Together,	 these	 techniques	 can	have	a	 significant	 impact
on	overall	system	complexity.

1Ding	 Yuan	 et.	 al.,	 “Simple	 Testing	 Can	 Prevent	Most	 Critical	 Failures:	 An	 Analysis	 of	 Production
Failures	 in	Distributed	Data-Intensive	Systems,”	 2014	USENIX	Conference	 on	Operating	System	Design
and	Implementation.

Chapter	11

Design	it	Twice

Designing	software	is	hard,	so	it’s	unlikely	that	your	first	thoughts	about	how	to
structure	a	module	or	system	will	produce	the	best	design.	You’ll	end	up	with	a
much	 better	 result	 if	 you	 consider	 multiple	 options	 for	 each	 major	 design
decision:	design	it	twice.

Suppose	you	are	designing	the	class	that	will	manage	the	text	of	a	file	for	a
GUI	text	editor.	The	first	step	is	to	define	the	interface	that	the	class	will	present
to	 the	 rest	 of	 the	 editor;	 rather	 than	 picking	 the	 first	 idea	 that	 comes	 to	mind,
consider	 several	 possibilities.	 One	 choice	 is	 a	 line-oriented	 interface,	 with
operations	to	insert,	modify,	and	delete	whole	lines	of	text.	Another	option	is	an
interface	based	on	individual	character	insertions	and	deletions.	A	third	choice	is
a	string-oriented	interface,	which	operates	on	arbitrary	ranges	of	characters	that
may	 cross	 line	 boundaries.	 You	 don’t	 need	 to	 pin	 down	 every	 feature	 of	 each
alternative;	it’s	sufficient	at	this	point	to	sketch	out	a	few	of	the	most	important
methods.

Try	 to	 pick	 approaches	 that	 are	 radically	 different	 from	 each	 other;	 you’ll
learn	more	 that	way.	 Even	 if	 you	 are	 certain	 that	 there	 is	 only	 one	 reasonable
approach,	consider	a	second	design	anyway,	no	matter	how	bad	you	think	it	will
be.	It	will	be	instructive	to	think	about	the	weaknesses	of	that	design	and	contrast
them	with	the	features	of	other	designs.

After	you	have	roughed	out	the	designs	for	the	alternatives,	make	a	list	of	the
pros	and	cons	of	each	one.	The	most	important	consideration	for	an	interface	is
ease	of	use	for	higher	level	software.	In	the	example	above,	both	the	line-oriented
interface	and	the	character-oriented	interface	will	require	extra	work	in	software
that	 uses	 the	 text	 class.	 The	 line-oriented	 interface	 will	 require	 higher	 level
software	to	split	and	join	lines	during	partial-line	and	multi-line	operations	such
as	cutting	and	pasting	the	selection.	The	character-oriented	interface	will	require
loops	to	implement	operations	that	modify	more	than	a	single	character.	It	is	also
worth	considering	other	factors:

Does	one	alternative	have	a	simpler	interface	than	another?	In	the	text
example,	all	of	the	text	interfaces	are	relatively	simple.
Is	one	interface	more	general-purpose	than	another?
Does	one	interface	enable	a	more	efficient	implementation	than	another?	In
the	text	example,	the	character-oriented	approach	is	likely	to	be	significantly
slower	than	the	others,	because	it	requires	a	separate	call	into	the	text
module	for	each	character.
Once	you	have	compared	alternative	designs,	you	will	be	in	a	better	position

to	identify	the	best	design.	The	best	choice	may	be	one	of	the	alternatives,	or	you
may	discover	 that	you	can	combine	features	of	multiple	alternatives	 into	a	new
design	that	is	better	than	any	of	the	original	choices.

Sometimes	 none	 of	 the	 alternatives	 is	 particularly	 attractive;	 when	 this
happens,	see	if	you	can	come	up	with	additional	schemes.	Use	the	problems	you
identified	with	 the	original	alternatives	 to	drive	 the	new	design(s).	 If	you	were
designing	 the	 text	 class	 and	 considered	 only	 the	 line-oriented	 and	 character-
oriented	approaches,	you	might	notice	 that	 each	of	 the	alternatives	 is	 awkward
because	 it	 requires	 higher	 level	 software	 to	 perform	 additional	 text
manipulations.	 That’s	 a	 red	 flag:	 if	 there’s	 going	 to	 be	 a	 text	 class,	 it	 should
handle	 all	 of	 the	 text	 manipulation.	 In	 order	 to	 eliminate	 the	 additional	 text
manipulations,	 the	 text	 interface	 needs	 to	 match	 more	 closely	 the	 operations
happening	in	higher	level	software.	These	operations	don’t	always	correspond	to
single	 characters	 or	 single	 lines.	 This	 line	 of	 reasoning	 should	 lead	 you	 to	 a
range-oriented	 API	 for	 text,	 which	 eliminates	 the	 problem	 with	 the	 earlier
designs.

The	design-it-twice	principle	can	be	applied	at	many	levels	in	a	system.	For	a
module,	you	can	use	this	approach	first	to	pick	the	interface,	as	described	above.
Then	you	can	apply	it	again	when	you	are	designing	the	implementation:	for	the
text	 class,	 you	 might	 consider	 implementations	 such	 as	 a	 linked	 list	 of	 lines,
fixed-size	blocks	of	characters,	or	a	“gap	buffer.”	The	goals	will	be	different	for
the	 implementation	 than	 for	 the	 interface:	 for	 the	 implementation,	 the	 most
important	 things	 are	 simplicity	 and	 performance.	 It’s	 also	 useful	 to	 explore
multiple	designs	at	higher	 levels	 in	 the	system,	such	as	when	choosing	features
for	a	user	interface,	or	when	decomposing	a	system	into	major	modules.	In	each
case,	 it’s	 easier	 to	 identify	 the	 best	 approach	 if	 you	 can	 compare	 a	 few
alternatives.

Designing	 it	 twice	 does	 not	 need	 to	 take	 a	 lot	 of	 extra	 time.	 For	 a	 smaller

Designing	 it	 twice	 does	 not	 need	 to	 take	 a	 lot	 of	 extra	 time.	 For	 a	 smaller
module	such	as	a	class,	you	may	not	need	more	than	an	hour	or	two	to	consider
alternatives.	This	is	a	small	amount	of	time	compared	to	the	days	or	weeks	you
will	spend	implementing	the	class.	The	initial	design	experiments	will	probably
result	in	a	significantly	better	design,	which	will	more	than	pay	for	the	time	spent
designing	 it	 twice.	 For	 larger	 modules	 you’ll	 spend	 more	 time	 in	 the	 initial
design	 explorations,	 but	 the	 implementation	 will	 also	 take	 longer,	 and	 the
benefits	of	a	better	design	will	also	be	higher.

I	have	noticed	that	the	design-it-twice	principle	is	sometimes	hard	for	really
smart	people	to	embrace.	When	they	are	growing	up,	smart	people	discover	that
their	first	quick	idea	about	any	problem	is	sufficient	for	a	good	grade;	there	is	no
need	to	consider	a	second	or	third	possibility.	This	makes	it	easy	to	develop	bad
work	 habits.	 However,	 as	 these	 people	 get	 older,	 they	 get	 promoted	 into
environments	with	harder	 and	harder	problems.	Eventually,	 everyone	 reaches	 a
point	where	your	first	ideas	are	no	longer	good	enough;	if	you	want	to	get	really
great	 results,	 you	 have	 to	 consider	 a	 second	 possibility,	 or	 perhaps	 a	 third,	 no
matter	 how	 smart	 you	 are.	 The	 design	 of	 large	 software	 systems	 falls	 in	 this
category:	no-one	is	good	enough	to	get	it	right	with	their	first	try.

Unfortunately,	I	often	see	smart	people	who	insist	on	implementing	the	first
idea	 that	 comes	 to	 mind,	 and	 this	 causes	 them	 to	 underperform	 their	 true
potential	 (it	 also	 makes	 them	 frustrating	 to	 work	 with).	 Perhaps	 they
subconsciously	believe	that	“smart	people	get	it	right	the	first	time,”	so	if	they	try
multiple	designs	it	would	mean	they	are	not	smart	after	all.	This	is	not	the	case.
It	isn’t	that	you	aren’t	smart;	it’s	that	the	problems	are	really	hard!	Furthermore,
that’s	a	good	thing:	it’s	much	more	fun	to	work	on	a	difficult	problem	where	you
have	 to	 think	 carefully,	 rather	 than	 an	 easy	 problem	 where	 you	 don’t	 have	 to
think	at	all.

The	 design-it-twice	 approach	 not	 only	 improves	 your	 designs,	 but	 it	 also
improves	 your	 design	 skills.	 The	 process	 of	 devising	 and	 comparing	 multiple
approaches	will	 teach	you	about	 the	 factors	 that	make	designs	better	or	worse.
Over	time,	this	will	make	it	easier	for	you	to	rule	out	bad	designs	and	hone	in	on
really	great	ones.

Chapter	12

Why	Write	Comments?	The	Four	Excuses

In-code	 documentation	 plays	 a	 crucial	 role	 in	 software	 design.	 Comments	 are
essential	 to	 help	 developers	 understand	 a	 system	 and	work	 efficiently,	 but	 the
role	of	comments	goes	beyond	this.	Documentation	also	plays	an	important	role
in	 abstraction;	 without	 comments,	 you	 can’t	 hide	 complexity.	 Finally,	 the
process	 of	 writing	 comments,	 if	 done	 correctly,	 will	 actually	 improve	 a
system’s	design.	Conversely,	a	good	software	design	loses	much	of	its	value	if	it
is	poorly	documented.

Unfortunately,	 this	 view	 is	 not	 universally	 shared.	A	 significant	 fraction	 of
production	code	contains	essentially	no	comments.	Many	developers	 think	 that
comments	are	a	waste	of	time;	others	see	the	value	in	comments,	but	somehow
never	 get	 around	 to	 writing	 them.	 Fortunately,	 many	 development	 teams
recognize	 the	value	of	 documentation,	 and	 it	 feels	 like	 the	prevalence	of	 these
teams	 is	 gradually	 increasing.	 However,	 even	 in	 teams	 that	 encourage
documentation,	comments	are	often	viewed	as	drudge	work	and	many	developers
don’t	 understand	 how	 to	 write	 them,	 so	 the	 resulting	 documentation	 is	 often
mediocre.	 Inadequate	 documentation	 creates	 a	 huge	 and	 unnecessary	 drag	 on
software	development.

In	 this	 chapter	 I	 will	 discuss	 the	 excuses	 developers	 use	 to	 avoid	 writing
comments,	and	the	reasons	why	comments	really	do	matter.	Chapter	13	will	then
describe	how	to	write	good	comments	and	 the	next	few	chapters	after	 that	will
discuss	 related	 issues	 such	 as	 choosing	 variable	 names	 and	 how	 to	 use
documentation	to	improve	a	system’s	design.	I	hope	these	chapters	will	convince
you	 of	 three	 things:	 good	 comments	 can	make	 a	 big	 difference	 in	 the	 overall
quality	of	software;	it	isn’t	hard	to	write	good	comments;	and	(this	may	be	hard
to	believe)	writing	comments	can	actually	be	fun.

When	 developers	 don’t	write	 comments,	 they	 usually	 justify	 their	 behavior
with	one	or	more	of	the	following	excuses:

“Good	code	is	self-documenting.”

“I	don’t	have	time	to	write	comments.”
“Comments	get	out	of	date	and	become	misleading.”
“The	comments	I	have	seen	are	all	worthless;	why	bother?”	In	the	sections
below	I	will	address	each	of	these	excuses	in	turn.

12.1		Good	code	is	self-documenting
Some	 people	 believe	 that	 if	 code	 is	 written	 well,	 it	 is	 so	 obvious	 that	 no
comments	 are	needed.	This	 is	 a	delicious	myth,	 like	 a	 rumor	 that	 ice	 cream	 is
good	for	your	health:	we’d	really	like	to	believe	it!	Unfortunately,	it’s	simply	not
true.	To	be	 sure,	 there	 are	 things	 you	 can	do	when	writing	 code	 to	 reduce	 the
need	 for	 comments,	 such	 as	 choosing	 good	 variable	 names	 (see	 Chapter	 14).
Nonetheless,	there	is	still	a	significant	amount	of	design	information	that	can’t	be
represented	in	code.	For	example,	only	a	small	part	of	a	class’s	interface,	such	as
the	signatures	of	its	methods,	can	be	specified	formally	in	the	code.	The	informal
aspects	 of	 an	 interface,	 such	 as	 a	 high-level	 description	 of	 what	 each	method
does	or	the	meaning	of	its	result,	can	only	be	described	in	comments.	There	are
many	other	examples	of	 things	 that	can’t	be	described	 in	 the	code,	 such	as	 the
rationale	for	a	particular	design	decision,	or	the	conditions	under	which	it	makes
sense	to	call	a	particular	method.

Some	developers	argue	that	if	others	want	to	know	what	a	method	does,	they
should	 just	 read	 the	 code	 of	 the	method:	 this	 will	 be	more	 accurate	 than	 any
comment.	 It’s	 possible	 that	 a	 reader	 could	 deduce	 the	 abstract	 interface	 of	 the
method	 by	 reading	 its	 code,	 but	 it	 would	 be	 time-consuming	 and	 painful.	 In
addition,	 if	 you	 write	 code	 with	 the	 expectation	 that	 users	 will	 read	 method
implementations,	you	will	try	to	make	each	method	as	short	as	possible,	so	that
it’s	easy	to	read.	If	the	method	does	anything	nontrivial,	you	will	break	it	up	into
several	smaller	methods.	This	will	result	in	a	large	number	of	shallow	methods.
Furthermore,	 it	 doesn’t	 really	 make	 the	 code	 easier	 to	 read:	 in	 order	 to
understand	 the	behavior	of	 the	 top-level	method,	 readers	will	 probably	need	 to
understand	 the	 behaviors	 of	 the	 nested	 methods.	 For	 large	 systems	 it	 isn’t
practical	for	users	to	read	the	code	to	learn	the	behavior.

Moreover,	comments	are	fundamental	to	abstractions.	Recall	from	Chapter	4
that	the	goal	of	abstractions	is	to	hide	complexity:	an	abstraction	is	a	simplified
view	of	an	entity,	which	preserves	essential	information	but	omits	details	that	can
safely	be	ignored.	If	users	must	read	the	code	of	a	method	in	order	to	use	it,
then	 there	 is	no	abstraction:	 all	 of	 the	 complexity	of	 the	method	 is	 exposed.

Without	 comments,	 the	 only	 abstraction	 of	 a	method	 is	 its	 declaration,	 which
specifies	 its	 name	 and	 the	 names	 and	 types	 of	 its	 arguments	 and	 results.	 The
declaration	 is	 missing	 too	 much	 essential	 information	 to	 provide	 a	 useful
abstraction	by	itself.	For	example,	a	method	to	extract	a	substring	might	have	two
arguments,	start	and	end,	indicating	the	range	of	characters	to	extract.	From	the
declaration	 alone,	 it	 isn’t	 possible	 to	 tell	 whether	 the	 extracted	 substring	 will
include	 the	 character	 indicated	 by	 end,	 or	 what	 happens	 if	 start	 >	 end.
Comments	 allow	 us	 to	 capture	 the	 additional	 information	 that	 callers	 need,
thereby	completing	the	simplified	view	while	hiding	implementation	details.	It’s
also	important	that	comments	are	written	in	a	human	language	such	as	English;
this	makes	them	less	precise	than	code,	but	it	provides	more	expressive	power,	so
we	 can	 create	 simple,	 intuitive	 descriptions.	 If	 you	want	 to	 use	 abstractions	 to
hide	complexity,	comments	are	essential.

12.2		I	don’t	have	time	to	write	comments
It’s	tempting	to	prioritize	comments	lower	than	other	development	tasks.	Given	a
choice	 between	 adding	 a	 new	 feature	 and	 documenting	 an	 existing	 feature,	 it
seems	logical	 to	choose	 the	new	feature.	However,	software	projects	are	almost
always	 under	 time	 pressure,	 and	 there	 will	 always	 be	 things	 that	 seem	 higher
priority	 than	 writing	 comments.	 Thus,	 if	 you	 allow	 documentation	 to	 be	 de-
prioritized,	you’ll	end	up	with	no	documentation.

The	counter-argument	to	this	excuse	is	the	investment	mindset	discussed	on
page	15.	 If	 you	want	 a	 clean	 software	 structure,	which	will	 allow	you	 to	work
efficiently	 over	 the	 long-term,	 then	you	must	 take	 some	 extra	 time	up	 front	 in
order	 to	 create	 that	 structure.	 Good	 comments	 make	 a	 huge	 difference	 in	 the
maintainability	of	software,	so	the	effort	spent	on	them	will	pay	for	itself	quickly.
Furthermore,	 writing	 comments	 needn’t	 take	 a	 lot	 of	 time.	 Ask	 yourself	 how
much	 of	 your	 development	 time	 you	 spend	 typing	 in	 code	 (as	 opposed	 to
designing,	compiling,	testing,	etc.),	assuming	you	don’t	include	any	comments;	I
doubt	that	 the	answer	is	more	than	10%.	Now	suppose	that	you	spend	as	much
time	typing	comments	as	typing	code;	 this	should	be	a	safe	upper	bound.	With
these	 assumptions,	writing	good	comments	won’t	 add	more	 than	about	10%	 to
your	development	time.	The	benefits	of	having	good	documentation	will	quickly
offset	this	cost.

Furthermore,	 many	 of	 the	 most	 important	 comments	 are	 those	 related	 to
abstractions,	 such	 as	 the	 top-level	 documentation	 for	 classes	 and	 methods.

Chapter	 15	 will	 argue	 that	 these	 comments	 should	 be	 written	 as	 part	 of	 the
design	 process,	 and	 that	 the	 act	 of	 writing	 the	 documentation	 serves	 as	 an
important	design	tool	that	improves	the	overall	design.	These	comments	pay	for
themselves	immediately.

12.3		Comments	get	out	of	date	and	become	misleading
Comments	do	sometimes	get	out	of	date,	but	this	need	not	be	a	major	problem	in
practice.	Keeping	documentation	up-to-date	does	not	require	an	enormous	effort.
Large	 changes	 to	 the	documentation	 are	 only	 required	 if	 there	 have	been	 large
changes	 to	 the	 code,	 and	 the	 code	 changes	 will	 take	 more	 time	 than	 the
documentation	changes.	Chapter	16	discusses	how	to	organize	documentation	so
that	it	is	as	easy	as	possible	to	keep	it	updated	after	code	modifications	(the	key
ideas	are	to	avoid	duplicated	documentation	and	keep	the	documentation	close	to
the	corresponding	code).	Code	reviews	provide	a	great	mechanism	for	detecting
and	fixing	stale	comments.

12.4		All	the	comments	I	have	seen	are	worthless
Of	the	four	excuses,	this	is	probably	the	one	with	the	most	merit.	Every	software
developer	 has	 seen	 comments	 that	 provide	 no	 useful	 information,	 and	 most
existing	 documentation	 is	 so-so	 at	 best.	 Fortunately,	 this	 problem	 is	 solvable;
writing	solid	documentation	is	not	hard,	once	you	know	how.	The	next	chapters
will	 lay	out	a	 framework	for	how	to	write	good	documentation	and	maintain	 it
over	time.

12.5		Benefits	of	well-written	comments
Now	 that	 I	 have	 discussed	 (and,	 hopefully,	 debunked)	 the	 arguments	 against
writing	 comments,	 let’s	 consider	 the	 benefits	 that	 you	 will	 get	 from	 good
comments.	The	overall	idea	behind	comments	is	to	capture	information	that
was	in	the	mind	of	the	designer	but	couldn’t	be	represented	in	the	code.	This
information	 ranges	 from	 low-level	 details,	 such	 as	 a	 hardware	 quirk	 that
motivates	a	particularly	 tricky	piece	of	code,	up	 to	high-level	concepts	 such	as
the	 rationale	 for	 a	 class.	 When	 other	 developers	 come	 along	 later	 to	 make
modifications,	 the	 comments	 will	 allow	 them	 to	 work	 more	 quickly	 and
accurately.	Without	 documentation,	 future	 developers	 will	 have	 to	 rederive	 or
guess	at	 the	developer’s	original	knowledge;	 this	will	 take	additional	 time,	and

there	 is	 a	 risk	 of	 bugs	 if	 the	 new	 developer	 misunderstands	 the	 original
designer’s	intentions.	Comments	are	valuable	even	when	the	original	designer	is
the	one	making	the	changes:	if	it	has	been	more	than	a	few	weeks	since	you	last
worked	 in	 a	 piece	 of	 code,	 you	will	 have	 forgotten	many	 of	 the	 details	 of	 the
original	design.

Chapter	 2	 described	 three	 ways	 in	 which	 complexity	 manifests	 itself	 in
software	systems:
Change	amplification:	a	seemingly	simple	change	requires	code
modifications	in	many	places.
Cognitive	load:	in	order	to	make	a	change,	the	developer	must	accumulate	a
large	amount	of	information.
Unknown	unknowns:	it	is	unclear	what	code	needs	to	be	modified,	or	what
information	must	be	considered	in	order	to	make	those	modifications.

Good	documentation	helps	with	the	last	two	of	these	issues.	Documentation	can
reduce	cognitive	load	by	providing	developers	with	the	information	they	need	to
make	changes	and	by	making	it	easy	for	developers	to	ignore	information	that	is
irrelevant.	Without	adequate	documentation,	developers	may	have	 to	 read	 large
amounts	of	code	to	reconstruct	what	was	in	the	designer’s	mind.	Documentation
can	also	reduce	the	unknown	unknowns	by	clarifying	the	structure	of	the	system,
so	that	it	is	clear	what	information	and	code	is	relevant	for	any	given	change.

Chapter	 2	 pointed	 out	 that	 the	 primary	 causes	 of	 complexity	 are
dependencies	and	obscurity.	Good	documentation	can	clarify	dependencies,	and
it	fills	in	gaps	to	eliminate	obscurity.

The	next	few	chapters	will	show	you	how	to	write	good	documentation.	They
will	also	discuss	how	to	integrate	documentation-writing	into	the	design	process
so	that	it	improves	the	design	of	your	software.

Chapter	13

Comments	Should	Describe	Things	that	Aren’t
Obvious	from	the	Code

The	reason	for	writing	comments	is	that	statements	in	a	programming	language
can’t	 capture	 all	 of	 the	 important	 information	 that	 was	 in	 the	 mind	 of	 the
developer	when	the	code	was	written.	Comments	record	this	information	so	that
developers	who	come	along	later	can	easily	understand	and	modify	the	code.	The
guiding	principle	for	comments	 is	 that	comments	should	describe	things	that
aren’t	obvious	from	the	code.

There	are	many	things	that	aren’t	obvious	from	the	code.	Sometimes	it’s	low-
level	details	that	aren’t	obvious.	For	example,	when	a	pair	of	indices	describe	a
range,	 it	 isn’t	obvious	whether	 the	elements	given	by	 the	 indices	are	 inside	 the
range	 or	 out.	 Sometimes	 it’s	 not	 clear	 why	 code	 is	 needed,	 or	 why	 it	 was
implemented	 in	 a	 particular	 way.	 Sometimes	 there	 are	 rules	 the	 developer
followed,	such	as	“always	invoke	a	before	b.”	You	might	be	able	to	guess	at	a	rule
by	looking	at	all	of	the	code,	but	this	is	painful	and	error-prone;	a	comment	can
make	the	rule	explicit	and	clear.

One	 of	 the	 most	 important	 reasons	 for	 comments	 is	 abstractions,	 which
include	 a	 lot	 of	 information	 that	 isn’t	 obvious	 from	 the	 code.	 The	 idea	 of	 an
abstraction	is	to	provide	a	simple	way	of	thinking	about	something,	but	code	is
so	detailed	that	it	can	be	hard	to	see	the	abstraction	just	from	reading	the	code.
Comments	 can	 provide	 a	 simpler,	 higher-level	 view	 (“after	 this	 method	 is
invoked,	network	traffic	will	be	limited	to	maxBandwidth	bytes	per	second”).	Even
if	 this	 information	can	be	deduced	by	reading	 the	code,	we	don’t	want	 to	 force
users	of	a	module	to	do	that:	reading	the	code	is	time-consuming	and	forces	them
to	consider	a	lot	of	information	that	isn’t	needed	to	use	the	module.	Developers
should	be	able	to	understand	the	abstraction	provided	by	a	module	without
reading	any	code	other	than	its	externally	visible	declarations.	The	only	way
to	do	this	is	by	supplementing	the	declarations	with	comments.

This	chapter	discusses	what	information	needs	to	be	described	in	comments
and	 how	 to	write	 good	 comments.	 As	 you	will	 see,	 good	 comments	 typically
explain	things	at	a	different	level	of	detail	than	the	code,	which	is	more	detailed
in	some	situations	and	less	detailed	(more	abstract)	in	others.

13.1		Pick	conventions
The	first	step	in	writing	comments	is	to	decide	on	conventions	for	commenting,
such	as	what	you	will	comment	and	the	format	you	will	use	for	comments.	If	you
are	programming	 in	 a	 language	 for	which	 there	 exists	 a	 document	 compilation
tool,	 such	as	 Javadoc	 for	 Java,	Doxygen	 for	C++,	or	godoc	 for	Go!,	 follow	 the
conventions	 of	 the	 tools.	 None	 of	 these	 conventions	 is	 perfect,	 but	 the	 tools
provide	 enough	 benefits	 to	 make	 up	 for	 that.	 If	 you	 are	 programming	 in	 an
environment	where	 there	are	no	existing	conventions	 to	follow,	 try	 to	adopt	 the
conventions	from	some	other	language	or	project	that	is	similar;	this	will	make	it
easier	for	other	developers	to	understand	and	adhere	to	your	conventions.

Conventions	serve	two	purposes.	First,	they	ensure	consistency,	which	makes
comments	 easier	 to	 read	 and	understand.	 Second,	 they	 help	 to	 ensure	 that	 you
actually	write	 comments.	 If	 you	don’t	 have	 a	 clear	 idea	what	 you	 are	 going	 to
comment	and	how,	it’s	easy	to	end	up	writing	no	comments	at	all.

Most	comments	fall	into	one	of	the	following	categories:
Interface:	a	comment	block	that	immediately	precedes	the	declaration	of	a
module	such	as	a	class,	data	structure,	function,	or	method.	The	comment
describe’s	the	module’s	interface.	For	a	class,	the	comment	describes	the
overall	abstraction	provided	by	the	class.	For	a	method	or	function,	the
comment	describes	its	overall	behavior,	its	arguments	and	return	value,	if	any,
any	side	effects	or	exceptions	that	it	generates,	and	any	other	requirements	the
caller	must	satisfy	before	invoking	the	method.
Data	structure	member:	a	comment	next	to	the	declaration	of	a	field	in	a	data
structure,	such	as	an	instance	variable	or	static	variable	for	a	class.
Implementation	comment:	a	comment	inside	the	code	of	a	method	or
function,	which	describes	how	the	code	works	internally.
Cross-module	comment:	a	comment	describing	dependencies	that	cross
module	boundaries.

The	most	important	comments	are	those	in	the	first	two	categories.	Every	class
should	have	an	interface	comment,	every	class	variable	should	have	a	comment,
and	 every	 method	 should	 have	 an	 interface	 comment.	 Occasionally,	 the

declaration	for	a	variable	or	method	is	so	obvious	that	there	is	nothing	useful	to
add	in	a	comment	(getters	and	setters	sometimes	fall	in	this	category),	but	this	is
rare;	it	is	easier	to	comment	everything	rather	than	spend	energy	worrying	about
whether	a	comment	is	needed.	Implementation	comments	are	often	unnecessary
(see	Section	13.6	below).	Cross-module	comments	are	 the	most	 rare	of	all	and
they	are	problematic	to	write,	but	when	they	are	needed	they	are	quite	important;
Section	13.7	discusses	them	in	more	detail.

13.2		Don’t	repeat	the	code
Unfortunately,	many	comments	 are	not	 particularly	helpful.	The	most	 common
reason	 is	 that	 the	 comments	 repeat	 the	 code:	 all	 of	 the	 information	 in	 the
comment	can	easily	be	deduced	 from	 the	code	next	 to	 the	comment.	Here	 is	a
code	sample	that	appeared	in	a	recent	research	paper:
ptr_copy	=	get_copy(obj) #	Get	pointer	copy
if	is_unlocked(ptr_copy): #	Is	obj	free?
				return	obj #	return	current	obj
if	is_copy(ptr_copy): #	Already	a	copy?
				return	obj #	return	obj
thread_id	=	get_thread_id(ptr_copy)
if	thread_id	==	ctx.thread_id: #	Locked	by	current	ctx
				return	ptr_copy #	Return	copy

There	is	no	useful	information	in	any	of	these	comments	except	for	the	“Locked
by”	 comment,	 which	 suggests	 something	 about	 the	 thread	 that	 might	 not	 be
obvious	from	the	code.	Notice	that	these	comments	are	at	roughly	the	same	level
of	detail	as	the	code:	there	is	one	comment	per	line	of	code,	which	describes	that
line.	Comments	like	this	are	rarely	useful.

Here	are	more	examples	of	comments	that	repeat	the	code:
//	Add	a	horizontal	scroll	bar

hScrollBar	=	new	JScrollBar(JScrollBar.HORIZONTAL);

add(hScrollBar,	BorderLayout.SOUTH);

//	Add	a	vertical	scroll	bar

vScrollBar	=	new	JScrollBar(JScrollBar.VERTICAL);

add(vScrollBar,	BorderLayout.EAST);

//	Initialize	the	caret-position	related	values

caretX					=	0;

caretY					=	0;

caretMemX		=	null;

None	of	these	comments	provide	any	value.	For	the	first	two	comments,	the	code
is	already	clear	enough	that	it	doesn’t	really	need	comments;	in	the	third	case,	a
comment	 might	 be	 useful,	 but	 the	 current	 comment	 doesn’t	 provide	 enough
detail	to	be	helpful.

After	you	have	written	a	comment,	ask	yourself	the	following	question:	could
someone	who	has	never	seen	the	code	write	the	comment	just	by	looking	at	the
code	next	to	the	comment?	If	the	answer	is	yes,	as	in	the	examples	above,	then
the	 comment	 doesn’t	make	 the	 code	 any	 easier	 to	 understand.	 Comments	 like
these	are	why	some	people	think	that	comments	are	worthless.

Another	 common	 mistake	 is	 to	 use	 the	 same	 words	 in	 the	 comment	 that
appear	in	the	name	of	the	entity	being	documented:
/*

	*	Obtain	a	normalized	resource	name	from	REQ.
	*/
private	static	String[]	getNormalizedResourceNames(

												HTTPRequest	req)	...

/*

	*	Downcast	PARAMETER	to	TYPE.
	*/
private	static	Object	downCastParameter(String	parameter,	String	type)

...

/*

	*	The	horizontal	padding	of	each	line	in	the	text.
	*/
private	static	final	int	textHorizontalPadding	=	4;

These	comments	just	take	the	words	from	the	method	or	variable	name,	perhaps
add	a	few	words	from	argument	names	and	types,	and	form	them	into	a	sentence.
For	example,	the	only	thing	in	the	second	comment	that	isn’t	in	the	code	is	the
word	“to”!	Once	again,	 these	comments	could	be	written	just	by	looking	at	 the
declarations,	 without	 any	 understanding	 the	 methods	 of	 variables;	 as	 a	 result,
they	have	no	value.

	Red	Flag:	Comment	Repeats	Code	
If	the	information	in	a	comment	is	already	obvious	from	the	code	next	to	the
comment,	 then	 the	 comment	 isn’t	 helpful.	One	 example	 of	 this	 is	when	 the
comment	 uses	 the	 same	 words	 that	 make	 up	 the	 name	 of	 the	 thing	 it	 is
describing.

At	 the	 same	 time,	 there	 is	 important	 information	 that	 is	 missing	 from	 the
comments:	for	example,	what	is	a	“normalized	resource	name”,	and	what	are	the
elements	 of	 the	 array	 returned	 by	 getNormalizedResourceNames?	 What	 does
“downcast”	mean?	What	are	the	units	of	padding,	and	is	the	padding	on	one	side
of	each	line	or	both?	Describing	these	things	in	comments	would	be	helpful.

A	first	step	towards	writing	good	comments	is	to	use	different	words	in	the
comment	 from	those	 in	 the	name	of	 the	entity	being	described.	 Pick	words
for	 the	 comment	 that	 provide	 additional	 information	 about	 the	meaning	 of	 the
entity,	rather	than	just	repeating	its	name.	For	example,	here	is	a	better	comment
for	textHorizontalPadding:
/*

	*	The	amount	of	blank	space	to	leave	on	the	left	and
	*	right	sides	of	each	line	of	text,	in	pixels.
	*/
private	static	final	int	textHorizontalPadding	=	4;

This	 comment	 provides	 additional	 information	 that	 is	 not	 obvious	 from	 the
declaration	 itself,	such	as	 the	units	 (pixels)	and	 the	fact	 that	padding	applies	 to
both	 sides	 of	 each	 line.	 Instead	 of	 using	 the	 term	 “padding”,	 the	 comment
explains	what	padding	is,	in	case	the	reader	isn’t	already	familiar	with	the	term.

13.3		Lower-level	comments	add	precision
Now	that	you	know	what	not	to	do,	let’s	discuss	what	information	you	should	put
in	 comments.	Comments	 augment	 the	 code	 by	 providing	 information	 at	 a
different	level	of	detail.	Some	comments	provide	 information	at	a	 lower,	more
detailed,	 level	 than	 the	 code;	 these	 comments	 add	 precision	 by	 clarifying	 the
exact	 meaning	 of	 the	 code.	 Other	 comments	 provide	 information	 at	 a	 higher,
more	 abstract,	 level	 than	 the	 code;	 these	 comments	offer	 intuition,	 such	 as	 the

reasoning	behind	the	code,	or	a	simpler	and	more	abstract	way	of	thinking	about
the	code.	Comments	at	the	same	level	as	the	code	are	likely	to	repeat	the	code.
This	 section	 discusses	 the	 lower-level	 approach	 in	 more	 detail,	 and	 the	 next
section	discusses	the	higher-level	approach.

Precision	 is	 most	 useful	 when	 commenting	 variable	 declarations	 such	 as
class	 instance	 variables,	 method	 arguments,	 and	 return	 values.	 The	 name	 and
type	in	a	variable	declaration	are	typically	not	very	precise.	Comments	can	fill	in
missing	details	such	as:

What	are	the	units	for	this	variable?
Are	the	boundary	conditions	inclusive	or	exclusive?
If	a	null	value	is	permitted,	what	does	it	imply?
If	a	variable	refers	to	a	resource	that	must	eventually	be	freed	or	closed,	who
is	responsible	for	freeing	or	closing	it?
Are	there	certain	properties	that	are	always	true	for	the	variable	(invariants),
such	as	“this	list	always	contains	at	least	one	entry”?

Some	of	this	information	could	potentially	be	figured	out	by	examining	all	of	the
code	 where	 the	 variable	 is	 used.	 However,	 this	 is	 time-consuming	 and	 error-
prone;	the	declaration’s	comment	should	be	clear	and	complete	enough	to	make
this	unnecessary.	When	I	say	that	the	comment	for	a	declaration	should	describe
things	that	aren’t	obvious	from	the	code,	“the	code”	refers	to	the	code	next	to	the
comment	(the	declaration),	not	“all	of	the	code	in	the	application.”

The	 most	 common	 problem	 with	 comments	 for	 variables	 is	 that	 the
comments	are	too	vague.	Here	are	two	examples	of	comments	that	aren’t	precise
enough:
//	Current	offset	in	resp	Buffer

uint32_t	offset;

//	Contains	all	line-widths	inside	the	document	and

//	number	of	appearances.

private	TreeMap<Integer,	Integer>	lineWidths;

In	the	first	example,	it’s	not	clear	what	“current”	means.	In	the	second	example,
it’s	 not	 clear	 that	 the	 keys	 in	 the	 TreeMap	 are	 line	 widths	 and	 values	 are
occurrence	 counts.	 Also,	 are	 widths	 measured	 in	 pixels	 or	 characters?	 The
revised	comments	below	provide	additional	details:
//		Position	in	this	buffer	of	the	first	object	that	hasn't

//		been	returned	to	the	client.

uint32_t	offset;

//		Holds	statistics	about	line	lengths	of	the	form	<length,	count>

//		where	length	is	the	number	of	characters	in	a	line	(including

//		the	newline),	and	count	is	the	number	of	lines	with

//		exactly	that	many	characters.	If	there	are	no	lines	with

//		a	particular	length,	then	there	is	no	entry	for	that	length.

private	TreeMap<Integer,	Integer>	numLinesWithLength;

The	second	declaration	uses	a	longer	name	that	conveys	more	information.	It	also
changes	 “width”	 to	 “length”,	 because	 this	 term	 is	more	 likely	 to	make	 people
think	 that	 the	 units	 are	 characters	 rather	 than	 pixels.	 Notice	 that	 the	 second
comment	documents	not	only	the	details	of	each	entry,	but	also	what	it	means	if
an	entry	is	missing.

When	documenting	a	variable,	think	nouns,	not	verbs.	In	other	words,	focus
on	 what	 the	 variable	 represents,	 not	 how	 it	 is	 manipulated.	 Consider	 the
following	comment:
/*	FOLLOWER	VARIABLE:	indicator	variable	that	allows	the	Receiver	and

the

	*	PeriodicTasks	thread	to	communicate	about	whether	a	heartbeat	has
been

	*	received	within	the	follower's	election	timeout	window.
	*	Toggled	to	TRUE	when	a	valid	heartbeat	is	received.
	*	Toggled	to	FALSE	when	the	election	timeout	window	is	reset.		*/
private	boolean	receivedValidHeartbeat;

This	documentation	describes	how	the	variable	is	modified	by	several	pieces	of
code	 in	 the	 class.	 The	 comment	 will	 be	 both	 shorter	 and	 more	 useful	 if	 it
describes	what	the	variable	represents	rather	than	mirroring	the	code	structure:
/*	True	means	that	a	heartbeat	has	been	received	since	the	last	time

	*	the	election	timer	was	reset.	Used	for	communication	between	the
	*	Receiver	and	PeriodicTasks	threads.		*/
private	boolean	receivedValidHeartbeat;

Given	this	documentation,	it’s	easy	to	infer	that	the	variable	must	be	set	to	true
when	a	heartbeat	is	received	and	false	when	the	election	timer	is	reset.

13.4		Higher-level	comments	enhance	intuition

The	second	way	in	which	comments	can	augment	code	is	by	providing	intuition.

The	second	way	in	which	comments	can	augment	code	is	by	providing	intuition.
These	 comments	 are	written	 at	 a	higher	 level	 than	 the	 code.	They	omit	details
and	 help	 the	 reader	 to	 understand	 the	 overall	 intent	 and	 structure	 of	 the	 code.
This	approach	is	commonly	used	for	comments	inside	methods,	and	for	interface
comments.	For	example,	consider	the	following	code:
//	If	there	is	a	LOADING	readRpc	using	the	same	session

//	as	PKHash	pointed	to	by	assignPos,	and	the	last	PKHash

//	in	that	readRPC	is	smaller	than	current	assigning

//	PKHash,	then	we	put	assigning	PKHash	into	that	readRPC.

int	readActiveRpcId	=	RPC_ID_NOT_ASSIGNED;

for	(int	i	=	0;	i	<	NUM_READ_RPC;	i++)	{

						if	(session	==	readRpc[i].session
																	&&	readRpc[i].status	==	LOADING
																	&&	readRpc[i].maxPos	<	assignPos
																	&&	readRpc[i].numHashes	<	MAX_PKHASHES_PERRPC)	{
										readActiveRpcId	=	i;
										break;
						}
}

The	comment	is	too	low-level	and	detailed.	On	the	one	hand,	it	partially	repeats
the	 code:	 “if	 there	 is	 a	 LOADING	 readRPC”	 just	 duplicates	 the	 test
readRpc[i].status	==	LOADING.	On	the	other	hand,	the	comment	doesn’t	explain
the	overall	purpose	of	this	code,	or	how	it	fits	into	the	method	that	contains	it.	As
a	result,	the	comment	doesn’t	help	the	reader	to	understand	the	code.

Here	is	a	better	comment:
//	Try	to	append	the	current	key	hash	onto	an	existing

//	RPC	to	the	desired	server	that	hasn't	been	sent	yet.

This	comment	doesn’t	contain	any	details;	instead,	it	describes	the	code’s	overall
function	at	a	higher	level.	With	this	high-level	information,	a	reader	can	explain
almost	everything	that	happens	in	the	code:	the	loop	must	be	iterating	over	all	the
existing	remote	procedure	calls	(RPCs);	the	session	test	is	probably	used	to	see
if	a	particular	RPC	is	destined	for	the	right	server;	the	LOADING	test	suggests	that
RPCs	 can	 have	 multiple	 states,	 and	 in	 some	 states	 it	 isn’t	 safe	 to	 add	 more
hashes;	 the	 MAX	 -	 PKHASHES_PERRPC	 test	 suggests	 that	 there	 is	 a	 limit	 to	 how
many	hashes	can	be	sent	 in	a	single	RPC.	The	only	 thing	not	explained	by	 the
comment	is	the	maxPos	test.	Furthermore,	the	new	comment	provides	a	basis	for

readers	 to	 judge	 the	 code:	 does	 it	 do	 everything	 that	 is	 needed	 to	 add	 the	 key
hash	to	an	existing	RPC?	The	original	comment	didn’t	describe	the	overall	intent
of	 the	 code,	 so	 it’s	 hard	 for	 a	 reader	 to	 decide	 whether	 the	 code	 is	 behaving
correctly.

Higher-level	comments	are	more	difficult	to	write	than	lower-level	comments
because	you	must	think	about	the	code	in	a	different	way.	Ask	yourself:	What	is
this	 code	 trying	 to	 do?	What	 is	 the	 simplest	 thing	 you	 can	 say	 that	 explains
everything	in	the	code?	What	is	the	most	important	thing	about	this	code?

Engineers	 tend	 to	 be	 very	 detail-oriented.	We	 love	 details	 and	 are	 good	 at
managing	 lots	 of	 them;	 this	 is	 essential	 for	 being	 a	 good	 engineer.	 But,	 great
software	designers	can	also	step	back	from	the	details	and	think	about	a	system
at	 a	 higher	 level.	 This	 means	 deciding	 which	 aspects	 of	 the	 system	 are	 most
important,	 and	 being	 able	 to	 ignore	 the	 low-level	 details	 and	 think	 about	 the
system	only	in	terms	of	its	most	fundamental	characteristics.	This	is	the	essence
of	 abstraction	 (finding	 a	 simple	way	 to	 think	 about	 a	 complex	 entity),	 and	 it’s
also	what	you	must	do	when	writing	higher-level	comments.	A	good	higher-level
comment	 expresses	 one	 or	 a	 few	 simple	 ideas	 that	 provide	 a	 conceptual
framework,	 such	 as	 “append	 to	 an	 existing	 RPC.”	 Given	 the	 framework,	 it
becomes	easy	to	see	how	specific	code	statements	relate	to	the	overall	goal.

Here	is	another	code	sample,	which	has	a	good	higher-level	comment:
if		(numProcessedPKHashes	<	readRpc[i].numHashes)	{

							//	Some	of	the	key	hashes	couldn't	be	looked	up	in
							//	this	request	(either	because	they	aren't	stored
							//	on	the	server,	the	server	crashed,	or	there
							//	wasn't	enough	space	in	the	response	message).
							//	Mark	the	unprocessed	hashes	so	they	will	get
							//	reassigned	to	new	RPCs.
							for	(size_t	p	=	removePos;	p	<	insertPos;	p++)	{
														if		(activeRpcId[p]	==	i)	{
																					if		(numProcessedPKHashes	>	0)	{
																											numProcessedPKHashes--;
																					}	else	{
																											if		(p	<	assignPos)
																																assignPos	=	p;
																											activeRpcId[p]	=	RPC_ID_NOT_ASSIGNED;

																					}
														}
							}
}

This	 comment	 does	 two	 things.	 The	 second	 sentence	 provides	 an	 abstract
description	of	what	the	code	does.	The	first	sentence	is	different:	it	explains	(in
high	level	terms)	why	the	code	is	executed.	Comments	of	the	form	“how	we	get
here”	are	very	useful	for	helping	people	to	understand	code.	For	example,	when
documenting	a	method,	 it	 can	be	very	helpful	 to	describe	 the	conditions	under
which	the	method	is	most	likely	to	be	invoked	(especially	if	the	method	is	only
invoked	in	unusual	situations).

13.5		Interface	documentation
One	of	 the	most	 important	 roles	 for	comments	 is	 to	define	abstractions.	Recall
from	 Chapter	 4	 that	 an	 abstraction	 is	 a	 simplified	 view	 of	 an	 entity,	 which
preserves	essential	information	but	omits	details	that	can	safely	be	ignored.	Code
isn’t	 suitable	 for	 describing	 abstractions;	 it’s	 too	 low	 level	 and	 it	 includes
implementation	details	that	shouldn’t	be	visible	in	the	abstraction.	The	only	way
to	 describe	 an	 abstraction	 is	with	 comments.	 If	 you	want	 code	 that	 presents
good	abstractions,	you	must	document	those	abstractions	with	comments.

The	first	step	in	documenting	abstractions	is	to	separate	interface	comments
from	 implementation	 comments.	 Interface	 comments	 provide	 information	 that
someone	 needs	 to	 know	 in	 order	 to	 use	 a	 class	 or	 method;	 they	 define	 the
abstraction.	 Implementation	 comments	 describe	 how	 a	 class	 or	 method	 works
internally	in	order	to	implement	the	abstraction.	It’s	important	to	separate	these
two	 kinds	 of	 comments,	 so	 that	 users	 of	 an	 interface	 are	 not	 exposed	 to
implementation	details.	Furthermore,	these	two	forms	had	better	be	different.	If
interface	comments	must	also	describe	the	implementation,	then	the	class	or
method	 is	 shallow.	 This	means	 that	 the	 act	 of	writing	 comments	 can	 provide
clues	about	the	quality	of	a	design;	Chapter	15	will	return	to	this	idea.

The	 interface	 comment	 for	 a	 class	 provides	 a	 high-level	 description	 of	 the
abstraction	provided	by	the	class,	such	as	the	following:
/**

	*	This	class	implements	a	simple	server-side	interface	to	the	HTTP
	*	protocol:	by	using	this	class,	an	application	can	receive	HTTP

	*	requests,	process	them,	and	return	responses.	Each	instance	of
	*	this	class	corresponds	to	a	particular	socket	used	to	receive
	*	requests.	The	current	implementation	is	single-threaded	and
	*	processes	one	request	at	a	time.
	*/
public	class	Http	{...}

This	 comment	 describes	 the	 overall	 capabilities	 of	 the	 class,	 without	 any
implementation	 details	 or	 even	 the	 specifics	 of	 particular	 methods.	 It	 also
describes	 what	 each	 instance	 of	 the	 class	 represents.	 Finally,	 the	 comments
describe	the	limitations	of	the	class	(it	does	not	support	concurrent	access	from
multiple	threads),	which	may	be	important	to	developers	contemplating	whether
to	use	it.

The	 interface	comment	 for	a	method	 includes	both	higher-level	 information
for	abstraction	and	lower-level	details	for	precision:

The	comment	usually	starts	with	a	sentence	or	two	describing	the	behavior
of	the	method	as	perceived	by	callers;	this	is	the	higher-level	abstraction.
The	comment	must	describe	each	argument	and	the	return	value	(if	any).
These	comments	must	be	very	precise,	and	must	describe	any	constraints	on
argument	values	as	well	as	dependencies	between	arguments.
If	the	method	has	any	side	effects,	these	must	be	documented	in	the
interface	comment.	A	side	effect	is	any	consequence	of	the	method	that
affects	the	future	behavior	of	the	system	but	is	not	part	of	the	result.	For
example,	if	the	method	adds	a	value	to	an	internal	data	structure,	which	can
be	retrieved	by	future	method	calls,	this	is	a	side	effect;	writing	to	the	file
system	is	also	a	side	effect.
A	method’s	interface	comment	must	describe	any	exceptions	that	can
emanate	from	the	method.
If	there	are	any	preconditions	that	must	be	satisfied	before	a	method	is
invoked,	these	must	be	described	(perhaps	some	other	method	must	be
invoked	first;	for	a	binary	search	method,	the	list	being	searched	must	be
sorted).	It	is	a	good	idea	to	minimize	preconditions,	but	any	that	remain
must	be	documented.
Here	is	the	interface	comment	for	a	method	that	copies	data	out	of	a	Buffer

object:
/**

	*	Copy	a	range	of	bytes	from	a	buffer	to	an	external	location.

	*
	*	\param	offset
	*								Index	within	the	buffer	of	the	first	byte	to	copy.
	*	\param	length
	*								Number	of	bytes	to	copy.
	*	\param	dest
	*								Where	to	copy	the	bytes:	must	have	room	for	at	least
	*								length	bytes.
	*
	*	\return
	*								The	return	value	is	the	actual	number	of	bytes	copied,
	*								which	may	be	less	than	length	if	the	requested	range	of
	*								bytes	extends	past	the	end	of	the	buffer.	0	is	returned
	*								if	there	is	no	overlap	between	the	requested	range	and
	*								the	actual	buffer.
	*/
uint32_t

Buffer::copy(uint32_t	offset,	uint32_t	length,	void*	dest)

...

The	syntax	of	this	comment	(e.g.,	\return)	follows	the	conventions	of	Doxygen,
a	program	that	extracts	comments	from	C/C++	code	and	compiles	them	into	Web
pages.	 The	 goal	 of	 the	 comment	 is	 to	 provide	 all	 the	 information	 a	 developer
needs	 in	 order	 to	 invoke	 the	method,	 including	 how	 special	 cases	 are	 handled
(note	 how	 this	 method	 follows	 the	 advice	 of	 Chapter	 10	 and	 defines	 out	 of
existence	 any	 errors	 associated	 with	 the	 range	 specification).	 The	 developer
should	 not	 need	 to	 read	 the	 body	 of	 the	method	 in	 order	 to	 invoke	 it,	 and	 the
interface	 comment	 provides	 no	 information	 about	 how	 the	 method	 is
implemented,	such	as	how	it	scans	its	internal	data	structures	to	find	the	desired
data.

For	 a	 more	 extended	 example,	 let’s	 consider	 a	 class	 called	 IndexLookup,
which	 is	 part	 of	 a	 distributed	 storage	 system.	 The	 storage	 system	 holds	 a
collection	of	tables,	each	of	which	contains	many	objects.	In	addition,	each	table
can	have	one	or	more	indexes;	each	index	provides	efficient	access	to	objects	in
the	table	based	on	a	particular	field	of	the	object.	For	example,	one	index	might
be	used	to	look	up	objects	based	on	their	name	field,	and	another	index	might	be

used	to	look	up	objects	based	on	their	age	field.	With	these	indexes,	applications
can	quickly	extract	all	of	the	objects	with	a	particular	name,	or	all	of	those	with
an	age	in	a	given	range.

The	 IndexLookup	 class	 provides	 a	 convenient	 interface	 for	 performing
indexed	lookups.	Here	is	an	example	of	how	it	might	be	used	in	an	application:
query	=	new	IndexLookup(table,	index,	key1,	key2);

while		(true)	{

								object	=	query.getNext();
								if		(object	==	NULL)	{
														break;
								}
								...	process	object	...
}

The	 application	 first	 constructs	 an	 object	 of	 type	 IndexLookup,	 providing
arguments	 that	 select	 a	 table,	 an	 index,	 and	 a	 range	 within	 the	 index	 (for
example,	if	the	index	is	based	on	an	age	field,	key1	and	key2	might	be	specified
as	 21	 and	 65	 to	 select	 all	 objects	 with	 ages	 between	 those	 values).	 Then	 the
application	 calls	 the	 getNext	 method	 repeatedly.	 Each	 invocation	 returns	 one
object	 that	falls	within	the	desired	range;	once	all	of	 the	matching	objects	have
been	returned,	getNext	 returns	NULL.	Because	 the	 storage	 system	 is	 distributed,
the	 implementation	 of	 this	 class	 is	 somewhat	 complex.	 The	 objects	 in	 a	 table
may	be	 spread	across	multiple	 servers,	 and	each	 index	may	also	be	distributed
across	 a	 different	 set	 of	 servers;	 the	 code	 in	 the	 IndexLookup	 class	 must	 first
communicate	with	all	of	 the	relevant	 index	servers	 to	collect	 information	about
the	objects	in	the	range,	then	it	must	communicate	with	the	servers	that	actually
store	the	objects	in	order	to	retrieve	their	values.

Now	 let’s	 consider	 what	 information	 needs	 to	 be	 included	 in	 the	 interface
comment	for	this	class.	For	each	piece	of	information	given	below,	ask	yourself
whether	a	developer	needs	to	know	that	information	in	order	to	use	the	class	(my
answers	to	the	questions	are	at	the	end	of	the	chapter):

1. The	 format	 of	messages	 that	 the	 IndexLookup	 class	 sends	 to	 the	 servers
holding	indexes	and	objects.

2. The	 comparison	 function	 used	 to	 determine	 whether	 a	 particular	 object
falls	in	the	desired	range	(is	comparison	done	using	integers,	floating-point
numbers,	or	strings?).

3. The	data	structure	used	to	store	indexes	on	servers.
4. Whether	 or	 not	IndexLookup	 issues	multiple	 requests	 to	 different	 servers
concurrently.

5. The	mechanism	for	handling	server	crashes.
Here	 is	 the	 original	 version	 of	 the	 interface	 comment	 for	 the	 IndexLookup

class;	the	excerpt	also	includes	a	few	lines	from	the	class’s	definition,	which	are
referred	to	in	the	comment:
/*

	*	This	class	implements	the	client	side	framework	for	index	range
	*	lookups.	It	manages	a	single	LookupIndexKeys	RPC	and	multiple
	*	IndexedRead	RPCs.	Client	side	just	includes	"IndexLookup.h"	in
	*	its	header	to	use	IndexLookup	class.	Several	parameters	can	be	set
	*	in	the	config	below:
	*	-	The	number	of	concurrent	indexedRead	RPCs
	*	-	The	max	number	of	PKHashes	a	indexedRead	RPC	can	hold	at	a	time
	*	-	The	size	of	the	active	PKHashes
	*
	*	To	use	IndexLookup,	the	client	creates	an	object	of	this	class	by
	*	providing	all	necessary	information.	After	construction	of
	*	IndexLookup,	client	can	call	getNext()	function	to	move	to	next
	*	available	object.	If	getNext()	returns	NULL,	it	means	we	reached
	*	the	last	object.	Client	can	use	getKey,	getKeyLength,	getValue,
	*	and	getValueLength	to	get	object	data	of	current	object.
	*/
	class	IndexLookup	{
							...
			private:
							///	Max	number	of	concurrent	indexedRead	RPCs
							static	const	uint8_t	NUM_READ_RPC	=	10;
							///	Max	number	of	PKHashes	that	can	be	sent	in	one
							///	indexedRead	RPC
							static	const	uint32_t	MAX_PKHASHES_PERRPC	=	256;
							///	Max	number	of	PKHashes	that	activeHashes	can
							///	hold	at	once.

							static	const	size_t	MAX_NUM_PK	=	(1	<<	LG_BUFFER_SIZE);
	}

Before	reading	further,	see	if	you	can	identify	the	problems	with	this	comment.
Here	are	the	problems	that	I	found:

Most	of	the	first	paragraph	concerns	the	implementation,	not	the	interface.
As	one	example,	users	don’t	need	to	know	the	names	of	the	particular
remote	procedure	calls	used	to	communicate	with	the	servers.	The
configuration	parameters	referred	to	in	the	second	half	of	the	first	paragraph
are	all	private	variables	that	are	relevant	only	to	the	maintainer	of	the	class,
not	to	its	users.	All	of	this	implementation	information	should	be	omitted
from	the	comment.
The	comment	also	includes	several	things	that	are	obvious.	For	example,
there’s	no	need	to	tell	users	to	include	IndexLookup.h:	anyone	who	writes
C++	code	will	be	able	to	guess	that	this	is	necessary.	In	addition,	the	text
“by	providing	all	necessary	information”	says	nothing,	so	it	can	be	omitted.
A	shorter	comment	for	this	class	is	sufficient	(and	preferable):

/*

	*	This	class	is	used	by	client	applications	to	make	range	queries
	*	using	indexes.	Each	instance	represents	a	single	range	query.
	*
	*	To	start	a	range	query,	a	client	creates	an	instance	of	this
	*	class.	The	client	can	then	call	getNext()	to	retrieve	the	objects
	*	in	the	desired	range.	For	each	object	returned	by	getNext(),	the
	*	caller	can	invoke	getKey(),	getKeyLength(),	getValue(),	and
	*	getValueLength()	to	get	information	about	that	object.
	*/

The	 last	 paragraph	 of	 this	 comment	 is	 not	 strictly	 necessary,	 since	 it	 mostly
duplicates	information	in	the	comments	for	individual	methods.	However,	it	can
be	 helpful	 to	 have	 examples	 in	 the	 class	 documentation	 that	 illustrate	 how	 its
methods	work	together,	particularly	for	deep	classes	with	usage	patterns	that	are
nonobvious.	Note	 that	 the	 new	 comment	 does	 not	 mention	 NULL	 return	 values
from	getNext.	This	 comment	 is	 not	 intended	 to	 document	 every	 detail	 of	 each
method;	 it	 just	provides	high	 level	 information	 to	help	 readers	understand	how
the	methods	work	together	and	when	each	method	might	be	invoked.	For	details,
readers	 can	 refer	 to	 the	 interface	 comments	 for	 individual	 methods.	 This

comment	also	does	not	mention	server	crashes;	that	is	because	server	crashes	are
invisible	to	users	of	this	class	(the	system	automatically	recovers	from	them).

	Red	Flag:	Implementation	Documentation

Contaminates	Interface	
This	red	flag	occurs	when	interface	documentation,	such	as	that	for	a	method,
describes	 implementation	details	 that	 aren’t	needed	 in	order	 to	use	 the	 thing
being	documented.

Now	 consider	 the	 following	 code,	 which	 shows	 the	 first	 version	 of	 the
documentation	for	the	isReady	method	in	IndexLookup:
/**

	*	Check	if	the	next	object	is	RESULT_READY.	This	function	is
	*	implemented	in	a	DCFT	module,	each	execution	of	isReady()	tries
	*	to	make	small	progress,	and	getNext()	invokes	isReady()	in	a
	*	while	loop,	until	isReady()	returns	true.
	*
	*	isReady()	is	implemented	in	a	rule-based	approach.	We	check
	*	different	rules	by	following	a	particular	order,	and	perform
	*	certain	actions	if	some	rule	is	satisfied.
	*
	*	\return
	*									True	means	the	next	Object	is	available.	Otherwise,	return
	*									false.
	*/
bool	IndexLookup::isReady()	{	...	}

Once	again,	most	of	this	documentation,	such	as	the	reference	to	DCFT	and	the
entire	second	paragraph,	concerns	the	implementation,	so	it	doesn’t	belong	here;
this	 is	 one	 of	 the	 most	 common	 errors	 in	 interface	 comments.	 Some	 of	 the
implementation	 documentation	 is	 useful,	 but	 it	 should	 go	 inside	 the	 method,
where	it	will	be	clearly	separated	from	interface	documentation.	In	addition,	the
first	sentence	of	 the	documentation	 is	cryptic	 (what	does	RESULT_READY	mean?)

and	some	important	information	is	missing.	Finally,	it	isn’t	necessary	to	describe
the	implementation	of	getNext	here.	Here	is	a	better	version	of	the	comment:
/*

	*	Indicates	whether	an	indexed	read	has	made	enough	progress	for
	*	getNext	to	return	immediately	without	blocking.	In	addition,	this
	*	method	does	most	of	the	real	work	for	indexed	reads,	so	it	must
	*	be	invoked	(either	directly,	or	indirectly	by	calling	getNext)	in
	*	order	for	the	indexed	read	to	make	progress.
	*
	*	\return
	*									True	means	that	the	next	invocation	of	getNext	will	not	block
	*									(at	least	one	object	is	available	to	return,	or	the	end	of

the

	*									lookup	has	been	reached);	false	means	getNext	may	block.
	*/

This	 version	 of	 the	 comment	 provides	 more	 precise	 information	 about	 what
“ready”	means,	and	it	provides	the	important	information	that	this	method	must
eventually	be	invoked	if	the	indexed	retrieval	is	to	move	forward.

13.6		Implementation	comments:	what	and	why,	not	how
Implementation	comments	are	the	comments	that	appear	inside	methods	to	help
readers	 understand	 how	 they	 work	 internally.	 Most	 methods	 are	 so	 short	 and
simple	 that	 they	don’t	need	any	 implementation	comments:	given	 the	code	and
the	interface	comments,	it’s	easy	to	figure	out	how	a	method	works.

The	 main	 goal	 of	 implementation	 comments	 is	 to	 help	 readers
understand	what	 the	 code	 is	 doing	 (not	 how	 it	 does	 it).	 Once	 readers	 know
what	the	code	is	trying	to	do,	it’s	usually	easy	to	understand	how	the	code	works.
For	short	methods,	the	code	only	does	one	thing,	which	is	already	described	in
its	 interface	 comment,	 so	 no	 implementation	 comments	 are	 needed.	 Longer
methods	 have	 several	 blocks	 of	 code	 that	 do	 different	 things	 as	 part	 of	 the
method’s	overall	task.	Add	a	comment	before	each	of	the	major	blocks	to	provide
a	 high-level	 (more	 abstract)	 description	 of	 what	 that	 block	 does.	 Here	 is	 an
example:
//	Phase	1:	Scan	active	RPCs	to	see	if	any	have	completed.

For	 loops,	 it’s	 helpful	 to	 have	 a	 comment	 before	 the	 loop	 that	 describes	what

For	 loops,	 it’s	 helpful	 to	 have	 a	 comment	 before	 the	 loop	 that	 describes	what
happens	in	each	iteration:
//	Each	iteration	of	the	following	loop	extracts	one	request	from

//	the	request	message,	increments	the	corresponding	object,	and

//	appends	a	response	to	the	response	message.

Notice	 how	 this	 comment	 describes	 the	 loop	 at	 a	 more	 abstract	 and	 intuitive
level;	 it	 doesn’t	 go	 into	 any	 details	 about	 how	 a	 request	 is	 extracted	 from	 the
request	 message	 or	 how	 the	 object	 is	 incremented.	 Loop	 comments	 are	 only
needed	for	longer	or	more	complex	loops,	where	it	may	not	be	obvious	what	the
loop	 is	 doing;	 many	 loops	 are	 short	 and	 simple	 enough	 that	 their	 behavior	 is
already	obvious.

In	addition	to	describing	what	 the	code	is	doing,	implementation	comments
are	also	useful	to	explain	why.	If	there	are	tricky	aspects	to	the	code	that	won’t	be
obvious	 from	reading	 it,	you	should	document	 them.	For	example,	 if	a	bug	 fix
requires	the	addition	of	code	whose	purpose	isn’t	totally	obvious,	add	a	comment
describing	why	 the	code	 is	needed.	For	bug	fixes	where	 there	 is	a	well-written
bug	report	describing	the	problem,	the	comment	can	refer	to	the	issue	in	the	bug
tracking	database	rather	 than	repeating	all	 its	details	 (“Fixes	RAM-436,	 related
to	 device	 driver	 crashes	 in	 Linux	 2.4.x”).	 Developers	 can	 look	 in	 the	 bug
database	 for	 more	 details	 (this	 is	 an	 example	 of	 avoiding	 duplication	 in
comments,	which	will	be	discussed	in	Chapter	16).

For	longer	methods,	it	can	be	helpful	to	write	comments	for	a	few	of	the	most
important	 local	 variables.	 However,	 most	 local	 variables	 don’t	 need
documentation	if	they	have	good	names.	If	all	of	the	uses	of	a	variable	are	visible
within	 a	 few	 lines	 of	 each	 other,	 it’s	 usually	 easy	 to	 understand	 the	 variable’s
purpose	without	a	comment.	In	this	case	it’s	OK	to	let	readers	read	the	code	to
figure	out	 the	meaning	of	 the	variable.	However,	 if	 the	variable	 is	 used	over	 a
large	span	of	code,	then	you	should	consider	adding	a	comment	to	describe	the
variable.	When	documenting	variables,	focus	on	what	the	variable	represents,	not
how	it	is	manipulated	in	the	code.

13.7		Cross-module	design	decisions
In	a	perfect	world,	every	important	design	decision	would	be	encapsulated	within
a	 single	 class.	 Unfortunately,	 real	 systems	 inevitably	 end	 up	 with	 design
decisions	 that	 affect	 multiple	 classes.	 For	 example,	 the	 design	 of	 a	 network
protocol	 will	 affect	 both	 the	 sender	 and	 the	 receiver,	 and	 these	 may	 be

implemented	in	different	places.	Cross-module	decisions	are	often	complex	and
subtle,	 and	 they	 account	 for	 many	 bugs,	 so	 good	 documentation	 for	 them	 is
crucial.

The	biggest	challenge	with	cross-module	documentation	is	finding	a	place	to
put	it	where	it	will	naturally	be	discovered	by	developers.	Sometimes	there	is	an
obvious	central	place	 to	put	 such	documentation.	For	example,	 the	RAMCloud
storage	 system	 defines	 a	 Status	 value,	 which	 is	 returned	 by	 each	 request	 to
indicate	 success	or	 failure.	Adding	a	Status	 for	 a	new	error	 condition	 requires
modifying	 many	 different	 files	 (one	 file	 maps	 Status	 values	 to	 exceptions,
another	 provides	 a	 human-readable	 message	 for	 each	 Status,	 and	 so	 on).
Fortunately,	 there	 is	one	obvious	place	where	developers	will	have	 to	go	when
adding	a	new	status	value,	which	is	the	declaration	of	the	Status	enum.	We	took
advantage	of	 this	by	adding	comments	 in	 that	enum	to	 identify	all	of	 the	other
places	that	must	also	be	modified:
typedef	enum	Status	{

							STATUS_OK	=	0,
							STATUS_UNKNOWN_TABLET																=	1,
							STATUS_WRONG_VERSION																	=	2,
							...
							STATUS_INDEX_DOESNT_EXIST												=	29,
							STATUS_INVALID_PARAMETER													=	30,
							STATUS_MAX_VALUE																					=	30,

							//	Note:	if	you	add	a	new	status	value	you	must	make	the	following
							//	additional	updates:
							//	(1)		Modify	STATUS_MAX_VALUE	to	have	a	value	equal	to	the
							//						largest	defined	status	value,	and	make	sure	its	definition
							//						is	the	last	one	in	the	list.	STATUS_MAX_VALUE	is	used
							//						primarily	for	testing.
							//	(2)		Add	new	entries	in	the	tables	"messages"	and	"symbols"	in
							//						Status.cc.
							//	(3)		Add	a	new	exception	class	to	ClientException.h
							//	(4)		Add	a	new	"case"	to	ClientException::throwException	to	map
							//						from	the	status	value	to	a	status-specific	ClientException
							//						subclass.

							//	(5)		In	the	Java	bindings,	add	a	static	class	for	the	exception
							//						to	ClientException.java
							//	(6)		Add	a	case	for	the	status	of	the	exception	to	throw	the
							//						exception	in	ClientException.java
							//	(7)		Add	the	exception	to	the	Status	enum	in	Status.java,	making
							//						sure	the	status	is	in	the	correct	position	corresponding	to
							//						its	status	code.
}

New	status	values	will	be	added	at	the	end	of	the	existing	list,	so	the	comments
are	also	placed	at	the	end,	where	they	are	most	likely	to	be	seen.

Unfortunately,	 in	 many	 cases	 there	 is	 not	 an	 obvious	 central	 place	 to	 put
cross-module	documentation.	One	example	from	the	RAMCloud	storage	system
was	the	code	for	dealing	with	zombie	servers,	which	are	servers	that	the	system
believes	have	crashed,	but	 in	 fact	are	still	 running.	Neutralizing	zombie	servers
required	code	in	several	different	modules,	and	these	pieces	of	code	all	depend
on	 each	 other.	 None	 of	 the	 pieces	 of	 code	 is	 an	 obvious	 central	 place	 to	 put
documentation.	One	possibility	is	to	duplicate	parts	of	the	documentation	in	each
location	that	depends	on	it.	However,	this	is	awkward,	and	it	is	difficult	to	keep
such	 documentation	 up	 to	 date	 as	 the	 system	 evolves.	 Alternatively,	 the
documentation	can	be	located	in	one	of	the	places	where	it	is	needed,	but	in	this
case	 it’s	unlikely	 that	developers	will	 see	 the	documentation	or	know	where	 to
look	for	it.

I	 have	 recently	 been	 experimenting	 with	 an	 approach	 where	 cross-module
issues	are	documented	in	a	central	file	called	designNotes.	The	file	is	divided	up
into	clearly	 labeled	 sections,	one	 for	each	major	 topic.	For	example,	here	 is	 an
excerpt	from	the	file:
...

Zombies

A	zombie	is	a	server	that	is	considered	dead	by	the	rest	of	the

cluster;	any	data	stored	on	the	server	has	been	recovered	and	will

be	managed	by	other	servers.	However,	if	a	zombie	is	not	actually

dead	(e.g.,	it	was	just	disconnected	from	the	other	servers	for	a

while)	two	forms	of	inconsistency	can	arise:

*	A	zombie	server	must	not	serve	read	requests	once	replacement	servers

have	taken	over;	otherwise	it	may	return	stale	data	that	does	not

reflect	writes	accepted	by	the	replacement	servers.

*	The	zombie	server	must	not	accept	write	requests	once	replacement

servers	have	begun	replaying	its	log	during	recovery;	if	it	does,

these	writes	may	be	lost	(the	new	values	may	not	be	stored	on	the

replacement	servers	and	thus	will	not	be	returned	by	reads).

RAMCloud	uses	two	techniques	to	neutralize	zombies.	First,

...

Then,	 in	 any	 piece	 of	 code	 that	 relates	 to	 one	 of	 these	 issues	 there	 is	 a	 short
comment	referring	to	the	designNotes	file:
//	See	"Zombies"	in	designNotes.

With	 this	 approach,	 there	 is	 only	 a	 single	 copy	 of	 the	 documentation	 and	 it	 is
relatively	easy	for	developers	to	find	it	when	they	need	it.	However,	this	has	the
disadvantage	 that	 the	documentation	 is	not	near	 any	of	 the	pieces	of	 code	 that
depend	on	it,	so	it	may	be	difficult	to	keep	up-to-date	as	the	system	evolves.

13.8		Conclusion
The	goal	of	comments	is	to	ensure	that	the	structure	and	behavior	of	the	system
is	 obvious	 to	 readers,	 so	 they	 can	 quickly	 find	 the	 information	 they	 need	 and
make	modifications	to	the	system	with	confidence	that	they	will	work.	Some	of
this	 information	 can	 be	 represented	 in	 the	 code	 in	 a	 way	 that	 will	 already	 be
obvious	 to	 readers,	 but	 there	 is	 a	 significant	 amount	 of	 information	 that	 can’t
easily	be	deduced	from	the	code.	Comments	fill	in	this	information.

When	 following	 the	 rule	 that	 comments	 should	 describe	 things	 that	 aren’t
obvious	 from	 the	 code,	 “obvious”	 is	 from	 the	 perspective	 of	 someone	 reading
your	 code	 for	 the	 first	 time	 (not	 you).	 When	 writing	 comments,	 try	 to	 put
yourself	in	the	mindset	of	the	reader	and	ask	yourself	what	are	the	key	things	he
or	she	will	need	to	know.	If	your	code	is	undergoing	review	and	a	reviewer	tells
you	that	something	is	not	obvious,	don’t	argue	with	them;	if	a	reader	thinks	it’s
not	obvious,	then	it’s	not	obvious.	Instead	of	arguing,	try	to	understand	what	they
found	confusing	and	see	if	you	can	clarify	that,	either	with	better	comments	or
better	code.

13.9		Answers	to	questions	from	Section	13.5

Does	a	developer	need	 to	know	each	of	 the	 following	pieces	of	 information	 in

Does	a	developer	need	 to	know	each	of	 the	 following	pieces	of	 information	 in
order	to	use	the	IndexLookup	class?

1. The	 format	 of	messages	 that	 the	 IndexLookup	 class	 sends	 to	 the	 servers
holding	 indexes	 and	 objects.	 No:	 this	 is	 an	 implementation	 detail	 that
should	be	hidden	within	the	class.

2. The	 comparison	 function	 used	 to	 determine	 whether	 a	 particular	 object
falls	 in	 the	 desired	 range	 (is	 comparison	 done	 using	 integers,	 floating-
point	 numbers,	 or	 strings?).	 Yes:	 users	 of	 the	 class	 need	 to	 know	 this
information.

3. The	data	structure	used	 to	store	 indexes	on	servers.	No:	 this	 information
should	 be	 encapsulated	 on	 the	 servers;	 not	 even	 the	 implementation	 of
IndexLookup	should	need	to	know	this.

4. Whether	or	not	 IndexLookup	 issues	multiple	 requests	 to	different	 servers
concurrently.	Possibly:	 if	IndexLookup	uses	special	 techniques	 to	 improve
performance,	 then	 the	 documentation	 should	 provide	 some	 high-level
information	about	this,	since	users	may	care	about	performance.

5. The	 mechanism	 for	 handling	 server	 crashes.	 No:	 RAMCloud	 recovers
automatically	from	server	crashes,	so	crashes	are	not	visible	to	application-
level	 software;	 thus,	 there	 is	 no	need	 to	mention	 crashes	 in	 the	 interface
documentation	 for	 IndexLookup.	 If	 crashes	 were	 reflected	 up	 to
applications,	then	the	interface	documentation	would	need	to	describe	how
they	manifest	themselves	(but	not	the	details	of	how	crash	recovery	works).

Chapter	14

Choosing	Names

Selecting	 names	 for	 variables,	 methods,	 and	 other	 entities	 is	 one	 of	 the	 most
underrated	aspects	of	software	design.	Good	names	are	a	form	of	documentation:
they	 make	 code	 easier	 to	 understand.	 They	 reduce	 the	 need	 for	 other
documentation	 and	 make	 it	 easier	 to	 detect	 errors.	 Conversely,	 poor	 name
choices	 increase	 the	 complexity	 of	 code	 and	 create	 ambiguities	 and
misunderstandings	 that	 can	 result	 in	 bugs.	 Name	 choice	 is	 an	 example	 of	 the
principle	 that	 complexity	 is	 incremental.	 Choosing	 a	 mediocre	 name	 for	 a
particular	 variable,	 as	 opposed	 to	 the	 best	 possible	 name,	 probably	won’t	 have
much	impact	on	the	overall	complexity	of	a	system.	However,	software	systems
have	 thousands	 of	 variables;	 choosing	 good	 names	 for	 all	 of	 these	will	 have	 a
significant	impact	on	complexity	and	manageability.

14.1		Example:	bad	names	cause	bugs
Sometimes	even	a	single	poorly	named	variable	can	have	severe	consequences.
The	 most	 challenging	 bug	 I	 ever	 fixed	 came	 about	 because	 of	 a	 poor	 name
choice.	In	the	late	1980’s	and	early	1990’s	my	graduate	students	and	I	created	a
distributed	 operating	 system	 called	Sprite.	At	 some	point	we	 noticed	 that	 files
would	occasionally	lose	data:	one	of	the	data	blocks	suddenly	became	all	zeroes,
even	though	the	file	had	not	been	modified	by	a	user.	The	problem	didn’t	happen
very	often,	so	it	was	exceptionally	difficult	to	track	down.	A	few	of	the	graduate
students	 tried	 to	 find	 the	 bug,	 but	 they	 were	 unable	 to	 make	 progress	 and
eventually	 gave	 up.	However,	 I	 consider	 any	unsolved	bug	 to	 be	 an	 intolerable
personal	insult,	so	I	decided	to	track	it	down.

It	 took	 six	months,	 but	 I	 eventually	 found	 and	 fixed	 the	 bug.	The	 problem
was	actually	quite	simple	(as	are	most	bugs,	once	you	figure	them	out).	The	file
system	code	used	 the	variable	name	block	 for	 two	different	purposes.	 In	 some
situations,	block	referred	to	a	physical	block	number	on	disk;	in	other	situations,

block	referred	to	a	logical	block	number	within	a	file.	Unfortunately,	at	one	point
in	the	code	there	was	a	block	variable	containing	a	logical	block	number,	but	it
was	accidentally	used	in	a	context	where	a	physical	block	number	was	needed;	as
a	result,	an	unrelated	block	on	disk	got	overwritten	with	zeroes.

While	tracking	down	the	bug,	several	people,	including	myself,	read	over	the
faulty	code,	but	we	never	noticed	the	problem.	When	we	saw	the	variable	block
used	 as	 a	 physical	 block	 number,	 we	 reflexively	 assumed	 that	 it	 really	 held	 a
physical	 block	 number.	 It	 took	 a	 long	 process	 of	 instrumentation,	 which
eventually	 showed	 that	 the	 corruption	 must	 be	 happening	 in	 a	 particular
statement,	before	I	was	able	to	get	past	the	mental	block	created	by	the	name	and
check	to	see	exactly	where	its	value	came	from.	If	different	variable	names	had
been	used	for	the	different	kinds	of	blocks,	such	as	fileBlock	and	diskBlock,	it’s
unlikely	that	the	error	would	have	happened;	the	programmer	would	have	known
that	fileBlock	couldn’t	be	used	in	that	situation.

Unfortunately,	most	developers	don’t	spend	much	time	thinking	about	names.
They	 tend	 to	use	 the	 first	 name	 that	 comes	 to	mind,	 as	 long	as	 it’s	 reasonably
close	to	matching	the	thing	it	names.	For	example,	block	is	a	pretty	close	match
for	both	a	physical	block	on	disk	and	a	logical	block	within	a	file;	it’s	certainly
not	a	horrible	name.	Even	so,	 it	resulted	in	a	huge	expenditure	of	 time	to	track
down	a	subtle	bug.	Thus,	you	shouldn’t	settle	for	names	that	are	just	“reasonably
close”.	 Take	 a	 bit	 of	 extra	 time	 to	 choose	 great	 names,	 which	 are	 precise,
unambiguous,	 and	 intuitive.	The	 extra	 attention	will	 pay	 for	 itself	 quickly,	 and
over	time	you’ll	learn	to	choose	good	names	quickly.

14.2		Create	an	image
When	choosing	a	name,	the	goal	is	to	create	an	image	in	the	mind	of	the	reader
about	 the	 nature	 of	 the	 thing	 being	 named.	 A	 good	 name	 conveys	 a	 lot	 of
information	about	what	the	underlying	entity	is,	and,	just	as	important,	what	it	is
not.	When	 considering	 a	 particular	 name,	 ask	 yourself:	 “If	 someone	 sees	 this
name	in	isolation,	without	seeing	its	declaration,	its	documentation,	or	any	code
that	uses	the	name,	how	closely	will	they	be	able	to	guess	what	the	name	refers
to?	Is	there	some	other	name	that	will	paint	a	clearer	picture?”	Of	course,	there	is
a	 limit	 to	how	much	 information	you	can	put	 in	a	single	name;	names	become
unwieldy	if	they	contain	more	than	two	or	three	words.	Thus,	the	challenge	is	to
find	just	a	few	words	that	capture	the	most	important	aspects	of	the	entity.

Names	are	a	 form	of	abstraction:	 they	provide	a	simplified	way	of	 thinking
about	a	more	complex	underlying	entity.	Like	other	forms	of	abstraction,	the	best
names	 are	 those	 that	 focus	 attention	 on	 what	 is	 most	 important	 about	 the
underlying	entity	while	omitting	details	that	are	less	important.

14.3		Names	should	be	precise
Good	 names	 have	 two	 properties:	 precision	 and	 consistency.	 Let’s	 start	 with
precision.	The	most	common	problem	with	names	is	that	they	are	too	generic	or
vague;	as	a	result,	it’s	hard	for	readers	to	tell	what	the	name	refers	to;	the	reader
may	 assume	 that	 the	 name	 refers	 to	 something	different	 from	 reality,	 as	 in	 the
block	bug	above.	Consider	the	following	method	declaration:
/**

	*	Returns	the	total	number	of	indexlets	this	object	is	managing.
	*/
int	IndexletManager::getCount()	{...}

The	term	“count”	is	too	generic:	count	of	what?	If	someone	sees	an	invocation	of
this	 method,	 they	 are	 unlikely	 to	 know	 what	 it	 does	 unless	 they	 read	 its
documentation.	A	more	precise	name	like	getActiveIndexlets	or	numIndexlets
would	be	better:	with	one	of	these	names,	readers	will	probably	be	able	to	guess
what	the	method	returns	without	having	to	look	at	its	documentation.

Here	 are	 some	 other	 examples	 of	 names	 that	 aren’t	 precise	 enough,	 taken
from	various	student	projects:

A	project	building	a	GUI	text	editor	used	the	names	x	and	y	to	refer	to	the
position	of	a	character	in	the	file.	These	names	are	too	generic.	They	could
mean	many	things;	for	example,	they	might	also	represent	the	coordinates
(in	pixels)	of	a	character	on	the	screen.	Someone	seeing	the	name	x	in
isolation	is	unlikely	to	think	that	it	refers	to	the	position	of	a	character
within	a	line	of	text.	The	code	would	be	clearer	if	it	used	names	such	as
charIndex	and	lineIndex,	which	reflect	the	specific	abstractions	that	the
code	implements.
Another	editor	project	contained	the	following	code:
//	Blink	state:	true	when	cursor	visible.

private	boolean	blinkStatus	=	true;

The	 name	 blinkStatus	 doesn’t	 convey	 enough	 information.	 The	 word
“status”	is	too	vague	for	a	boolean	value:	it	gives	no	clue	about	what	a	true

or	 false	 value	 means.	 The	 word	 “blink”	 is	 also	 vague,	 since	 it	 doesn’t
indicate	what	is	blinking.	The	following	alternative	is	better:
//	Controls	cursor	blinking:	true	means	the	cursor	is	visible,

//	false	means	the	cursor	is	not	displayed.

private	boolean	cursorVisible	=	true;

The	name	cursorVisible	conveys	more	information;	for	example,	it	allows
readers	 to	 guess	 what	 a	 true	 value	 means	 (as	 a	 general	 rule,	 names	 of
boolean	 variables	 should	 always	 be	 predicates).	 The	 word	 “blink”	 is	 no
longer	in	the	name,	so	readers	will	have	to	consult	the	documentation	if	they
want	 to	 know	why	 the	 cursor	 isn’t	 always	 visible;	 this	 information	 is	 less
important.
A	project	implementing	a	consensus	protocol	contained	the	following	code:
//	Value	representing	that	the	server	has	not	voted	(yet)	for

//	anyone	for	the	current	election	term.

private	static	final	String	VOTED_FOR_SENTINEL_VALUE	=	"null";

The	name	for	this	value	indicates	that	it’s	special	but	it	doesn’t	say	what	the
special	meaning	is.	A	more	specific	name	such	as	NOT_YET_VOTED	would	be
better.
A	variable	named	result	was	used	in	a	method	with	no	return	value.	This
name	has	multiple	problems.	First,	it	creates	the	misleading	impression	that
it	will	be	the	return	value	of	the	method.	Second,	it	provides	essentially	no
information	about	what	it	actually	holds,	except	that	it	is	some	computed
value.	The	name	should	provide	information	about	what	the	result	actually
is,	such	as	mergedLine	or	totalChars.	In	methods	that	do	actually	have
return	values,	then	using	the	name	result	is	reasonable.	This	name	is	still	a
bit	generic,	but	readers	can	look	at	the	method	documentation	to	see	its
meaning,	and	it’s	helpful	to	know	that	the	value	will	eventually	become	the
return	value.

	Red	Flag:	Vague	Name	
If	a	variable	or	method	name	is	broad	enough	to	refer	to	many	different	things,
then	 it	doesn’t	convey	much	 information	 to	 the	developer	and	 the	underlying
entity	is	more	likely	to	be	misused.

Like	all	 rules,	 the	 rule	about	choosing	precise	names	has	a	 few	exceptions.
For	 example,	 it’s	 fine	 to	 use	 generic	 names	 like	 i	 and	 j	 as	 loop	 iteration
variables,	as	long	as	the	loops	only	span	a	few	lines	of	code.	If	you	can	see	the
entire	 range	 of	 usage	 of	 a	 variable,	 then	 the	 meaning	 of	 the	 variable	 will
probably	be	obvious	from	the	code	so	you	don’t	need	a	long	name.	For	example,
consider	the	following	code:
for		(i	=	0;	i	<	numLines;	i++)	{

							...
}

It’s	clear	from	this	code	that	i	 is	being	used	 to	 iterate	over	each	of	 the	 lines	 in
some	 entity.	 If	 the	 loop	gets	 so	 long	 that	 you	 can’t	 see	 it	 all	 at	 once,	 or	 if	 the
meaning	of	 the	 iteration	 variable	 is	 harder	 to	 figure	 out	 from	 the	 code,	 then	 a
more	descriptive	name	is	in	order.

It’s	also	possible	for	a	name	to	be	too	specific,	such	as	in	this	declaration	for
a	method	that	deletes	a	range	of	text:
void	delete(Range	selection)	{...}

The	argument	name	selection	is	too	specific,	since	it	suggests	that	the	text	being
deleted	 is	 always	 selected	 in	 the	 user	 interface.	 However,	 this	 method	 can	 be
invoked	on	any	range	of	text,	selected	or	not.	Thus,	the	argument	name	should	be
more	generic,	such	as	range.

If	you	find	it	difficult	to	come	up	with	a	name	for	a	particular	variable	that	is
precise,	intuitive,	and	not	too	long,	this	is	a	red	flag.	It	suggests	that	the	variable
may	 not	 have	 a	 clear	 definition	 or	 purpose.	 When	 this	 happens,	 consider
alternative	 factorings.	 For	 example,	 perhaps	 you	 are	 trying	 to	 use	 a	 single
variable	 to	 represent	 several	 things;	 if	 so,	 separating	 the	 representation	 into
multiple	 variables	 may	 result	 in	 a	 simpler	 definition	 for	 each	 variable.	 The
process	 of	 choosing	 good	 names	 can	 improve	 your	 design	 by	 identifying
weaknesses.

	Red	Flag:	Hard	to	Pick	Name	
If	it’s	hard	to	find	a	simple	name	for	a	variable	or	method	that	creates	a	clear
image	of	the	underlying	object,	that’s	a	hint	that	the	underlying	object	may	not
have	a	clean	design.

14.4	Use	names	consistently
The	 second	 important	 property	 of	 good	 names	 is	 consistency.	 In	 any	 program
there	are	certain	variables	that	are	used	over	and	over	again.	For	example,	a	file
system	manipulates	block	numbers	repeatedly.	For	each	of	these	common	usages,
pick	 a	 name	 to	 use	 for	 that	 purpose,	 and	 use	 the	 same	 name	 everywhere.	 For
example,	a	file	system	might	always	use	fileBlock	to	hold	the	index	of	a	block
within	a	file.	Consistent	naming	reduces	cognitive	load	in	much	the	same	way	as
reusing	a	common	class:	once	the	reader	has	seen	the	name	in	one	context,	they
can	 reuse	 their	 knowledge	 and	 instantly	make	 assumptions	 when	 they	 see	 the
name	in	a	different	context.

Consistency	has	three	requirements:	first,	always	use	the	common	name	for
the	given	purpose;	second,	never	use	the	common	name	for	anything	other	than
the	given	purpose;	 third,	make	 sure	 that	 the	purpose	 is	narrow	enough	 that	 all
variables	 with	 the	 name	 have	 the	 same	 behavior.	 This	 third	 requirement	 was
violated	 in	 the	 file	system	bug	at	 the	beginning	of	 the	chapter.	The	 file	system
used	 block	 for	 variables	 with	 two	 different	 behaviors	 (file	 blocks	 and	 disk
blocks);	this	led	to	a	false	assumption	about	the	meaning	of	a	variable,	which	in
turn	resulted	in	a	bug.

Sometimes	 you	will	 need	multiple	 variables	 that	 refer	 to	 the	 same	 general
sort	 of	 thing.	For	 example,	 a	method	 that	 copies	 file	 data	will	 need	 two	block
numbers,	one	for	the	source	and	one	for	the	destination.	When	this	happens,	use
the	 common	 name	 for	 each	 variable	 but	 add	 a	 distinguishing	 prefix,	 such	 as
srcFileBlock	and	dstFileBlock.

Loops	are	another	area	where	consistent	naming	can	help.	If	you	use	names
such	 as	i	 and	j	 for	 loop	 variables,	 always	 use	 i	 in	 outermost	 loops	 and	 j	 for
nested	loops.	This	allows	readers	to	make	instant	(safe)	assumptions	about	what’s
happening	in	the	code	when	they	see	a	given	name.

14.5		A	different	opinion:	Go	style	guide
Not	everyone	shares	my	views	about	naming.	Some	of	the	developers	of	the	Go
language	argue	that	names	should	be	very	short,	often	only	a	single	character.	In
a	presentation	on	name	choice	for	Go,	Andrew	Gerrand	states	that	“long	names
obscure	what	the	code	does.”1	He	presents	this	code	sample,	which	uses	single-
letter	variable	names:
func	RuneCount(b	[]byte)	int	{

							i,	n	:=	0,	0
							for	i	<	len(b)	{
													if	b[i]	<	RuneSelf	{
																			i++
													}	else	{
																			_,	size	:=	DecodeRune(b[i:])
																			i	+=	size
													}
													n++
							}
							return	n
}

and	argues	that	it	is	more	readable	than	the	following	version,	which	uses	longer
names:
func	RuneCount(buffer	[]byte)	int	{

							index,	count	:=	0,	0
							for	index	<	len(buffer)	{
													if	buffer[index]	<	RuneSelf	{
																			index++
													}	else	{
																			_,	size	:=	DecodeRune(buffer[index:])
																			index	+=	size
													}
													count++
							}
							return	count
}

Personally,	 I	 don’t	 find	 the	 second	 version	 any	more	 difficult	 to	 read	 than	 the
first.	 If	anything,	 the	name	count	gives	a	slightly	better	clue	 to	 the	behavior	of
the	variable	 than	n.	With	 the	 first	version	 I	ended	up	 reading	 through	 the	code
trying	to	figure	out	what	n	means,	whereas	I	didn’t	feel	that	need	with	the	second
version.	But,	 if	n	 is	 used	 consistently	 throughout	 the	 system	 to	 refer	 to	 counts
(and	 nothing	 else),	 then	 the	 short	 name	 will	 probably	 be	 clear	 to	 other
developers.

The	 Go	 culture	 encourages	 the	 use	 of	 the	 same	 short	 name	 for	 multiple
different	 things:	ch	 for	character	or	channel,	d	 for	data,	 difference,	 or	distance,
and	so	on.	To	me,	ambiguous	names	like	 these	are	 likely	 to	result	 in	confusion
and	error,	just	as	in	the	block	example.

Overall,	 I	would	 argue	 that	 readability	must	 be	 determined	 by	 readers,	 not
writers.	If	you	write	code	with	short	variable	names	and	the	people	who	read	it
find	 it	 easy	 to	 understand,	 then	 that’s	 fine.	 If	 you	 start	 getting	 complaints	 that
your	code	is	cryptic,	then	you	should	consider	using	longer	names	(a	Web	search
for	“go	language	short	names”	will	identify	several	such	complaints).	Similarly,
if	 I	 start	 getting	 complaints	 that	 long	 variable	 names	make	my	 code	 harder	 to
read,	then	I’ll	consider	using	shorter	ones.

Gerrand	 makes	 one	 comment	 that	 I	 agree	 with:	 “The	 greater	 the	 distance
between	a	name’s	declaration	and	its	uses,	the	longer	the	name	should	be.”	The
earlier	discussion	about	using	loop	variables	named	i	and	j	is	an	example	of	this
rule.

14.6		Conclusion
Well	chosen	names	help	to	make	code	more	obvious;	when	someone	encounters
the	variable	for	the	first	 time,	their	first	guess	about	its	behavior,	made	without
much	 thought,	 will	 be	 correct.	 Choosing	 good	 names	 is	 an	 example	 of	 the
investment	mindset	discussed	in	Chapter	3:	if	you	take	a	little	extra	time	up	front
to	select	good	names,	it	will	be	easier	for	you	to	work	on	the	code	in	the	future.
In	 addition,	 you	 will	 be	 less	 likely	 to	 introduce	 bugs.	 Developing	 a	 skill	 for
naming	is	also	an	investment.	When	you	first	decide	to	stop	settling	for	mediocre
names,	 you	may	 find	 it	 frustrating	 and	 time-consuming	 to	 come	up	with	 good
names.	However,	as	you	get	more	experience	you’ll	find	that	it	becomes	easier;
eventually,	you’ll	get	 to	the	point	where	it	 takes	almost	no	extra	time	to	choose
good	names,	so	you	will	get	the	benefits	almost	for	free.

1https://talks.golang.org/2014/names.slide#1

https://talks.golang.org/2014/names.slide#1

Chapter	15

Write	The	Comments	First
(Use	Comments	As	Part	Of	The	Design	Process)

Many	 developers	 put	 off	 writing	 documentation	 until	 the	 end	 of	 the
development	process,	after	coding	and	unit	 testing	are	complete.	This	 is	one	of
the	 surest	ways	 to	produce	poor	quality	documentation.	The	best	 time	 to	write
comments	is	at	the	beginning	of	the	process,	as	you	write	the	code.	Writing	the
comments	first	makes	documentation	part	of	 the	design	process.	Not	only	does
this	 produce	 better	 documentation,	 but	 it	 also	 produces	 better	 designs	 and	 it
makes	the	process	of	writing	documentation	more	enjoyable.

15.1		Delayed	comments	are	bad	comments
Almost	every	developer	I	have	ever	met	puts	off	writing	comments.	When	asked
why	 they	 don’t	 write	 documentation	 earlier,	 they	 say	 that	 the	 code	 is	 still
changing.	 If	 they	write	documentation	early,	 they	 say,	 they’ll	have	 to	 rewrite	 it
when	 the	 code	 changes;	 better	 to	 wait	 until	 the	 code	 stabilizes.	 However,	 I
suspect	that	there	is	also	another	reason,	which	is	that	they	view	documentation
as	drudge	work;	thus,	they	put	it	off	as	long	as	possible.

Unfortunately,	 this	 approach	 has	 several	 negative	 consequences.	 First,
delaying	documentation	often	means	 that	 it	never	gets	written	at	 all.	Once	you
start	delaying,	it’s	easy	to	delay	a	bit	more;	after	all,	the	code	will	be	even	more
stable	in	a	few	more	weeks.	By	the	time	the	code	has	inarguably	stabilized,	there
is	a	 lot	of	 it,	which	means	the	task	of	writing	documentation	has	become	huge
and	even	 less	attractive.	There’s	never	a	convenient	 time	 to	stop	 for	a	 few	days
and	fill	in	all	of	the	missing	comments,	and	it’s	easy	to	rationalize	that	the	best
thing	 for	 the	project	 is	 to	move	on	and	 fix	bugs	or	write	 the	next	new	 feature.
This	will	create	even	more	undocumented	code.

Even	 if	you	do	have	 the	 self-discipline	 to	go	back	and	write	 the	comments

Even	 if	you	do	have	 the	 self-discipline	 to	go	back	and	write	 the	comments
(and	don’t	fool	yourself:	you	probably	don’t),	the	comments	won’t	be	very	good.
By	 this	 time	 in	 the	process,	you	have	checked	out	mentally.	 In	your	mind,	 this
piece	of	code	is	done;	you	are	eager	to	move	on	to	your	next	project.	You	know
that	writing	comments	is	the	right	thing	to	do,	but	it’s	no	fun.	You	just	want	to
get	through	it	as	quickly	as	possible.	Thus,	you	make	a	quick	pass	over	the	code,
adding	 just	 enough	 comments	 to	 look	 respectable.	 By	 now,	 it’s	 been	 a	 while
since	 you	 designed	 the	 code,	 so	 your	 memories	 of	 the	 design	 process	 are
becoming	fuzzy.	You	look	at	 the	code	as	you	are	writing	the	comments,	so	 the
comments	 repeat	 the	code.	Even	 if	you	 try	 to	 reconstruct	 the	design	 ideas	 that
aren’t	obvious	from	the	code,	there	will	be	things	you	don’t	remember.	Thus,	the
comments	are	missing	some	of	the	most	important	things	they	should	describe.

15.2		Write	the	comments	first
I	use	a	different	approach	to	writing	comments,	where	I	write	the	comments	at
the	very	beginning:

For	a	new	class,	I	start	by	writing	the	class	interface	comment.
Next,	I	write	interface	comments	and	signatures	for	the	most	important
public	methods,	but	I	leave	the	method	bodies	empty.
I	iterate	a	bit	over	these	comments	until	the	basic	structure	feels	about	right.
At	this	point	I	write	declarations	and	comments	for	the	most	important	class
instance	variables	in	the	class.
Finally,	I	fill	in	the	bodies	of	the	methods,	adding	implementation
comments	as	needed.
While	writing	method	bodies,	I	usually	discover	the	need	for	additional
methods	and	instance	variables.	For	each	new	method	I	write	the	interface
comment	before	the	body	of	the	method;	for	instance	variables	I	fill	in	the
comment	at	the	same	time	that	I	write	the	variable	declaration.

When	the	code	is	done,	the	comments	are	also	done.	There	is	never	a	backlog	of
unwritten	comments.

The	 comments-first	 approach	 has	 three	 benefits.	 First,	 it	 produces	 better
comments.	 If	 you	write	 the	 comments	 as	 you	 are	 designing	 the	 class,	 the	 key
design	issues	will	be	fresh	in	your	mind,	so	it’s	easy	to	record	them.	It’s	better	to
write	the	interface	comment	for	each	method	before	its	body,	so	you	can	focus	on
the	 method’s	 abstraction	 and	 interface	 without	 being	 distracted	 by	 its
implementation.	During	 the	 coding	and	 testing	process	you	will	 notice	 and	 fix

problems	with	the	comments.	As	a	result,	the	comments	improve	over	the	course
of	development.

15.3		Comments	are	a	design	tool
The	 second,	 and	 most	 important,	 benefit	 of	 writing	 the	 comments	 at	 the
beginning	is	that	it	improves	the	system	design.	Comments	provide	the	only	way
to	 fully	 capture	 abstractions,	 and	 good	 abstractions	 are	 fundamental	 to	 good
system	 design.	 If	 you	 write	 comments	 describing	 the	 abstractions	 at	 the
beginning,	 you	 can	 review	and	 tune	 them	before	writing	 implementation	 code.
To	write	a	good	comment,	you	must	identify	the	essence	of	a	variable	or	piece	of
code:	what	are	the	most	important	aspects	of	this	thing?	It’s	important	to	do	this
early	in	the	design	process;	otherwise	you	are	just	hacking	code.

Comments	serve	as	a	canary	in	the	coal	mine	of	complexity.	If	a	method	or
variable	 requires	 a	 long	 comment,	 it	 is	 a	 red	 flag	 that	 you	 don’t	 have	 a	 good
abstraction.	 Remember	 from	 Chapter	 4	 that	 classes	 should	 be	 deep:	 the	 best
classes	have	very	simple	 interfaces	yet	 implement	powerful	 functions.	The	best
way	to	judge	the	complexity	of	an	interface	is	from	the	comments	that	describe
it.	If	the	interface	comment	for	a	method	provides	all	the	information	needed	to
use	the	method	and	is	also	short	and	simple,	that	indicates	that	the	method	has	a
simple	interface.	Conversely,	if	there’s	no	way	to	describe	a	method	completely
without	 a	 long	 and	 complicated	 comment,	 then	 the	 method	 has	 a	 complex
interface.	 You	 can	 compare	 a	 method’s	 interface	 comment	 with	 the
implementation	 to	 get	 a	 sense	 of	 how	 deep	 the	 method	 is:	 if	 the	 interface
comment	must	 describe	 all	 the	major	 features	 of	 the	 implementation,	 then	 the
method	is	shallow.	The	same	idea	applies	to	variables:	if	it	takes	a	long	comment
to	fully	describe	a	variable,	it’s	a	red	flag	that	suggests	you	may	not	have	chosen
the	 right	 variable	 decomposition.	Overall,	 the	 act	 of	writing	 comments	 allows
you	 to	 evaluate	 your	 design	 decisions	 early,	 so	 you	 can	 discover	 and	 fix
problems.

	Red	Flag:	Hard	to	Describe	
The	 comment	 that	 describes	 a	method	 or	 variable	 should	 be	 simple	 and	 yet
complete.	If	you	find	it	difficult	 to	write	such	a	comment,	that’s	an	indicator
that	there	may	be	a	problem	with	the	design	of	the	thing	you	are	describing.

Of	 course,	 comments	 are	 only	 a	 good	 indicator	 of	 complexity	 if	 they	 are
complete	and	clear.	If	you	write	a	method	interface	comment	that	doesn’t	provide
all	the	information	needed	to	invoke	the	method,	or	one	that	is	so	cryptic	that	it’s
hard	 to	 understand,	 then	 that	 comment	 doesn’t	 provide	 a	 good	measure	 of	 the
method’s	depth.

15.4		Early	comments	are	fun	comments
The	third	and	final	benefit	of	writing	comments	early	is	that	it	makes	comment-
writing	more	fun.	For	me,	one	of	the	most	enjoyable	parts	of	programming	is	the
early	design	phase	for	a	new	class,	where	I’m	fleshing	out	the	abstractions	and
structure	for	the	class.	Most	of	my	comments	are	written	during	this	phase,	and
the	comments	are	how	I	record	and	test	the	quality	of	my	design	decisions.	I’m
looking	for	the	design	that	can	be	expressed	completely	and	clearly	in	the	fewest
words.	The	simpler	the	comments,	the	better	I	feel	about	my	design,	so	finding
simple	 comments	 is	 a	 source	 of	 pride.	 If	 you	 are	 programming	 strategically,
where	your	main	goal	is	a	great	design	rather	than	just	writing	code	that	works,
then	 writing	 comments	 should	 be	 fun,	 since	 that’s	 how	 you	 identify	 the	 best
designs.

15.5		Are	early	comments	expensive?
Now	let’s	revisit	the	argument	for	delaying	comments,	which	is	that	it	avoids	the
cost	 of	 reworking	 the	 comments	 as	 the	 code	 evolves.	 A	 simple	 back-of-the-
envelope	 calculation	will	 show	 that	 this	 doesn’t	 save	much.	 First,	 estimate	 the
total	fraction	of	development	time	that	you	spend	typing	in	code	and	comments
together,	including	time	to	revise	code	and	comments;	it’s	unlikely	that	this	will
be	more	than	about	10%	of	all	development	time.	Even	if	half	of	your	total	code
lines	are	comments,	writing	comments	probably	doesn’t	account	 for	more	 than
about	5%	of	your	total	development	time.	Delaying	the	comments	until	the	end
will	save	only	a	fraction	of	this,	which	isn’t	very	much.

Writing	 the	 comments	 first	 will	 mean	 that	 the	 abstractions	 will	 be	 more
stable	before	you	start	writing	code.	This	will	probably	save	time	during	coding.
In	contrast,	 if	you	write	 the	code	 first,	 the	abstractions	will	probably	evolve	as
you	 code,	 which	 will	 require	 more	 code	 revisions	 than	 the	 comments-first
approach.	When	you	consider	all	of	 these	 factors,	 it’s	possible	 that	 it	might	be
faster	overall	to	write	the	comments	first.

15.6		Conclusion
If	 you	haven’t	 ever	 tried	writing	 the	 comments	 first,	 give	 it	 a	 try.	Stick	with	 it
long	enough	to	get	used	to	it.	Then	think	about	how	it	affects	the	quality	of	your
comments,	 the	 quality	 of	 your	 design,	 and	 your	 overall	 enjoyment	 of	 software
development.	After	 you	 have	 tried	 this	 for	 a	while,	 let	me	 know	whether	 your
experience	matches	mine,	and	why	or	why	not.

Chapter	16

Modifying	Existing	Code

Chapter	1	 described	how	 software	 development	 is	 iterative	 and	 incremental.	A
large	 software	 system	 develops	 through	 a	 series	 of	 evolutionary	 stages,	 where
each	stage	adds	new	capabilities	and	modifies	existing	modules.	This	means	that
a	 system’s	 design	 is	 constantly	 evolving.	 It	 isn’t	 possible	 to	 conceive	 the	 right
design	 for	 a	 system	at	 the	outset;	 the	design	of	 a	mature	 system	 is	 determined
more	 by	 changes	 made	 during	 the	 system’s	 evolution	 than	 by	 any	 initial
conception.	Previous	chapters	described	how	 to	 squeeze	out	complexity	during
the	 initial	 design	 and	 implementation;	 this	 chapter	 discusses	 how	 to	 keep
complexity	from	creeping	in	as	the	system	evolves.

16.1		Stay	strategic
Chapter	3	introduced	the	distinction	between	tactical	programming	and	strategic
programming:	 in	 tactical	 programming,	 the	 primary	 goal	 is	 to	 get	 something
working	 quickly,	 even	 if	 that	 results	 in	 additional	 complexity;	 in	 strategic
programming,	the	most	important	goal	is	to	produce	a	great	system	design.	The
tactical	 approach	 very	 quickly	 leads	 to	 a	messy	 system	 design.	 If	 you	want	 to
have	a	system	that	is	easy	to	maintain	and	enhance,	then	“working”	isn’t	a	high
enough	standard;	you	have	to	prioritize	design	and	think	strategically.	This	idea
also	applies	when	you	are	modifying	existing	code.

Unfortunately,	when	developers	go	into	existing	code	to	make	changes	such
as	 bug	 fixes	 or	 new	 features,	 they	 don’t	 usually	 think	 strategically.	 A	 typical
mindset	 is	 “what	 is	 the	 smallest	 possible	 change	 I	 can	make	 that	 does	what	 I
need?”	Sometimes	developers	justify	this	because	they	are	not	comfortable	with
the	code	being	modified;	 they	worry	 that	 larger	changes	carry	a	greater	risk	of
introducing	new	bugs.	However,	 this	 results	 in	 tactical	programming.	Each	one
of	these	minimal	changes	introduces	a	few	special	cases,	dependencies,	or	other
forms	of	complexity.	As	a	result,	the	system	design	gets	just	a	bit	worse,	and	the
problems	accumulate	with	each	step	in	the	system’s	evolution.

If	you	want	to	maintain	a	clean	design	for	a	system,	you	must	take	a	strategic
approach	when	modifying	existing	code.	Ideally,	when	you	have	finished	with
each	change,	the	system	will	have	the	structure	it	would	have	had	if	you	had
designed	it	from	the	start	with	that	change	in	mind.	To	achieve	this	goal,	you
must	resist	the	temptation	to	make	a	quick	fix.	Instead,	think	about	whether	the
current	system	design	is	still	the	best	one,	in	light	of	the	desired	change.	If	not,
refactor	 the	system	so	 that	you	end	up	with	 the	best	possible	design.	With	 this
approach,	the	system	design	improves	with	every	modification.

This	is	also	an	example	of	the	investment	mindset	introduced	on	page	15:	if
you	invest	a	little	extra	time	to	refactor	and	improve	the	system	design,	you’ll	end
up	with	a	cleaner	system.	This	will	speed	up	development,	and	you	will	recoup
the	 effort	 that	 you	 invested	 in	 the	 refactoring.	 Even	 if	 your	 particular	 change
doesn’t	 require	 refactoring,	 you	 should	 still	 be	 on	 the	 lookout	 for	 design
imperfections	 that	you	can	 fix	while	you’re	 in	 the	code.	Whenever	you	modify
any	code,	try	to	find	a	way	to	improve	the	system	design	at	least	a	little	bit	in	the
process.	If	you’re	not	making	the	design	better,	you	are	probably	making	it
worse.

As	discussed	in	Chapter	3,	an	 investment	mindset	sometimes	conflicts	with
the	realities	of	commercial	software	development.	If	refactoring	the	system	“the
right	way”	would	take	three	months	but	a	quick	and	dirty	fix	would	take	only	two
hours,	you	may	have	to	take	the	quick	and	dirty	approach,	particularly	if	you	are
working	 against	 a	 tight	 deadline.	 Or,	 if	 refactoring	 the	 system	 would	 create
incompatibilities	 that	 affect	many	other	 people	 and	 teams,	 then	 the	 refactoring
may	not	be	practical.

Nonetheless,	you	should	resist	these	compromises	as	much	as	possible.	Ask
yourself	“Is	this	the	best	I	can	possibly	do	to	create	a	clean	system	design,	given
my	current	 constraints?”	Perhaps	 there’s	 an	 alternative	 approach	 that	would	be
almost	as	clean	as	the	3-month	refactoring	but	could	be	done	in	a	couple	of	days?
Or,	if	you	can’t	afford	to	do	a	large	refactoring	now,	get	your	boss	to	allocate	time
for	 you	 to	 come	 back	 to	 it	 after	 the	 current	 deadline.	 Every	 development
organization	should	plan	to	spend	a	small	fraction	of	 its	 total	effort	on	cleanup
and	refactoring;	this	work	will	pay	for	itself	over	the	long	run.

16.2	Maintaining	comments:	keep	the	comments	near	the
code

When	 you	 change	 existing	 code,	 there’s	 a	 good	 chance	 that	 the	 changes	 will

When	 you	 change	 existing	 code,	 there’s	 a	 good	 chance	 that	 the	 changes	 will
invalidate	some	of	the	existing	comments.	It’s	easy	to	forget	to	update	comments
when	you	modify	code,	which	results	 in	comments	 that	are	no	longer	accurate.
Inaccurate	 comments	 are	 frustrating	 to	 readers,	 and	 if	 there	 are	 very	many	 of
them,	 readers	 begin	 to	 distrust	 all	 of	 the	 comments.	 Fortunately,	 with	 a	 little
discipline	and	a	couple	of	guiding	 rules,	 it’s	possible	 to	keep	comments	up-to-
date	without	a	huge	effort.	This	 section	and	 the	 following	ones	put	 forth	 some
specific	techniques.

The	best	way	 to	 ensure	 that	 comments	get	updated	 is	 to	position	 them
close	to	the	code	they	describe,	so	developers	will	see	them	when	they	change
the	code.	The	farther	a	comment	is	from	its	associated	code,	the	less	likely	it	is
that	 it	 will	 be	 updated	 properly.	 For	 example,	 the	 best	 place	 for	 a	 method’s
interface	comment	is	in	the	code	file,	right	next	to	the	body	of	the	method.	Any
changes	to	the	method	will	involve	this	code,	so	the	developer	is	likely	to	see	the
interface	comments	and	update	them	if	needed.

An	 alternative	 for	 languages	 like	 C	 and	 C++	 that	 have	 separate	 code	 and
header	files,	is	to	place	the	interface	comments	next	to	the	method’s	declaration
in	 the	.h	 file.	However,	 this	 is	a	 long	way	from	the	code;	developers	won’t	see
those	comments	when	modifying	the	method’s	body,	and	it	takes	additional	work
to	open	a	different	 file	and	 find	 the	 interface	comments	 to	update	 them.	Some
might	argue	that	interface	comments	should	go	in	header	files	so	that	users	can
learn	how	to	use	an	abstraction	without	having	to	look	at	the	code	file.	However,
users	 should	not	need	 to	 read	either	code	or	header	 files;	 they	should	get	 their
information	from	documentation	compiled	by	tools	such	as	Doxygen	or	Javadoc.
In	addition,	many	IDEs	will	extract	and	present	documentation	to	users,	such	as
by	 displaying	 a	 method’s	 documentation	 when	 the	 method’s	 name	 is	 typed.
Given	tools	such	as	these,	the	documentation	should	be	located	in	the	place	that
is	most	convenient	for	developers	working	on	the	code.

When	writing	implementation	comments,	don’t	put	all	 the	comments	for	an
entire	method	at	the	top	of	the	method.	Spread	them	out,	pushing	each	comment
down	 to	 the	 narrowest	 scope	 that	 includes	 all	 of	 the	 code	 referred	 to	 by	 the
comment.	 For	 example,	 if	 a	 method	 has	 three	 major	 phases,	 don’t	 write	 one
comment	 at	 the	 top	 of	 the	 method	 that	 describes	 all	 of	 the	 phases	 in	 detail.
Instead,	write	a	separate	comment	for	each	phase	and	position	that	comment	just
above	the	first	line	of	code	in	that	phase.	On	the	other	hand,	it	can	also	be	helpful

to	have	 a	 comment	 at	 the	 top	of	 a	method’s	 implementation	 that	 describes	 the
overall	strategy,	like	this:
//		We	proceed	in	three	phases:

//		Phase	1:	Find	feasible	candidates

//		Phase	2:	Assign	each	candidate	a	score

//		Phase	3:	Choose	the	best,	and	remove	it

Additional	details	can	be	documented	just	above	the	code	for	each	phase.
In	 general,	 the	 farther	 a	 comment	 is	 from	 the	 code	 it	 describes,	 the	more

abstract	 it	 should	 be	 (this	 reduces	 the	 likelihood	 that	 the	 comment	 will	 be
invalidated	by	code	changes).

16.3		Comments	belong	in	the	code,	not	the	commit	log
A	common	mistake	when	modifying	 code	 is	 to	 put	 detailed	 information	 about
the	change	in	the	commit	message	for	the	source	code	repository,	but	then	not	to
document	 it	 in	 the	 code.	 Although	 commit	 messages	 can	 be	 browsed	 in	 the
future	by	scanning	the	repository’s	log,	a	developer	who	needs	the	information	is
unlikely	to	think	of	scanning	the	repository	log.	Even	if	they	do	scan	the	log,	it
will	be	tedious	to	find	the	right	log	message.

When	writing	a	commit	message,	ask	yourself	whether	developers	will	need
to	use	that	information	in	the	future.	If	so,	then	document	this	information	in	the
code.	 An	 example	 is	 a	 commit	 message	 describing	 a	 subtle	 problem	 that
motivated	a	code	change.	If	this	isn’t	documented	in	the	code,	then	a	developer
might	come	along	later	and	undo	the	change	without	realizing	that	they	have	re-
created	a	bug.	 If	you	want	 to	 include	a	copy	of	 this	 information	 in	 the	commit
message	as	well,	that’s	fine,	but	the	most	important	thing	is	to	get	it	in	the	code.
This	 illustrates	 the	 principle	 of	 placing	 documentation	 in	 the	 place	 where
developers	are	most	likely	to	see	it;	the	commit	log	is	rarely	that	place.

16.4		Maintaining	comments:	avoid	duplication
The	second	technique	for	keeping	comments	up	to	date	is	to	avoid	duplication.	If
documentation	is	duplicated,	it	is	more	difficult	for	developers	to	find	and	update
all	of	the	relevant	copies.	Instead,	try	to	document	each	design	decision	exactly
once.	 If	 there	 are	multiple	 places	 in	 the	 code	 that	 are	 affected	 by	 a	 particular
decision,	don’t	repeat	the	documentation	at	each	of	these	points.	Instead,	find	the
most	obvious	single	place	to	put	the	documentation.	For	example,	suppose	there

is	 tricky	 behavior	 related	 to	 a	 variable,	 which	 affects	 several	 different	 places
where	the	variable	is	used.	You	can	document	that	behavior	in	the	comment	next
to	the	variable’s	declaration.	This	is	a	natural	place	that	developers	are	likely	to
check	if	they’re	having	trouble	understanding	code	that	uses	the	variable.

If	 there	 is	 no	 “obvious”	 single	 place	 to	 put	 a	 particular	 piece	 of
documentation	 where	 developers	 will	 find	 it,	 create	 a	 designNotes	 file	 as
described	 in	Section	13.7.	Or,	pick	 the	best	of	 the	available	places	and	put	 the
documentation	 there.	 In	 addition,	 add	 short	 comments	 in	 the	 other	 places	 that
refer	to	the	central	location:	“See	the	comment	in	xyz	for	an	explanation	of	the
code	below.”	If	the	reference	becomes	obsolete	because	the	master	comment	was
moved	 or	 deleted,	 this	 inconsistency	 will	 be	 self-evident	 because	 developers
won’t	 find	 the	 comment	 at	 the	 indicated	 place;	 they	 can	 use	 revision	 control
history	to	find	out	what	happened	to	the	comment	and	then	update	the	reference.
In	contrast,	if	the	documentation	is	duplicated	and	some	of	the	copies	don’t	get
updated,	 there	 will	 be	 no	 indication	 to	 developers	 that	 they	 are	 using	 stale
information.

Don’t	 redocument	 one	 module’s	 design	 decisions	 in	 another	 module.	 For
example,	don’t	put	comments	before	a	method	call	that	explain	what	happens	in
the	 called	 method.	 If	 readers	 want	 to	 know,	 they	 should	 look	 at	 the	 interface
comments	 for	 the	 method.	 Good	 development	 tools	 will	 usually	 provide	 this
information	automatically,	for	example,	by	displaying	the	interface	comments	for
a	method	 if	 you	 select	 the	method’s	 name	 or	 hover	 the	mouse	 over	 it.	 Try	 to
make	it	easy	for	developers	to	find	appropriate	documentation,	but	don’t	do	it	by
repeating	the	documentation.

If	information	is	already	documented	someplace	outside	your	program,
don’t	 repeat	 the	 documentation	 inside	 the	 program;	 just	 reference	 the
external	documentation.	For	example,	if	you	write	a	class	that	implements	the
HTTP	 protocol,	 there’s	 no	 need	 for	 you	 to	 describe	 the	HTTP	 protocol	 inside
your	 code.	 There	 are	 already	 numerous	 sources	 for	 this	 documentation	 on	 the
Web;	 just	 add	 a	 short	 comment	 to	 your	 code	 with	 a	 URL	 for	 one	 of	 these
sources.	 Another	 example	 is	 features	 that	 are	 already	 documented	 in	 a	 user
manual.	 Suppose	 you	 are	 writing	 a	 program	 that	 implements	 a	 collection	 of
commands,	 with	 one	 method	 responsible	 for	 implementing	 each	 command.	 If
there	 is	 a	 user	 manual	 that	 describes	 those	 commands,	 there’s	 no	 need	 to
duplicate	 this	 information	 in	 the	 code.	 Instead,	 include	 a	 short	 note	 like	 the
following	in	the	interface	comment	for	each	command	method:

//	Implements	the	Foo	command;	see	the	user	manual	for	details.

It’s	 important	 that	 readers	 can	 easily	 find	 all	 the	 documentation	 needed	 to
understand	 your	 code,	 but	 that	 doesn’t	 mean	 you	 have	 to	 write	 all	 of	 that
documentation.

16.5	Maintaining	comments:	check	the	diffs
One	 good	 way	 to	 make	 sure	 documentation	 stays	 up	 to	 date	 is	 to	 take	 a	 few
minutes	before	committing	a	change	to	your	revision	control	system	to	scan	over
all	the	changes	for	that	commit;	make	sure	that	each	change	is	properly	reflected
in	 the	 documentation.	 These	 pre-commit	 scans	 will	 also	 detect	 several	 other
problems,	such	as	accidentally	leaving	debugging	code	in	the	system	or	failing	to
fix	TODO	items.

16.6		Higher-level	comments	are	easier	to	maintain
One	 final	 thought	 on	 maintaining	 documentation:	 comments	 are	 easier	 to
maintain	 if	 they	 are	 higher-level	 and	 more	 abstract	 than	 the	 code.	 These
comments	do	not	reflect	the	details	of	the	code,	so	they	will	not	be	affected	by
minor	 code	 changes;	 only	 changes	 in	 overall	 behavior	 will	 affect	 these
comments.	Of	course,	as	discussed	in	Chapter	13,	some	comments	do	need	to	be
detailed	 and	 precise.	 But	 in	 general,	 the	 comments	 that	 are	most	 useful	 (they
don’t	simply	repeat	the	code)	are	also	easiest	to	maintain.

Chapter	17

Consistency

Consistency	 is	 a	 powerful	 tool	 for	 reducing	 the	 complexity	 of	 a	 system	 and
making	its	behavior	more	obvious.	If	a	system	is	consistent,	it	means	that	similar
things	are	done	in	similar	ways,	and	dissimilar	things	are	done	in	different	ways.
Consistency	creates	cognitive	leverage:	once	you	have	learned	how	something	is
done	in	one	place,	you	can	use	that	knowledge	to	immediately	understand	other
places	that	use	the	same	approach.	If	a	system	is	not	implemented	in	a	consistent
fashion,	 developers	 must	 learn	 about	 each	 situation	 separately.	 This	 will	 take
more	time.

Consistency	 reduces	mistakes.	 If	 a	 system	 is	 not	 consistent,	 two	 situations
may	 appear	 the	 same	 when	 in	 fact	 they	 are	 different.	 A	 developer	 may	 see	 a
pattern	 that	 looks	 familiar	 and	make	 incorrect	 assumptions	 based	 on	 previous
encounters	 with	 that	 pattern.	 On	 the	 other	 hand,	 if	 the	 system	 is	 consistent,
assumptions	made	based	on	familiar-looking	situations	will	be	safe.	Consistency
allows	developers	to	work	more	quickly	with	fewer	mistakes.

17.1		Examples	of	consistency
Consistency	can	be	applied	at	many	levels	in	a	system;	here	are	a	few	examples.

Names.	 Chapter	 14	 has	 already	 discussed	 the	 benefits	 of	 using	 names	 in	 a
consistent	way.

Coding	 style.	 It	 is	 common	 nowadays	 for	 development	 organizations	 to	 have
style	 guides	 that	 restrict	 program	 structure	 beyond	 the	 rules	 enforced	 by
compilers.	Modern	 style	 guides	 address	 a	 range	of	 issues,	 such	 as	 indentation,
curly-brace	 placement,	 order	 of	 declarations,	 naming,	 commenting,	 and
restrictions	 on	 language	 features	 considered	 dangerous.	 Style	 guidelines	 make
code	easier	to	read	and	can	reduce	some	kinds	of	errors.

Interfaces.	 An	 interface	with	multiple	 implementations	 is	 another	 example	 of

Interfaces.	 An	 interface	with	multiple	 implementations	 is	 another	 example	 of
consistency.	Once	you	understand	one	implementation	of	the	interface,	any	other
implementation	 becomes	 easier	 to	 understand	 because	 you	 already	 know	 the
features	it	will	have	to	provide.

Design	 patterns.	 Design	 patterns	 are	 generally-accepted	 solutions	 to	 certain
common	problems,	such	as	the	model-view-controller	approach	to	user	interface
design.	 If	 you	 can	 use	 an	 existing	 design	 pattern	 to	 solve	 the	 problem,	 the
implementation	will	 proceed	more	 quickly,	 it	 is	more	 likely	 to	work,	 and	 your
code	 will	 be	 more	 obvious	 to	 readers.	 Design	 patterns	 are	 discussed	 in	 more
detail	in	Section	19.5.

Invariants.	An	 invariant	 is	 a	 property	 of	 a	 variable	 or	 structure	 that	 is	 always
true.	For	example,	a	data	structure	storing	lines	of	text	might	enforce	an	invariant
that	each	line	is	terminated	by	a	newline	character.	Invariants	reduce	the	number
of	 special	 cases	 that	must	 be	 considered	 in	 code	 and	make	 it	 easier	 to	 reason
about	the	code’s	behavior.

17.2		Ensuring	consistency
Consistency	is	hard	to	maintain,	especially	when	many	people	work	on	a	project
over	 a	 long	 time.	 People	 in	 one	 group	 may	 not	 know	 about	 conventions
established	 in	 another	 group.	 Newcomers	 don’t	 know	 the	 rules,	 so	 they
unintentionally	violate	the	conventions	and	create	new	conventions	that	conflict
with	 existing	 ones.	 Here	 are	 a	 few	 tips	 for	 establishing	 and	 maintaining
consistency:

Document.	Create	a	document	that	lists	the	most	important	overall	conventions,
such	as	coding	style	guidelines.	Place	the	document	in	a	spot	where	developers
are	likely	to	see	it,	such	as	a	conspicuous	place	on	the	project	Wiki.	Encourage
new	 people	 joining	 the	 group	 to	 read	 the	 document,	 and	 encourage	 existing
people	 to	 review	 it	 every	 once	 in	 a	 while.	 Several	 style	 guides	 from	 various
organizations	 have	 been	 published	 on	 the	Web;	 consider	 starting	 with	 one	 of
these.

For	 conventions	 that	 are	 more	 localized,	 such	 as	 invariants,	 find	 an
appropriate	 spot	 in	 the	 code	 to	 document	 them.	 If	 you	 don’t	 write	 the
conventions	down,	it’s	unlikely	that	other	people	will	follow	them.

Enforce.	Even	with	good	documentation,	 it’s	hard	 for	developers	 to	 remember
all	of	the	conventions.	The	best	way	to	enforce	conventions	is	to	write	a	tool	that

checks	 for	 violations,	 and	 make	 sure	 that	 code	 cannot	 be	 committed	 to	 the
repository	 unless	 it	 passes	 the	 checker.	 Automated	 checkers	 work	 particularly
well	for	low-level	syntactic	conventions.

One	 of	 my	 recent	 projects	 had	 problems	 with	 line	 termination	 characters.
Some	developers	worked	on	Unix,	where	lines	are	terminated	by	newlines;	others
worked	on	Windows,	where	 lines	 are	 normally	 terminated	by	 a	 carriage-return
followed	by	a	newline.	If	a	developer	on	one	system	made	a	small	edit	to	a	file
previously	edited	on	the	other	system,	the	editor	would	sometimes	replace	all	of
the	 line	 terminators	 with	 ones	 appropriate	 for	 that	 system.	 This	 gave	 the
appearance	that	every	line	of	the	file	had	been	modified,	which	made	it	hard	to
track	 the	 meaningful	 changes.	 We	 established	 a	 convention	 that	 files	 should
contain	 newlines	 only,	 but	 it	was	 hard	 to	 ensure	 that	 every	 tool	 used	 by	 every
developer	 followed	 the	 convention.	 Every	 time	 a	 new	 developer	 joined	 the
project,	 we	 would	 experience	 a	 rash	 of	 line	 termination	 problems	 while	 that
developer	adjusted	to	the	convention.

We	eventually	solved	this	problem	by	writing	a	short	script	that	was	executed
automatically	before	changes	are	committed	 to	 the	 source	code	 repository.	The
script	checks	all	of	the	files	that	have	been	modified	and	aborts	the	commit	if	any
of	 them	contain	carriage	returns.	The	script	can	also	be	run	manually	 to	 repair
damaged	 files	 by	 replacing	 carriage-return/newline	 sequences	 with	 newlines.
This	instantly	eliminated	the	problems,	and	it	also	helped	train	new	developers.

Code	reviews	provide	another	opportunity	for	enforcing	conventions	and	for
educating	new	developers	 about	 the	conventions.	The	more	nit-picky	 that	 code
reviewers	are,	the	more	quickly	everyone	on	the	team	will	learn	the	conventions,
and	the	cleaner	the	code	will	be.

When	in	Rome	...	The	most	important	convention	of	all	is	that	every	developer
should	 follow	 the	 old	 adage	 “When	 in	 Rome,	 do	 as	 the	 Romans	 do.”	 When
working	in	a	new	file,	look	around	to	see	how	the	existing	code	is	structured.	Are
all	public	variables	and	methods	declared	before	private	ones?	Are	the	methods
in	alphabetical	order?	Do	variables	use	“camel	case,”	as	in	firstServerName,	or
“snake	case,”	as	in	first_server_name?	When	you	see	anything	that	looks	like	it
might	possibly	be	a	convention,	 follow	it.	When	making	a	design	decision,	ask
yourself	if	it’s	likely	that	a	similar	decision	was	made	elsewhere	in	the	project;	if
so,	find	an	existing	example	and	use	the	same	approach	in	your	new	code.

Don’t	 change	 existing	 conventions.	 Resist	 the	 urge	 to	 “improve”	 on	 existing

Don’t	 change	 existing	 conventions.	 Resist	 the	 urge	 to	 “improve”	 on	 existing
conventions.	Having	 a	 “better	 idea”	 is	 not	 a	 sufficient	 excuse	 to	 introduce
inconsistencies.	 Your	 new	 idea	 may	 indeed	 be	 better,	 but	 the	 value	 of
consistency	 over	 inconsistency	 is	 almost	 always	 greater	 than	 the	 value	 of	 one
approach	 over	 another.	 Before	 introducing	 inconsistent	 behavior,	 ask	 yourself
two	 questions.	 First,	 do	 you	 have	 significant	 new	 information	 justifying	 your
approach	that	wasn’t	available	when	the	old	convention	was	established?	Second,
is	the	new	approach	so	much	better	that	it	is	worth	taking	the	time	to	update	all
of	the	old	uses?	If	your	organization	agrees	that	the	answers	to	both	questions	are
“yes,”	then	go	ahead	and	make	the	upgrade;	when	you	are	done,	there	should	be
no	 sign	 of	 the	 old	 convention.	 However,	 you	 still	 run	 the	 risk	 that	 other
developers	will	not	know	about	the	new	convention,	so	they	may	reintroduce	the
old	 approach	 in	 the	 future.	 Overall,	 reconsidering	 established	 conventions	 is
rarely	a	good	use	of	developer	time.

17.3		Taking	it	too	far
Consistency	means	not	only	that	similar	things	should	be	done	in	similar	ways,
but	 that	 dissimilar	 things	 should	 be	 done	 in	 different	 ways.	 If	 you	 become
overzealous	 about	 consistency	 and	 try	 to	 force	 dissimilar	 things	 into	 the	 same
approach,	 such	 as	 by	 using	 the	 same	 variable	 name	 for	 things	 that	 are	 really
different	or	using	an	existing	design	pattern	for	a	task	that	doesn’t	fit	the	pattern,
you’ll	create	complexity	and	confusion.	Consistency	only	provides	benefits	when
developers	have	confidence	that	“if	it	looks	like	an	x,	it	really	is	an	x.”

17.4		Conclusion
Consistency	 is	another	example	of	 the	 investment	mindset.	 It	will	 take	a	bit	of
extra	work	to	ensure	consistency:	work	to	decide	on	conventions,	work	to	create
automated	 checkers,	work	 to	 look	 for	 similar	 situations	 to	mimic	 in	 new	code,
and	work	in	code	reviews	to	educate	the	team.	The	return	on	this	 investment	is
that	your	code	will	be	more	obvious.	Developers	will	be	able	to	understand	the
code’s	behavior	more	quickly	and	accurately,	 and	 this	will	 allow	 them	 to	work
faster,	with	fewer	bugs.

Chapter	18

Code	Should	be	Obvious

Obscurity	is	one	of	the	two	main	causes	of	complexity	described	in	Section	2.3.
Obscurity	occurs	when	 important	 information	about	a	system	 is	not	obvious	 to
new	developers.	The	solution	to	the	obscurity	problem	is	to	write	code	in	a	way
that	makes	it	obvious;	this	chapter	discusses	some	of	the	factors	that	make	code
more	or	less	obvious.

If	code	is	obvious,	it	means	that	someone	can	read	the	code	quickly,	without
much	thought,	and	their	first	guesses	about	the	behavior	or	meaning	of	the	code
will	be	correct.	If	code	is	obvious,	a	reader	doesn’t	need	to	spend	much	time	or
effort	to	gather	all	the	information	they	need	to	work	with	the	code.	If	code	is	not
obvious,	then	a	reader	must	expend	a	lot	of	time	and	energy	to	understand	it.	Not
only	 does	 this	 reduce	 their	 efficiency,	 but	 it	 also	 increases	 the	 likelihood	 of
misunderstanding	 and	 bugs.	 Obvious	 code	 needs	 fewer	 comments	 than
nonobvious	code.

“Obvious”	 is	 in	 the	mind	 of	 the	 reader:	 it’s	 easier	 to	 notice	 that	 someone
else’s	 code	 is	nonobvious	 than	 to	 see	problems	with	your	own	code.	Thus,	 the
best	 way	 to	 determine	 the	 obviousness	 of	 code	 is	 through	 code	 reviews.	 If
someone	reading	your	code	says	it’s	not	obvious,	then	it’s	not	obvious,	no	matter
how	 clear	 it	 may	 seem	 to	 you.	 By	 trying	 to	 understand	 what	 made	 the	 code
nonobvious,	you	will	learn	how	to	write	better	code	in	the	future.

18.1		Things	that	make	code	more	obvious
Two	 of	 the	 most	 important	 techniques	 for	 making	 code	 obvious	 have	 already
been	discussed	in	previous	chapters.	The	first	is	choosing	good	names	(Chapter
14).	Precise	and	meaningful	names	clarify	 the	behavior	of	 the	code	and	reduce
the	need	for	documentation.	If	a	name	is	vague	or	ambiguous,	then	readers	will
have	read	through	the	code	in	order	to	deduce	the	meaning	of	the	named	entity;
this	 is	 time-consuming	 and	 error-prone.	 The	 second	 technique	 is	 consistency

(Chapter	17).	If	similar	things	are	always	done	in	similar	ways,	then	readers	can
recognize	 patterns	 they	 have	 seen	 before	 and	 immediately	 draw	 (safe)
conclusions	without	analyzing	the	code	in	detail.

Here	 are	 a	 few	 other	 general-purpose	 techniques	 for	 making	 code	 more
obvious:

Judicious	use	of	white	space.	The	way	code	is	formatted	can	impact	how	easy	it
is	 to	 understand.	 Consider	 the	 following	 parameter	 documentation,	 in	 which
whitespace	has	been	squeezed	out:
/**

	*		...
	*		@param	numThreads	The	number	of	threads	that	this	manager	should
	*		spin	up	in	order	to	manage	ongoing	connections.	The	MessageManager
	*		spins	up	at	least	one	thread	for	every	open	connection,	so	this
	*		should	be	at	least	equal	to	the	number	of	connections	you	expect
	*		to	be	open	at	once.	This	should	be	a	multiple	of	that	number	if
	*		you	expect	to	send	a	lot	of	messages	in	a	short	amount	of	time.
	*		@param	handler	Used	as	a	callback	in	order	to	handle	incoming
	*		messages	on	this	MessageManager's	open	connections.	See
	*		{@code	MessageHandler}	and	{@code	handleMessage}	for	details.
	*/

It’s	 hard	 to	 see	where	 the	 documentation	 for	 one	 parameter	 ends	 and	 the	 next
begins.	It’s	not	even	obvious	how	many	parameters	there	are,	or	what	their	names
are.	If	a	little	whitespace	is	added,	the	structure	suddenly	becomes	clear	and	the
documentation	is	easier	to	scan:
/**

	*		@param	numThreads
	*											The	number	of	threads	that	this	manager	should	spin	up	in
	*											order	to	manage	ongoing	connections.	The	MessageManager

spins

	*											up	at	least	one	thread	for	every	open	connection,	so	this
	*											should	be	at	least	equal	to	the	number	of	connections	you
	*											expect	to	be	open	at	once.	This	should	be	a	multiple	of

that

	*											number	if	you	expect	to	send	a	lot	of	messages	in	a	short
	*											amount	of	time.

	*		@param	handler
	*											Used	as	a	callback	in	order	to	handle	incoming	messages	on
	*											this	MessageManager's	open	connections.	See
	*											{@code	MessageHandler}	and	{@code	handleMessage}	for

details.

	*/

Blank	lines	are	also	useful	to	separate	major	blocks	of	code	within	a	method,
such	as	in	the	following	example:
void*	Buffer::allocAux(size_t	numBytes)

{

								//		Round	up	the	length	to	a	multiple	of	8	bytes,	to	ensure
alignment.

								uint32_t	numBytes32	=		(downCast<uint32_t>(numBytes)	+	7)	&	~0x7;
								assert(numBytes32	!=	0);
	
								//		If	there	is	enough	memory	at	firstAvailable,	use	that.	Work

down

								//		from	the	top,	because	this	memory	is	guaranteed	to	be	aligned
								//		(memory	at	the	bottom	may	have	been	used	for	variable-size

chunks).

								if		(availableLength	>=	numBytes32)	{
														availableLength	-=	numBytes32;
														return	firstAvailable	+	availableLength;
								}

								//		Next,	see	if	there	is	extra	space	at	the	end	of	the	last	chunk.
								if		(extraAppendBytes	>=	numBytes32)	{
														extraAppendBytes	-=	numBytes32;
														return	lastChunk->data	+	lastChunk->length	+	extraAppendBytes;
								}

								//		Must	create	a	new	space	allocation;	allocate	space	within	it.
								uint32_t	allocatedLength;
								firstAvailable	=	getNewAllocation(numBytes32,	&allocatedLength);
								availableLength	=	allocatedLength	numBytes32;

								return	firstAvailable	+	availableLength;
}

This	approach	works	particularly	well	 if	 the	 first	 line	after	each	blank	 line	 is	a
comment	describing	the	next	block	of	code:	the	blank	lines	make	the	comments
more	visible.

White	space	within	a	statement	helps	to	clarify	the	structure	of	the	statement.
Compare	the	following	two	statements,	one	of	which	has	whitespace	and	one	of
which	doesn’t:
for(int	pass=1;pass>=0&&!empty;pass--)	{

for	(int	pass	=	1;	pass	>=	0	&&	!empty;	pass--)	{

Comments.	Sometimes	it	isn’t	possible	to	avoid	code	that	is	nonobvious.	When
this	 happens,	 it’s	 important	 to	 use	 comments	 to	 compensate	 by	 providing	 the
missing	information.	To	do	this	well,	you	must	put	yourself	in	the	position	of	the
reader	and	figure	out	what	is	likely	to	confuse	them,	and	what	information	will
clear	up	that	confusion.	The	next	section	shows	a	few	examples.

18.2	Things	that	make	code	less	obvious
There	are	many	 things	 that	 can	make	code	nonobvious;	 this	 section	provides	a
few	examples.	Some	of	 these,	 such	as	event-driven	programming,	are	useful	 in
some	 situations,	 so	 you	 may	 end	 up	 using	 them	 anyway.	When	 this	 happens,
extra	documentation	can	help	to	minimize	reader	confusion.

Event-driven	 programming.	 In	 event-driven	 programming,	 an	 application
responds	to	external	occurrences,	such	as	the	arrival	of	a	network	packet	or	the
press	 of	 a	 mouse	 button.	 One	 module	 is	 responsible	 for	 reporting	 incoming
events.	Other	parts	of	the	application	register	interest	in	certain	events	by	asking
the	event	module	to	invoke	a	given	function	or	method	when	those	events	occur.

Event-driven	programming	makes	it	hard	to	follow	the	flow	of	control.	The
event	handler	functions	are	never	invoked	directly;	they	are	invoked	indirectly	by
the	event	module,	typically	using	a	function	pointer	or	interface.	Even	if	you	find
the	 point	 of	 invocation	 in	 the	 event	module,	 it	 still	 isn’t	 possible	 to	 tell	which
specific	 function	 will	 be	 invoked:	 this	 will	 depend	 on	 which	 handlers	 were
registered	at	runtime.	Because	of	this,	it’s	hard	to	reason	about	event-driven	code
or	convince	yourself	that	it	works.

To	compensate	for	this	obscurity,	use	the	interface	comment	for	each	handler

To	compensate	for	this	obscurity,	use	the	interface	comment	for	each	handler
function	to	indicate	when	it	is	invoked,	as	in	this	example:
/**

	*	This	method	is	invoked	in	the	dispatch	thread	by	a	transport	if	a
	*	transport-level	error	prevents	an	RPC	from	completing.
	*/
void

Transport::RpcNotifier::failed()	{

								...
}

	Red	Flag:	Nonobvious	Code	
If	 the	 meaning	 and	 behavior	 of	 code	 cannot	 be	 understood	 with	 a	 quick
reading,	 it	 is	a	red	flag.	Often	this	means	that	 there	is	 important	 information
that	is	not	immediately	clear	to	someone	reading	the	code.

Generic	containers.	Many	 languages	provide	generic	classes	 for	grouping	 two
or	more	 items	 into	 a	 single	 object,	 such	 as	Pair	 in	 Java	 or	 std::pair	 in	C++.
These	 classes	 are	 tempting	 because	 they	 make	 it	 easy	 to	 pass	 around	 several
objects	with	a	single	variable.	One	of	the	most	common	uses	is	to	return	multiple
values	from	a	method,	as	in	this	Java	example:
return	new	Pair<Integer,	Boolean>(currentTerm,	false);

Unfortunately,	generic	containers	result	in	nonobvious	code	because	the	grouped
elements	have	generic	names	that	obscure	their	meaning.	In	the	example	above,
the	 caller	 must	 reference	 the	 two	 returned	 values	 with	 result.getKey()	 and
result.getValue(),	which	give	no	clue	about	the	actual	meaning	of	the	values.

Thus,	it’s	better	not	to	use	generic	containers.	If	you	need	a	container,	define
a	new	class	or	 structure	 that	 is	 specialized	 for	 the	particular	use.	You	can	 then
use	 meaningful	 names	 for	 the	 elements,	 and	 you	 can	 provide	 additional
documentation	 in	 the	 declaration,	 which	 is	 not	 possible	 with	 the	 generic
container.

This	 example	 illustrates	 a	 general	 rule:	 software	 should	 be	 designed	 for
ease	of	reading,	not	ease	of	writing.	Generic	containers	are	expedient	 for	 the

person	writing	the	code,	but	they	create	confusion	for	all	the	readers	that	follow.
It’s	better	for	the	person	writing	the	code	to	spend	a	few	extra	minutes	to	define	a
specific	container	structure,	so	that	the	resulting	code	is	more	obvious.

Different	 types	 for	 declaration	 and	 allocation.	 Consider	 the	 following	 Java
example:
private	List<Message>	incomingMessageList;

...

incomingMessageList	=	new	ArrayList<Message>();

The	variable	is	declared	as	a	List,	but	the	actual	value	is	an	ArrayList.	This	code
is	legal,	since	List	is	a	superclass	of	ArrayList,	but	it	can	mislead	a	reader	who
sees	 the	 declaration	 but	 not	 the	 actual	 allocation.	 The	 actual	 type	may	 impact
how	 the	 variable	 is	 used	 (ArrayLists	 have	 different	 performance	 and	 thread-
safety	 properties	 than	 other	 subclasses	 of	 List),	 so	 it	 is	 better	 to	 match	 the
declaration	with	the	allocation.

Code	that	violates	reader	expectations.	Consider	the	following	code,	which	is
the	main	program	for	a	Java	application
public	static	void	main(String[]	args)	{

								...
								new	RaftClient(myAddress,	serverAddresses);
}

Most	applications	exit	when	their	main	programs	return,	so	readers	are	likely	to
assume	that	will	happen	here.	However,	that	is	not	the	case.	The	constructor	for
RaftClient	creates	additional	threads,	which	continue	to	operate	even	though	the
application’s	main	 thread	 finishes.	This	 behavior	 should	 be	 documented	 in	 the
interface	 comment	 for	 the	 RaftClient	 constructor,	 but	 the	 behavior	 is
nonobvious	enough	that	it’s	worth	putting	a	short	comment	at	the	end	of	main	as
well.	The	comment	should	 indicate	 that	 the	application	will	continue	executing
in	 other	 threads.	 Code	 is	 most	 obvious	 if	 it	 conforms	 to	 the	 conventions	 that
readers	 will	 be	 expecting;	 if	 it	 doesn’t,	 then	 it’s	 important	 to	 document	 the
behavior	so	readers	aren’t	confused.

18.3		Conclusion
Another	way	of	thinking	about	obviousness	is	in	terms	of	information.	If	code	is
nonobvious,	 that	 usually	means	 there	 is	 important	 information	 about	 the	 code

that	 the	 reader	does	not	have:	 in	 the	RaftClient	 example,	 the	 reader	might	not
know	that	the	RaftClient	constructor	created	new	threads;	in	the	Pair	example,
the	 reader	 might	 not	 know	 that	 result.getKey()	 returns	 the	 number	 of	 the
current	term.

To	 make	 code	 obvious,	 you	 must	 ensure	 that	 readers	 always	 have	 the
information	they	need	to	understand	it.	You	can	do	this	in	three	ways.	The	best
way	 is	 to	 reduce	 the	 amount	 of	 information	 that	 is	 needed,	 using	 design
techniques	 such	 as	 abstraction	 and	 eliminating	 special	 cases.	 Second,	 you	 can
take	 advantage	 of	 information	 that	 readers	 have	 already	 acquired	 in	 other
contexts	(for	example,	by	following	conventions	and	conforming	to	expectations)
so	 readers	 don’t	 have	 to	 learn	 new	 information	 for	 your	 code.	 Third,	 you	 can
present	the	important	information	to	them	in	the	code,	using	techniques	such	as
good	names	and	strategic	comments.

Chapter	19

Software	Trends

As	 a	 way	 of	 illustrating	 the	 principles	 discussed	 in	 this	 book,	 this	 chapter
considers	 several	 trends	 and	 patterns	 that	 have	 become	 popular	 in	 software
development	over	the	last	few	decades.	For	each	trend,	I	will	describe	how	that
trend	 relates	 to	 the	 principles	 in	 this	 book	 and	 use	 the	 principles	 to	 evaluate
whether	that	trend	provides	leverage	against	software	complexity.

19.1		Object-oriented	programming	and	inheritance
Object-oriented	programming	is	one	of	the	most	important	new	ideas	in	software
development	 over	 the	 last	 30–40	 years.	 It	 introduced	 notions	 such	 as	 classes,
inheritance,	 private	 methods,	 and	 instance	 variables.	 If	 used	 carefully,	 these
mechanisms	 can	 help	 to	 produce	 better	 software	 designs.	 For	 example,	 private
methods	and	variables	can	be	used	to	ensure	information	hiding:	no	code	outside
a	class	can	invoke	private	methods	or	access	private	variables,	so	there	can’t	be
any	external	dependencies	on	them.

One	 of	 the	 key	 elements	 of	 object-oriented	 programming	 is	 inheritance.
Inheritance	comes	 in	 two	forms,	which	have	different	 implications	for	software
complexity.	 The	 first	 form	 of	 inheritance	 is	 interface	 inheritance,	 in	 which	 a
parent	 class	 defines	 the	 signatures	 for	 one	 or	 more	 methods,	 but	 does	 not
implement	 the	 methods.	 Each	 subclass	 must	 implement	 the	 signatures,	 but
different	 subclasses	 can	 implement	 the	 same	 methods	 in	 different	 ways.	 For
example,	 the	 interface	might	 define	methods	 for	 performing	 I/O;	 one	 subclass
might	 implement	 the	 I/O	 operations	 for	 disk	 files,	 and	 another	 subclass	might
implement	the	same	operations	for	network	sockets.

Interface	 inheritance	 provides	 leverage	 against	 complexity	 by	 reusing	 the
same	 interface	 for	multiple	 purposes.	 It	 allows	 knowledge	 acquired	 in	 solving
one	problem	(such	as	how	to	use	an	I/O	interface	to	read	and	write	disk	files)	to
be	used	to	solve	other	problems	(such	as	communicating	over	a	network	socket).

Another	 way	 of	 thinking	 about	 this	 is	 in	 terms	 of	 depth:	 the	 more	 different
implementations	 there	are	of	an	 interface,	 the	deeper	 the	 interface	becomes.	 In
order	for	an	interface	to	have	many	implementations,	it	must	capture	the	essential
features	of	all	the	underlying	implementations	while	steering	clear	of	the	details
that	differ	between	the	implementations;	this	notion	is	at	the	heart	of	abstraction.

The	second	form	of	inheritance	is	implementation	inheritance.	In	this	form,	a
parent	class	defines	not	only	signatures	for	one	or	more	methods,	but	also	default
implementations.	 Subclasses	 can	 choose	 to	 inherit	 the	 parent’s	 implementation
of	 a	method	or	override	 it	 by	defining	 a	new	method	with	 the	 same	 signature.
Without	 implementation	 inheritance,	 the	 same	 method	 implementation	 might
need	 to	 be	 duplicated	 in	 several	 subclasses,	 which	would	 create	 dependencies
between	 those	 subclasses	 (modifications	 would	 need	 to	 be	 duplicated	 in	 all
copies	of	the	method).	Thus,	implementation	inheritance	reduces	the	amount	of
code	that	needs	to	be	modified	as	the	system	evolves;	in	other	words,	it	reduces
the	change	amplification	problem	described	in	Chapter	2.

However,	 implementation	 inheritance	 creates	 dependencies	 between	 the
parent	 class	 and	 each	 of	 its	 subclasses.	 Class	 instance	 variables	 in	 the	 parent
class	 are	 often	 accessed	 by	 both	 the	 parent	 and	 child	 classes;	 this	 results	 in
information	leakage	between	the	classes	in	the	inheritance	hierarchy	and	makes	it
hard	 to	 modify	 one	 class	 in	 the	 hierarchy	 without	 looking	 at	 the	 others.	 For
example,	a	developer	making	changes	to	the	parent	class	may	need	to	examine	all
of	the	subclasses	to	ensure	that	the	changes	don’t	break	anything.	Similarly,	if	a
subclass	 overrides	 a	method	 in	 the	 parent	 class,	 the	 developer	 of	 the	 subclass
may	 need	 to	 examine	 the	 implementation	 in	 the	 parent.	 In	 the	 worst	 case,
programmers	 will	 need	 complete	 knowledge	 of	 the	 entire	 class	 hierarchy
underneath	the	parent	class	in	order	to	make	changes	to	any	of	the	classes.	Class
hierarchies	 that	 use	 implementation	 inheritance	 extensively	 tend	 to	 have	 high
complexity.

Thus,	implementation	inheritance	should	be	used	with	caution.	Before	using
implementation	inheritance,	consider	whether	an	approach	based	on	composition
can	 provide	 the	 same	 benefits.	 For	 instance,	 it	 may	 be	 possible	 to	 use	 small
helper	 classes	 to	 implement	 the	 shared	 functionality.	 Rather	 than	 inheriting
functions	from	a	parent,	the	original	classes	can	each	build	upon	the	features	of
the	helper	classes.

If	there	is	no	viable	alternative	to	implementation	inheritance,	try	to	separate
the	state	managed	by	the	parent	class	from	that	managed	by	subclasses.	One	way

to	do	this	is	for	certain	instance	variables	to	be	managed	entirely	by	methods	in
the	 parent	 class,	 with	 subclasses	 using	 them	 only	 in	 a	 read-only	 fashion	 or
through	other	methods	in	the	parent	class.	This	applies	the	notion	of	information
hiding	within	the	class	hierarchy	to	reduce	dependencies.

Although	 the	 mechanisms	 provided	 by	 object-oriented	 programming	 can
assist	in	implementing	clean	designs,	they	do	not,	by	themselves,	guarantee	good
design.	For	example,	if	classes	are	shallow,	or	have	complex	interfaces,	or	permit
external	 access	 to	 their	 internal	 state,	 then	 they	 will	 still	 result	 in	 high
complexity.

19.2		Agile	development
Agile	development	 is	an	approach	to	software	development	 that	emerged	in	the
late	1990’s	from	a	collection	of	ideas	about	how	to	make	software	development
more	 lightweight,	 flexible,	 and	 incremental;	 it	 was	 formally	 defined	 during	 a
meeting	of	practitioners	in	2001.	Agile	development	is	mostly	about	the	process
of	software	development	(organizing	teams,	managing	schedules,	the	role	of	unit
testing,	 interacting	 with	 customers,	 etc.)	 as	 opposed	 to	 software	 design.
Nonetheless,	it	relates	to	some	of	the	design	principles	in	this	book.

One	of	the	most	important	elements	of	agile	development	is	 the	notion	that
development	 should	 be	 incremental	 and	 iterative.	 In	 the	 agile	 approach,	 a
software	 system	 is	 developed	 in	 a	 series	 of	 iterations,	 each	 of	which	 adds	 and
evaluates	a	 few	new	features;	each	 iteration	 includes	design,	 test,	and	customer
input.	In	general,	this	is	similar	to	the	incremental	approach	advocated	here.	As
mentioned	 in	 Chapter	 1,	 it	 isn’t	 possible	 to	 visualize	 a	 complex	 system	 well
enough	at	 the	outset	of	a	project	 to	determine	 the	best	design.	The	best	way	to
end	 up	 with	 a	 good	 design	 is	 to	 develop	 a	 system	 in	 increments,	 where	 each
increment	adds	a	few	new	abstractions	and	refactors	existing	abstractions	based
on	experience.	This	is	similar	to	the	agile	development	approach.

One	 of	 the	 risks	 of	 agile	 development	 is	 that	 it	 can	 lead	 to	 tactical
programming.	 Agile	 development	 tends	 to	 focus	 developers	 on	 features,	 not
abstractions,	and	it	encourages	developers	to	put	off	design	decisions	in	order	to
produce	 working	 software	 as	 soon	 as	 possible.	 For	 example,	 some	 agile
practitioners	 argue	 that	 you	 shouldn’t	 implement	 general-purpose	 mechanisms
right	away;	 implement	a	minimal	special-purpose	mechanism	to	start	with,	and
refactor	 into	 something	 more	 generic	 later,	 once	 you	 know	 that	 it’s	 needed.
Although	 these	 arguments	 make	 sense	 to	 a	 degree,	 they	 argue	 against	 an

investment	approach,	and	they	encourage	a	more	tactical	style	of	programming.
This	can	result	in	a	rapid	accumulation	of	complexity.

Developing	 incrementally	 is	 generally	 a	 good	 idea,	 but	 the	 increments	 of
development	 should	 be	 abstractions,	 not	 features.	 It’s	 fine	 to	 put	 off	 all
thoughts	about	a	particular	abstraction	until	 it’s	needed	by	a	 feature.	Once	you
need	 the	 abstraction,	 invest	 the	 time	 to	 design	 it	 cleanly;	 follow	 the	 advice	 of
Chapter	6	and	make	it	somewhat	general-purpose.

19.3		Unit	tests
It	used	to	be	 that	developers	rarely	wrote	 tests.	 If	 tests	were	written	at	all,	 they
were	 written	 by	 a	 separate	 QA	 team.	 However,	 one	 of	 the	 tenets	 of	 agile
development	 is	 that	 testing	 should	 be	 tightly	 integrated	with	 development,	 and
programmers	 should	 write	 tests	 for	 their	 own	 code.	 This	 practice	 has	 now
become	 widespread.	 Tests	 are	 typically	 divided	 into	 two	 kinds:	 unit	 tests	 and
system	tests.	Unit	 tests	are	the	ones	most	often	written	by	developers.	They	are
small	and	focused:	each	test	usually	validates	a	small	section	of	code	in	a	single
method.	 Unit	 tests	 can	 be	 run	 in	 isolation,	 without	 setting	 up	 a	 production
environment	 for	 the	 system.	Unit	 tests	 are	 often	 run	 in	 conjunction	with	 a	 test
coverage	 tool	 to	 ensure	 that	 every	 line	 of	 code	 in	 the	 application	 is	 tested.
Whenever	 developers	 write	 new	 code	 or	 modify	 existing	 code,	 they	 are
responsible	for	updating	the	unit	tests	to	maintain	proper	test	coverage.

The	second	kind	of	test	consists	of	system	tests	(sometimes	called	integration
tests),	which	 ensure	 that	 the	 different	 parts	 of	 an	 application	 all	work	 together
properly.	 They	 typically	 involve	 running	 the	 entire	 application	 in	 a	 production
environment.	 System	 tests	 are	 more	 likely	 to	 be	 written	 by	 a	 separate	 QA	 or
testing	team.

Tests,	 particularly	 unit	 tests,	 play	 an	 important	 role	 in	 software	 design
because	 they	 facilitate	 refactoring.	Without	 a	 test	 suite,	 it’s	 dangerous	 to	make
major	 structural	changes	 to	a	 system.	There’s	no	easy	way	 to	 find	bugs,	 so	 it’s
likely	that	bugs	will	go	undetected	until	the	new	code	is	deployed,	where	they	are
much	more	expensive	to	find	and	fix.	As	a	result,	developers	avoid	refactoring	in
systems	 without	 good	 test	 suites;	 they	 try	 to	 minimize	 the	 number	 of	 code
changes	 for	 each	 new	 feature	 or	 bug	 fix,	 which	 means	 that	 complexity
accumulates	and	design	mistakes	don’t	get	corrected.

With	a	good	set	of	tests,	developers	can	be	more	confident	when	refactoring
because	 the	 test	 suite	will	 find	most	bugs	 that	 are	 introduced.	This	encourages

developers	to	make	structural	improvements	to	a	system,	which	results	in	a	better
design.	Unit	tests	are	particularly	valuable:	they	provide	a	higher	degree	of	code
coverage	than	system	tests,	so	they	are	more	likely	to	uncover	any	bugs.

For	 example,	 during	 the	 development	 of	 the	 Tcl	 scripting	 language,	 we
decided	to	improve	performance	by	replacing	Tcl’s	 interpreter	with	a	byte-code
compiler.	This	was	a	huge	change	that	affected	almost	every	part	of	the	core	Tcl
engine.	Fortunately,	Tcl	had	an	excellent	unit	test	suite,	which	we	ran	on	the	new
byte-code	engine.	The	existing	tests	were	so	effective	in	uncovering	bugs	in	the
new	engine	that	only	a	single	bug	turned	up	after	the	alpha	release	of	the	byte-
code	compiler.

19.4		Test-driven	development
Test-driven	 development	 is	 an	 approach	 to	 software	 development	 where
programmers	write	unit	tests	before	they	write	code.	When	creating	a	new	class,
the	developer	first	writes	unit	tests	for	the	class,	based	on	its	expected	behavior.
None	of	 the	 tests	pass,	since	 there	 is	no	code	for	 the	class.	Then	 the	developer
works	through	the	tests	one	at	a	time,	writing	enough	code	for	that	test	to	pass.
When	all	of	the	tests	pass,	the	class	is	finished.

Although	I	am	a	strong	advocate	of	unit	testing,	I	am	not	a	fan	of	test-driven
development.	The	 problem	 with	 test-driven	 development	 is	 that	 it	 focuses
attention	on	getting	specific	 features	working,	rather	 than	 finding	 the	best
design.	 This	 is	 tactical	 programming	 pure	 and	 simple,	 with	 all	 of	 its
disadvantages.	Test-driven	development	is	too	incremental:	at	any	point	in	time,
it’s	tempting	to	just	hack	in	the	next	feature	to	make	the	next	test	pass.	There’s	no
obvious	time	to	do	design,	so	it’s	easy	to	end	up	with	a	mess.

As	 mentioned	 in	 Section	 19.2,	 the	 units	 of	 development	 should	 be
abstractions,	 not	 features.	Once	you	discover	 the	need	 for	 an	 abstraction,	 don’t
create	the	abstraction	in	pieces	over	time;	design	it	all	at	once	(or	at	least	enough
to	provide	a	reasonably	comprehensive	set	of	core	functions).	This	is	more	likely
to	produce	a	clean	design	whose	pieces	fit	together	well.

One	place	where	it	makes	sense	to	write	the	tests	first	 is	when	fixing	bugs.
Before	fixing	a	bug,	write	a	unit	test	that	fails	because	of	the	bug.	Then	fix	the
bug	and	make	sure	 that	 the	unit	 test	now	passes.	This	 is	 the	best	way	 to	make
sure	you	really	have	fixed	the	bug.	If	you	fix	the	bug	before	writing	the	test,	it’s
possible	 that	 the	new	unit	 test	doesn’t	actually	 trigger	 the	bug,	 in	which	case	it
won’t	tell	you	whether	you	really	fixed	the	problem.

19.5	Design	patterns
A	design	pattern	 is	a	commonly	used	approach	for	solving	a	particular	kind	of
problem,	 such	as	 an	 iterator	or	 an	observer.	The	notion	of	design	patterns	was
popularized	by	the	book	Design	Patterns:	Elements	of	Reusable	Object-Oriented
Software	by	Gamma,	Helm,	Johnson,	and	Vlissides,	and	design	patterns	are	now
widely	used	in	object-oriented	software	development.

Design	 patterns	 represent	 an	 alternative	 to	 design:	 rather	 than	 designing	 a
new	mechanism	 from	 scratch,	 just	 apply	 a	well-known	 design	 pattern.	 For	 the
most	 part,	 this	 is	 good:	 design	 patterns	 arose	 because	 they	 solve	 common
problems,	and	because	they	are	generally	agreed	to	provide	clean	solutions.	If	a
design	pattern	works	well	 in	 a	particular	 situation,	 it	will	probably	be	hard	 for
you	to	come	up	with	a	different	approach	that	is	better.

The	greatest	risk	with	design	patterns	is	over-application.	Not	every	problem
can	be	solved	cleanly	with	an	existing	design	pattern;	don’t	try	to	force	a	problem
into	 a	 design	 pattern	 when	 a	 custom	 approach	 will	 be	 cleaner.	 Using	 design
patterns	doesn’t	automatically	improve	a	software	system;	it	only	does	so	if	 the
design	patterns	fit.	As	with	many	ideas	in	software	design,	the	notion	that	design
patterns	are	good	doesn’t	necessarily	mean	that	more	design	patterns	are	better.

19.6		Getters	and	setters
In	 the	 Java	 programming	 community,	 getter	 and	 setter	 methods	 are	 a	 popular
design	pattern.	A	getter	and	a	setter	are	associated	with	an	instance	variable	for	a
class.	They	have	 names	 like	getFoo	 and	setFoo,	where	Foo	 is	 the	 name	 of	 the
variable.	 The	 getter	 method	 returns	 the	 current	 value	 of	 the	 variable,	 and	 the
setter	method	modifies	the	value.

Getters	 and	 setters	 aren’t	 strictly	 necessary,	 since	 instance	 variables	 can	 be
made	public.	The	 argument	 for	getters	 and	 setters	 is	 that	 they	 allow	additional
functions	 to	 be	 performed	 while	 getting	 and	 setting,	 such	 as	 updating	 related
values	 when	 a	 variable	 changes,	 notifying	 listeners	 of	 changes,	 or	 enforcing
constraints	on	values.	Even	 if	 these	features	aren’t	needed	 initially,	 they	can	be
added	later	without	changing	the	interface.

Although	 it	may	make	 sense	 to	 use	 getters	 and	 setters	 if	 you	must	 expose
instance	variables,	 it’s	better	not	 to	expose	 instance	variables	 in	 the	 first	place.
Exposed	 instance	 variables	 mean	 that	 part	 of	 the	 class’s	 implementation	 is
visible	externally,	which	violates	the	idea	of	information	hiding	and	increases	the

complexity	 of	 the	 class’s	 interface.	 Getters	 and	 setters	 are	 shallow	 methods
(typically	only	a	single	line),	so	they	add	clutter	to	the	class’s	interface	without
providing	 much	 functionality.	 It’s	 better	 to	 avoid	 getters	 and	 setters	 (or	 any
exposure	of	implementation	data)	as	much	as	possible.

One	of	the	risks	of	establishing	a	design	pattern	is	that	developers	assume	the
pattern	is	good	and	try	to	use	it	as	much	as	possible.	This	has	led	to	overusage	of
getters	and	setters	in	Java.

19.7		Conclusion
Whenever	you	encounter	a	proposal	for	a	new	software	development	paradigm,
challenge	it	from	the	standpoint	of	complexity:	does	the	proposal	really	help	to
minimize	complexity	in	large	software	systems?	Many	proposals	sound	good	on
the	surface,	but	 if	you	 look	more	deeply	you	will	 see	 that	 some	of	 them	make
complexity	worse,	not	better.

Chapter	20

Designing	for	Performance

Up	until	this	point,	the	discussion	of	software	design	has	focused	on	complexity;
the	 goal	 has	 been	 to	make	 software	 as	 simple	 and	 understandable	 as	 possible.
But	 what	 if	 you	 are	 working	 on	 a	 system	 that	 needs	 to	 be	 fast?	 How	 should
performance	 considerations	 affect	 the	 design	 process?	 This	 chapter	 discusses
how	 to	 achieve	 high	 performance	 without	 sacrificing	 clean	 design.	 The	 most
important	 idea	 is	 still	 simplicity:	 not	 only	 does	 simplicity	 improve	 a	 system’s
design,	but	it	usually	makes	systems	faster.

20.1		How	to	think	about	performance
The	first	question	to	address	is	“how	much	should	you	worry	about	performance
during	the	normal	development	process?”	If	you	try	to	optimize	every	statement
for	 maximum	 speed,	 it	 will	 slow	 down	 development	 and	 create	 a	 lot	 of
unnecessary	 complexity.	 Furthermore,	 many	 of	 the	 “optimizations”	 won’t
actually	 help	 performance.	 On	 the	 other	 hand,	 if	 you	 completely	 ignore
performance	 issues,	 it’s	 easy	 to	 end	 up	 with	 a	 large	 number	 of	 significant
inefficiencies	spread	throughout	the	code;	the	resulting	system	can	easily	be	5–
10x	slower	 than	 it	needs	 to	be.	 In	 this	“death	by	a	 thousand	cuts”	 scenario	 it’s
hard	to	come	back	later	and	improve	the	performance,	because	there	is	no	single
improvement	that	will	have	much	impact.

The	best	approach	is	something	between	these	extremes,	where	you	use	basic
knowledge	 of	 performance	 to	 choose	 design	 alternatives	 that	 are	 “naturally
efficient”	yet	also	clean	and	simple.	The	key	is	to	develop	an	awareness	of	which
operations	are	fundamentally	expensive.	Here	are	a	few	examples	of	operations
that	are	relatively	expensive	today:

Network	communication:	even	within	a	datacenter,	a	round-trip	message
exchange	can	take	10–50	µs,	which	is	tens	of	thousands	of	instruction	times.
Wide-area	round-trips	can	take	10–100	ms.
I/O	to	secondary	storage:	disk	I/O	operations	typically	take	5–10	ms,	which

is	millions	of	instruction	times.	Flash	storage	takes	10–100	µs.	New
emerging	nonvolatile	memories	may	be	as	fast	as	1	µs,	but	this	is	still
around	2000	instruction	times.
Dynamic	memory	allocation	(malloc	in	C,	new	in	C++	or	Java)	typically
involves	significant	overhead	for	allocation,	freeing,	and	garbage	collection.
Cache	misses:	fetching	data	from	DRAM	into	an	on-chip	processor	cache
takes	a	few	hundred	instruction	times;	in	many	programs,	overall
performance	is	determined	as	much	by	cache	misses	as	by	computational
costs.
The	best	way	to	learn	which	things	are	expensive	is	to	run	micro-benchmarks

(small	programs	that	measure	the	cost	of	a	single	operation	in	isolation).	In	the
RAMCloud	project,	we	created	a	simple	program	that	provides	a	framework	for
microbenchmarks.	It	took	a	few	days	to	create	the	framework,	but	the	framework
makes	it	possible	to	add	new	micro-benchmarks	in	five	or	ten	minutes.	This	has
allowed	 us	 to	 accumulate	 dozens	 of	 micro-benchmarks.	We	 use	 these	 both	 to
understand	the	performance	of	existing	libraries	used	in	RAMCloud,	and	also	to
measure	the	performance	of	new	classes	written	for	RAMCloud.

Once	you	have	a	general	sense	for	what	is	expensive	and	what	is	cheap,	you
can	use	that	information	to	choose	cheap	operations	whenever	possible.	In	many
cases,	a	more	efficient	approach	will	be	just	as	simple	as	a	slower	approach.	For
example,	when	storing	a	large	collection	of	objects	that	will	be	looked	up	using	a
key	 value,	 you	 could	 use	 either	 a	 hash	 table	 or	 an	 ordered	 map.	 Both	 are
commonly	available	 in	 library	packages,	 and	both	are	 simple	 and	clean	 to	use.
However,	hash	tables	can	easily	be	5–10x	faster.	Thus,	you	should	always	use	a
hash	table	unless	you	need	the	ordering	properties	provided	by	the	map.

As	another	example,	consider	allocating	an	array	of	structures	in	a	language
such	as	C	or	C++.	There	are	two	ways	you	can	do	this.	One	way	is	for	the	array
to	hold	pointers	to	structures,	in	which	case	you	must	first	allocate	space	for	the
array,	then	allocate	space	for	each	individual	structure.	It	is	much	more	efficient
to	store	the	structures	in	the	array	itself,	so	you	only	allocate	one	large	block	for
everything.

If	 the	 only	 way	 to	 improve	 efficiency	 is	 by	 adding	 complexity,	 then	 the
choice	is	more	difficult.	If	the	more	efficient	design	adds	only	a	small	amount	of
complexity,	 and	 if	 the	complexity	 is	hidden,	 so	 it	 doesn’t	 affect	 any	 interfaces,
then	it	may	be	worthwhile	(but	beware:	complexity	is	incremental).	If	the	faster
design	 adds	 a	 lot	 of	 implementation	 complexity,	 or	 if	 it	 results	 in	 more

complicated	 interfaces,	 then	 it	 may	 be	 better	 to	 start	 off	 with	 the	 simpler
approach	and	optimize	later	if	performance	turns	out	to	be	a	problem.	However,
if	 you	 have	 clear	 evidence	 that	 performance	 will	 be	 important	 in	 a	 particular
situation,	then	you	might	as	well	implement	the	faster	approach	immediately.

In	the	RAMCloud	project	one	of	our	overall	goals	was	to	provide	the	lowest
possible	 latency	 for	 client	 machines	 accessing	 the	 storage	 system	 over	 a
datacenter	 network.	 As	 a	 result,	 we	 decided	 to	 use	 special	 hardware	 for
networking,	which	 allowed	RAMCloud	 to	 bypass	 the	 kernel	 and	 communicate
directly	with	 the	 network	 interface	 controller	 to	 send	 and	 receive	 packets.	We
made	this	decision	even	though	it	added	complexity,	because	we	knew	from	prior
measurements	 that	 kernel-based	 networking	 would	 be	 too	 slow	 to	 meet	 our
needs.	In	most	of	the	rest	of	the	RAMCloud	system	we	were	able	to	design	for
simplicity;	getting	this	one	big	issue	“right”	made	many	other	things	easier.

In	general,	simpler	code	 tends	 to	run	faster	 than	complex	code.	 If	you	have
defined	away	special	cases	and	exceptions,	 then	no	code	is	needed	to	check	for
those	 cases	 and	 the	 system	 runs	 faster.	 Deep	 classes	 are	 more	 efficient	 than
shallow	ones,	because	 they	get	more	work	done	 for	 each	method	call.	Shallow
classes	result	in	more	layer	crossings,	and	each	layer	crossing	adds	overhead.

20.2		Measure	before	modifying
But	suppose	that	your	system	is	still	too	slow,	even	though	you	have	designed	it
as	 described	 above.	 It’s	 tempting	 to	 rush	 off	 and	 start	 making	 performance
tweaks,	based	on	your	intuitions	about	what	is	slow.	Don’t	do	this!	Programmers’
intuitions	 about	 performance	 are	 unreliable.	 This	 is	 true	 even	 for	 experienced
developers.	If	you	start	making	changes	based	on	intuition,	you’ll	waste	time	on
things	 that	 don’t	 actually	 improve	 performance,	 and	 you’ll	 probably	 make	 the
system	more	complicated	in	the	process.

Before	 making	 any	 changes,	 measure	 the	 system’s	 existing	 behavior.	 This
serves	 two	 purposes.	 First,	 the	 measurements	 will	 identify	 the	 places	 where
performance	 tuning	 will	 have	 the	 biggest	 impact.	 It	 isn’t	 sufficient	 just	 to
measure	the	top-level	system	performance.	This	may	tell	you	that	 the	system	is
too	slow,	but	it	won’t	tell	you	why.	You’ll	need	to	measure	deeper	to	identify	in
detail	the	factors	that	contribute	to	overall	performance;	the	goal	is	to	identify	a
small	number	of	very	specific	places	where	the	system	is	currently	spending	a	lot
of	time,	and	where	you	have	ideas	for	improvement.	The	second	purpose	of	the
measurements	is	to	provide	a	baseline,	so	that	you	can	re-measure	performance

after	making	your	changes	to	ensure	that	performance	actually	improved.	If	 the
changes	didn’t	make	a	measurable	difference	in	performance,	then	back	them	out
(unless	they	made	the	system	simpler).	There’s	no	point	in	retaining	complexity
unless	it	provides	a	significant	speedup.

20.3		Design	around	the	critical	path
At	this	point,	let’s	assume	that	you	have	carefully	analyzed	performance	and	have
identified	 a	 piece	 of	 code	 that	 is	 slow	 enough	 to	 affect	 the	 overall	 system
performance.	The	best	way	to	improve	its	performance	is	with	a	“fundamental”
change,	 such	 as	 introducing	 a	 cache,	 or	 using	 a	different	 algorithmic	 approach
(balanced	 tree	 vs.	 list,	 for	 instance).	 Our	 decision	 to	 bypass	 the	 kernel	 for
network	 communication	 in	RAMCloud	 is	 an	 example	 of	 a	 fundamental	 fix.	 If
you	can	identify	a	fundamental	fix,	then	you	can	implement	it	using	the	design
techniques	discussed	in	previous	chapters.

Unfortunately,	 situations	 will	 sometimes	 arise	 where	 there	 isn’t	 a
fundamental	fix.	This	brings	us	to	the	core	issue	for	this	chapter,	which	is	how	to
redesign	an	existing	piece	of	code	so	that	it	runs	faster.	This	should	be	your	last
resort,	and	it	shouldn’t	happen	often,	but	there	are	cases	where	it	can	make	a	big
difference.	The	key	idea	is	to	design	the	code	around	the	critical	path.

Start	off	by	asking	yourself	what	is	the	smallest	amount	of	code	that	must	be
executed	to	carry	out	the	desired	task	in	the	common	case.	Disregard	any	existing
code	 structure.	 Imagine	 instead	 that	 you	 are	 writing	 a	 new	 method	 that
implements	 just	 the	 critical	 path,	 which	 is	 the	minimum	 amount	 of	 code	 that
must	 be	 executed	 in	 the	 the	most	 common	 case.	The	 current	 code	 is	 probably
cluttered	with	special	cases;	ignore	them	in	this	exercise.	The	current	code	might
pass	through	several	method	calls	on	the	critical	path;	 imagine	instead	that	you
could	put	all	the	relevant	code	in	a	single	method.	The	current	code	may	also	use
a	variety	of	variables	and	data	structures;	consider	only	the	data	needed	for	the
critical	 path,	 and	 assume	 whatever	 data	 structure	 is	 most	 convenient	 for	 the
critical	path.	For	example,	it	may	make	sense	to	combine	multiple	variables	into
a	single	value.	Assume	that	you	could	completely	redesign	the	system	in	order	to
minimize	the	code	that	must	be	executed	for	the	critical	path.	Let’s	call	this	code
“the	ideal.”

The	ideal	code	probably	clashes	with	your	existing	class	structure,	and	it	may
not	 be	 practical,	 but	 it	 provides	 a	 good	 target:	 this	 represents	 the	 simplest	 and
fastest	that	the	code	can	ever	be.	The	next	step	is	 to	look	for	a	new	design	that

comes	as	close	as	possible	to	the	ideal	while	still	having	a	clean	structure.	You
can	apply	all	of	 the	design	 ideas	 from	previous	chapters	of	 this	book,	but	with
the	additional	constraint	of	keeping	the	ideal	code	(mostly)	intact.	You	may	have
to	 add	 a	 bit	 of	 extra	 code	 to	 the	 ideal	 in	 order	 to	 allow	 clean	 abstractions;	 for
example,	if	the	code	involves	a	hash	table	lookup,	it’s	OK	to	introduce	an	extra
method	call	 to	a	general-purpose	hash	 table	class.	 In	my	experience	 it’s	almost
always	possible	to	find	a	design	that	is	clean	and	simple,	yet	comes	very	close	to
the	ideal.

One	of	 the	most	 important	 things	 that	happens	 in	 this	process	 is	 to	 remove
special	cases	from	the	critical	path.	When	code	is	slow,	it’s	often	because	it	must
handle	 a	 variety	 of	 situations,	 and	 the	 code	 gets	 structured	 to	 simplify	 the
handling	of	all	 the	different	cases.	Each	special	case	adds	a	little	bit	of	code	to
the	critical	path,	in	the	form	of	extra	conditional	statements	and/or	method	calls.
Each	 of	 these	 additions	 makes	 the	 code	 a	 bit	 slower.	 When	 redesigning	 for
performance,	 try	 to	 minimize	 the	 number	 of	 special	 cases	 you	 must	 check.
Ideally,	 there	will	 be	 a	 single	 if	 statement	 at	 the	 beginning,	which	 detects	 all
special	cases	with	one	test.	In	the	normal	case,	only	this	one	test	will	need	to	be
made,	after	which	the	the	critical	path	can	be	executed	with	no	additional	 tests
for	special	cases.	If	the	initial	test	fails	(which	means	a	special	case	has	occurred)
the	 code	 can	 branch	 to	 a	 separate	 place	 off	 the	 critical	 path	 to	 handle	 it.
Performance	isn’t	as	important	for	special	cases,	so	you	can	structure	the	special-
case	code	for	simplicity	rather	than	performance.

20.4		An	example:	RAMCloud	Buffers
Let’s	consider	an	example,	 in	which	the	Buffer	class	of	the	RAMCloud	storage
system	was	 optimized	 to	 achieve	 a	 speedup	of	 about	 2x	 for	 the	most	 common
operations.

RAMCloud	uses	Buffer	objects	to	manage	variable-length	arrays	of	memory,
such	 as	 request	 and	 response	messages	 for	 remote	 procedure	 calls.	Buffers	 are
designed	 to	 reduce	 overheads	 from	 memory	 copying	 and	 dynamic	 storage
allocation.	A	Buffer	 stores	what	 appears	 to	 be	 a	 linear	 array	 of	 bytes,	 but	 for
efficiency	 it	 allows	 the	 underlying	 storage	 to	 be	 divided	 into	 multiple
discontiguous	chunks	of	memory,	as	shown	in	Figure	20.1.	A	Buffer	 is	created
by	 appending	 chunks	 of	 data.	 Each	 chunk	 is	 either	 external	 or	 internal.	 If	 a
chunk	is	external,	its	storage	is	owned	by	the	caller;	the	Buffer	keeps	a	reference
to	 this	 storage.	External	 chunks	 are	 typically	used	 for	 large	 chunks	 in	order	 to

avoid	memory	copies.	If	a	chunk	is	internal,	the	Buffer	owns	the	storage	for	the
chunk;	 data	 supplied	 by	 the	 caller	 is	 copied	 into	 the	Buffer’s	 internal	 storage.
Each	Buffer	 contains	 a	 small	 built-in	allocation,	 which	 is	 a	 block	 of	memory
available	for	storing	 internal	chunks.	 If	 this	space	 is	exhausted,	 then	 the	Buffer
creates	additional	allocations,	which	must	be	freed	when	the	Buffer	is	destroyed.
Internal	 chunks	 are	 convenient	 for	 small	 chunks	 where	 the	 memory	 copying
costs	are	negligible.	Figure	20.1	shows	a	Buffer	with	5	chunks:	the	first	chunk	is
internal,	the	next	two	are	external,	and	the	final	two	chunks	are	internal.

Figure	20.1:	A	Buffer	object	uses	a	collection	of	memory	chunks	to	store	what	appears	to	be	a	linear	array
of	bytes.	Internal	chunks	are	owned	by	the	Buffer	and	freed	when	the	Buffer	is	destroyed;	external	chunks
are	not	owned	by	the	Buffer.

The	Buffer	 class	 itself	 represents	 a	 “fundamental	 fix,”	 in	 that	 it	 eliminates
expensive	memory	copies	that	would	have	been	required	without	it.	For	example,
when	assembling	a	response	message	containing	a	short	header	and	the	contents
of	 a	 large	 object	 in	 the	RAMCloud	 storage	 system,	RAMCloud	 uses	 a	 Buffer
with	two	chunks.	The	first	chunk	is	an	internal	one	that	contains	the	header;	the
second	 chunk	 is	 an	 external	 one	 that	 refers	 to	 the	 object	 contents	 in	 the
RAMCloud	storage	system.	The	response	can	be	collected	in	the	Buffer	without
copying	the	large	object.

Aside	from	the	fundamental	approach	of	allowing	discontiguous	chunks,	we
did	 not	 attempt	 to	 optimize	 the	 code	 of	 the	 Buffer	 class	 in	 the	 original
implementation.	Over	time,	however,	we	noticed	Buffers	being	used	in	more	and
more	 situations;	 for	 example,	 at	 least	 four	 Buffers	 are	 created	 during	 the
execution	 of	 each	 remote	 procedure	 call.	 Eventually,	 it	 became	 clear	 that
speeding	 up	 the	 implementation	 of	 Buffer	 could	 have	 a	 noticeable	 impact	 on
overall	 system	 performance.	 We	 decided	 to	 see	 if	 we	 could	 improve	 the
performance	of	the	Buffer	class.

The	 most	 common	 operation	 for	 Buffer	 is	 to	 allocate	 space	 for	 a	 small
amount	of	new	data	using	an	 internal	chunk.	This	happens,	 for	example,	when

creating	 headers	 for	 request	 and	 response	 messages.	 We	 decided	 to	 use	 this
operation	as	the	critical	path	for	optimization.	In	the	simplest	possible	case,	the
space	 can	 be	 allocated	 by	 enlarging	 the	 last	 existing	 chunk	 in	 the	 Buffer.
However,	this	is	only	possible	if	the	last	existing	chunk	is	internal,	and	if	there	is
enough	 space	 in	 its	 allocation	 to	 accommodate	 the	 new	 data.	 The	 ideal	 code
would	perform	a	 single	 check	 to	 confirm	 that	 the	 simple	 approach	 is	 possible,
then	it	would	adjust	the	size	of	the	existing	chunk.

Figure	20.2	shows	the	original	code	for	the	critical	path,	which	starts	with	the
method	Buffer::alloc.	In	the	fastest	possible	case,	Buffer::alloc	calls	Buffer::
allocateAppend,	 which	 calls	 Buffer::Allocation::allocateAppend.	 From	 a
performance	 standpoint,	 this	 code	 has	 two	 problems.	The	 first	 problem	 is	 that
numerous	special	cases	are	checked	individually:

Buffer::allocateAppend	checks	to	see	if	the	Buffer	currently	has	any
allocations.
The	code	checks	twice	to	see	if	the	current	allocation	has	enough	room	for
the	new	data:	once	in	Buffer::Allocation::allocateAppend,	and	again
when	its	return	value	is	tested	by	Buffer::allocateAppend.
Buffer::alloc	tests	the	return	value	from	Buffer::allocAppend	to	confirm
yet	again	that	the	allocation	succeeded.

Furthermore,	 rather	 than	 trying	 to	 expand	 the	 last	 chunk	 directly,	 the	 code
allocates	 new	 space	 without	 any	 consideration	 of	 the	 last	 chunk.	 Then
Buffer::alloc	 checks	 to	 see	 if	 that	 space	 happens	 to	 be	 adjacent	 to	 the	 last
chunk,	 in	 which	 case	 it	 merges	 the	 new	 space	 with	 the	 existing	 chunk.	 This
results	 in	additional	checks.	Overall,	 this	code	 tests	6	distinct	conditions	 in	 the
critical	path.

The	second	problem	with	the	original	code	is	that	it	has	too	many	layers,	all
of	which	are	shallow.	This	is	both	a	performance	problem	and	a	design	problem.
The	critical	path	makes	 two	additional	method	calls	 in	 addition	 to	 the	original
invocation	 of	 Buffer::alloc.	 Each	 method	 call	 takes	 additional	 time,	 and	 the
result	of	 each	call	must	be	checked	by	 its	 caller,	which	 results	 in	more	 special
cases	to	consider.	Chapter	7	discussed	how	abstractions	should	normally	change
as	you	pass	from	one	layer	to	another,	but	all	three	of	the	methods	in	Figure	20.2
have	identical	signatures	and	they	provide	essentially	the	same	abstraction;	this	is
a	 red	 flag.	 Buffer::allocateAppend	 is	 nearly	 a	 pass-though	 method;	 its	 only
contribution	 is	 to	 create	 a	 new	allocation	 if	 needed.	The	 extra	 layers	make	 the
code	both	slower	and	more	complicated.

To	 fix	 these	 problems,	 we	 refactored	 the	 Buffer	 class	 so	 that	 its	 design	 is
centered	around	the	most	performance-critical	paths.	We	considered	not	just	the
allocation	 code	 above	 but	 several	 other	 commonly	 executed	 paths,	 such	 as
retrieving	the	total	number	of	bytes	of	data	currently	stored	in	a	Buffer.	For	each
of	these	critical	paths,	we	tried	to	identify	the	smallest	amount	of	code	that	must
be	executed	in	the	common	case.	Then	we	designed	the	rest	of	the	class	around
these	 critical	 paths.	 We	 also	 applied	 the	 design	 principles	 from	 this	 book	 to
simplify	 the	 class	 in	 general.	 For	 example,	 we	 eliminated	 shallow	 layers	 and
created	deeper	internal	abstractions.	The	refactored	class	is	20%	smaller	than	the
original	version	(1476	lines	of	code,	versus	1886	lines	in	the	original).

Figure	20.2:	The	original	code	for	allocating	new	space	at	the	end	of	a	Buffer,	using	an	internal	chunk.

Figure	20.3:	The	new	code	for	allocating	new	space	in	an	internal	chunk	of	a	Buffer.

Figure	 20.3	 shows	 the	 new	 critical	 path	 for	 allocating	 internal	 space	 in	 a
Buffer.	The	new	code	is	not	only	faster,	but	it	is	also	easier	to	read,	since	it	avoids
shallow	abstractions.	The	entire	path	is	handled	in	a	single	method,	and	it	uses	a
single	 test	 to	 rule	 out	 all	 of	 the	 special	 cases.	The	new	code	 introduces	 a	 new
instance	variable,	extraAppendBytes,	 in	order	 to	simplify	 the	critical	path.	This
variable	keeps	track	of	how	much	unused	space	is	available	immediately	after	the
last	chunk	in	the	Buffer.	If	there	is	no	space	available,	or	if	the	last	chunk	in	the
Buffer	 isn’t	 an	 internal	 chunk,	 or	 if	 the	Buffer	 contains	 no	 chunks	 at	 all,	 then
extraAppendBytes	 is	zero.	The	code	in	Figure	20.3	represents	 the	 least	possible
amount	of	code	to	handle	this	common	case.

Note:	the	update	to	totalLength	could	have	been	eliminated	by	recomputing
the	 total	 Buffer	 length	 from	 the	 individual	 chunks	 whenever	 it	 is	 needed.
However,	this	approach	would	be	expensive	for	a	large	Buffer	with	many	chunks,
and	 fetching	 the	 total	 Buffer	 length	 is	 another	 common	 operation.	 Thus,	 we
chose	to	add	a	small	amount	of	extra	overhead	to	alloc	in	order	to	ensure	that	the
Buffer	length	is	always	immediately	available.

The	new	code	is	about	twice	as	fast	as	the	old	code:	the	total	time	to	append	a
1-byte	string	 to	a	Buffer	using	 internal	storage	dropped	from	8.8	ns	 to	4.75	ns.
Many	 other	 Buffer	 operations	 also	 speeded	 up	 because	 of	 the	 revisions.	 For
example,	 the	 time	 to	 construct	 a	 new	Buffer,	 append	 a	 small	 chunk	 in	 internal
storage,	and	destroy	the	Buffer	dropped	from	24	ns	to	12	ns.

20.5		Conclusion
The	most	important	overall	lesson	from	this	chapter	is	that	clean	design	and	high
performance	are	compatible.	The	Buffer	class	rewrite	improved	its	performance
by	 a	 factor	 of	 2	while	 simplifying	 its	 design	 and	 reducing	 code	 size	 by	 20%.
Complicated	 code	 tends	 to	 be	 slow	 because	 it	 does	 extraneous	 or	 redundant
work.	 On	 the	 other	 hand,	 if	 you	 write	 clean,	 simple	 code,	 your	 system	 will
probably	be	fast	enough	that	you	don’t	have	to	worry	much	about	performance	in
the	first	place.	In	the	few	cases	where	you	do	need	to	optimize	performance,	the
key	 is	 simplicity	 again:	 find	 the	 critical	 paths	 that	 are	 most	 important	 for
performance	and	make	them	as	simple	as	possible.

Chapter	21

Conclusion

This	book	 is	about	one	 thing:	complexity.	Dealing	with	complexity	 is	 the	most
important	challenge	 in	software	design.	 It	 is	what	makes	systems	hard	 to	build
and	maintain,	and	it	often	makes	them	slow	as	well.	Over	the	course	of	the	book
I	 have	 tried	 to	 describe	 the	 root	 causes	 that	 lead	 to	 complexity,	 such	 as
dependencies	and	obscurity.	I	have	discussed	red	flags	that	can	help	you	identify
unnecessary	complexity,	such	as	information	leakage,	unneeded	error	conditions,
or	names	that	are	too	generic.	I	have	presented	some	general	ideas	you	can	use	to
create	 simpler	 software	 systems,	 such	 as	 striving	 for	 classes	 that	 are	 deep	 and
generic,	defining	errors	out	of	existence,	and	separating	interface	documentation
from	 implementation	 documentation.	 And,	 finally,	 I	 have	 discussed	 the
investment	mindset	needed	to	produce	simple	designs.

The	downside	of	 all	 these	 suggestions	 is	 that	 they	 create	 extra	work	 in	 the
early	stages	of	a	project.	Furthermore,	if	you	aren’t	used	to	thinking	about	design
issues,	 then	 you	 will	 slow	 down	 even	 more	 while	 you	 learn	 good	 design
techniques.	 If	 the	 only	 thing	 that	 matters	 to	 you	 is	 making	 your	 current	 code
work	as	soon	as	possible,	then	thinking	about	design	will	seem	like	drudge	work
that	is	getting	in	the	way	of	your	real	goal.

On	the	other	hand,	if	good	design	is	an	important	goal	for	you,	then	the	ideas
in	this	book	should	make	programming	more	fun.	Design	is	a	fascinating	puzzle:
how	can	a	particular	problem	be	solved	with	the	simplest	possible	structure?	It’s
fun	to	explore	different	approaches,	and	it’s	a	great	feeling	to	discover	a	solution
that	 is	 both	 simple	 and	 powerful.	 A	 clean,	 simple,	 and	 obvious	 design	 is	 a
beautiful	thing.

Furthermore,	the	investments	you	make	in	good	design	will	pay	off	quickly.
The	modules	you	defined	 carefully	 at	 the	beginning	of	 a	 project	will	 save	you
time	 later	 as	 you	 reuse	 them	 over	 and	 over.	 The	 clear	 documentation	 that	 you
wrote	six	months	ago	will	save	you	 time	when	you	return	 to	 the	code	 to	add	a
new	feature.	The	time	you	spent	honing	your	design	skills	will	also	pay	for	itself:

as	 your	 skills	 and	 experience	 grow,	 you	 will	 find	 that	 you	 can	 produce	 good
designs	more	 and	more	 quickly.	 Good	 design	 doesn’t	 really	 take	much	 longer
than	quick-and-dirty	design,	once	you	know	how.

The	reward	for	being	a	good	designer	is	that	you	get	to	spend	a	larger	fraction
of	 your	 time	 in	 the	 design	 phase,	which	 is	 fun.	 Poor	 designers	 spend	most	 of
their	 time	 chasing	 bugs	 in	 complicated	 and	 brittle	 code.	 If	 you	 improve	 your
design	skills,	not	only	will	you	produce	higher	quality	software	more	quickly,	but
the	software	development	process	will	be	more	enjoyable.

Index

abstraction,	21
aggregating	exceptions,	82
agile	development,	2,	153

change	amplification,	7,	99
class	interface	comment,	110
classitis,	26
coding	style,	141
cognitive	load,	7,	43,	99
comments

as	design	tool,	131
benefits,	98
canary	in	the	coal	mine,	131
conventions	for,	102
duplication,	138
for	intuition,	107
for	precision,	105
implementation,	116
interface,	110
near	code,	137
obsolete,	98
procrastination,	129
repeating	code,	103
role	in	abstraction,	101
worthless,	98
writing	before	code,	129

complexity

causes	of,	9
definition,	5
incremental	nature	of,	11,	161
pulling	downwards,	55,	82
symptoms,	7

composition,	152
configuration	parameters,	56
conjoined	methods,	71
consistency,	141,	146
context	object,	51
cross-module	design	decisions,	117

decorator,	49
deep	module,	22
defaults,	36
dependency,	9
design	it	twice,	91
design	patterns,	142,	156
designNotes	file,	118,	139

disk	I/O,	160
dispatcher,	47
do	the	right	thing,	36

editor	text	class	example,	40,	50,	56
event-driven	programming,	148
example

linked	list,	25
examples

configuration	parameters,	56
editor	text	class,	40,	50,	56,	91
file	data	loss,	121
file	deletion,	79

HTTP	parameters,	34
HTTP	response,	36
HTTP	server,	32,	60
IndexLookup,	112

Java	I/O,	26,	49,	61
Java	substring,	80
missing	parameter,	82
NFS	server	crash,	81
non-existent	selection,	87
out	of	memory,	86
RAMCloud	Buffer,	163

RAMCloud	error	promotion,	85
RAMCloud	Status,	117

selection/cursor,	65
Tcl	unset,	78

undo,	67
Unix	I/O,	23
Web	site	colors,	7

exception,	75
aggregation,	82
masking,	81

Facebook,	17
false	abstraction,	22,	43
fence,	for	undo,	69
file	data	loss	example,	121
file	deletion	example,	79
file	descriptor,	23
flash	storage,	160

garbage	collection,	160
general-purpose	class,	40,	66

general-purpose	code,	62,	67
generic	containers,	149
getter,	156
global	variable,	51
Go	language,	126

short	names	in,	126
Google,	17

HTTP	parameters	example,	34
HTTP	response	example,	36
HTTP	server	example,	32,	60

implementation,	19,	50
implementation	documentation,	116
implementation	inheritance,	152
incremental	development,	2,	39
IndexLookup	example,	112

information	hiding,	29
information	leakage,	30
inheritance,	151
integration	tests,	154
interface,	19,	50

formal	parts,	20
informal	parts,	21

interface	comment
class,	110
method,	110

interface	documentation,	110
interface	inheritance,	151
invariants,	142
investment	mindset,	15,	128,	136,	144

Java	I/O	example,	26,	49,	61
Java	substring	example,	80

linked	list	example,	25
long	method,	70

masking	exceptions,	81
memory	allocation,	dynamic,	160
method	interface	comment,	110
micro-benchmark,	160
missing	parameter	example,	82
modular	design,	2,	19
module,	20

names
consistency,	126,	141
generic,	123
how	to	choose,	121
making	code	more	obvious,	146
precise,	123
short	names	in	Go,	126

network	communication,	160
NFS	server	crash	example,	81
non-existent	selection	example,	87
nonvolatile	memory,	160

object-oriented	programming,	151
obscurity,	10,	145
obvious	code,	9,	145
out	of	memory	example,	86

Parnas,	David,	29

pass-through	method,	46
pass-through	variable,	50
performance

micro-benchmark,	160
performance,	designing	for,	159
private	variables,	30

RAMCloud	Buffer	example,	163

RAMCloud	error	promotion	example,	85
RAMCloud	Status	example,	117

selection/cursor	example,	65
self-documenting	code,	96
setter,	156
shallow	module,	25
small	classes,	26
special-purpose	code,	62,	67
specification,	formal,	21
strategic	programming,	14,	135
style,	coding,	141
substring	example	(Java),	80
system	tests,	154

tactical	programming,	13,	135,	153
tactical	tornado,	14
Tcl	unset	example,	78

temporal	decomposition,	31
test-driven	development,	155
tests

integration,	154
system,	154
unit,	154

try	block,	77

undo	example,	67
unit	tests,	154
Unix	I/O	example,	23
unknown	unknowns,	8,	99
URL	encoding,	34

VMware,	17

waterfall	model,	2
Web	site	colors	example,	7
white	space,	146

Summary	of	Design	Principles

Here	are	the	most	important	software	design	principles	discussed	in	this	book:

1.	 Complexity	is	incremental:	you	have	to	sweat	the	small	stuff	(see	p.	11).

2.	 Working	code	isn’t	enough	(see	p.	14).

3.	 Make	continual	small	investments	to	improve	system	design	(see	p.	15).

4.	 Modules	should	be	deep	(see	p.	22)

5.	 Interfaces	should	be	designed	to	make	the	most	common	usage	as	simple	as
possible	(see	p.	27).

6.	 It’s	more	important	for	a	module	to	have	a	simple	interface	than	a	simple
implementation	(see	pp.	55,	71).

7.	 General-purpose	modules	are	deeper	(see	p.	39).

8.	 Separate	general-purpose	and	special-purpose	code	(see	p.	62).

9.	 Different	layers	should	have	different	abstractions	(see	p.	45).

10.	 Pull	complexity	downward	(see	p.	55).

11.	 Define	errors	(and	special	cases)	out	of	existence	(see	p.	79).

12.	 Design	it	twice	(see	p.	91).

13.	 Comments	should	describe	things	that	are	not	obvious	from	the	code	(see	p.
101).

14.	 Software	should	be	designed	for	ease	of	reading,	not	ease	of	writing	(see	p.
149).

15.	 The	increments	of	software	development	should	be	abstractions,	not
features	(see	p.	154).

Summary	of	Red	Flags

Here	 are	 a	 few	of	 of	 the	most	 important	 red	 flags	discussed	 in	 this	 book.	The
presence	of	any	of	these	symptoms	in	a	system	suggests	that	there	is	a	problem
with	the	system’s	design:

Shallow	Module:	the	interface	for	a	class	or	method	isn’t	much	simpler	than	its
implementation	(see	pp.	25,	110).

Information	Leakage:	a	design	decision	is	reflected	in	multiple	modules	(see	p.
31).

Temporal	Decomposition:	 the	 code	 structure	 is	 based	 on	 the	 order	 in	 which
operations	are	executed,	not	on	information	hiding	(see	p.	32).

Overexposure:	An	API	forces	callers	to	be	aware	of	rarely	used	features	in	order
to	use	commonly	used	features	(see	p.	36).

Pass-Through	Method:	a	method	does	almost	nothing	except	pass	its	arguments
to	another	method	with	a	similar	signature	(see	p.	46).

Repetition:	a	nontrivial	piece	of	code	is	repeated	over	and	over	(see	p.	62).

Special-General	Mixture:	 special-purpose	 code	 is	 not	 cleanly	 separated	 from
general	purpose	code	(see	p.	65).

Conjoined	Methods:	 two	methods	have	so	many	dependencies	 that	 its	hard	 to
understand	the	implementation	of	one	without	understanding	the	implementation
of	the	other	(see	p.	72).

Comment	Repeats	Code:	 all	 of	 the	 information	 in	 a	 comment	 is	 immediately
obvious	from	the	code	next	to	the	comment	(see	p.	104).

Implementation	 Documentation	 Contaminates	 Interface:	 an	 interface
comment	 describes	 implementation	 details	 not	 needed	 by	 users	 of	 the	 thing
being	documented	(see	p.	114).

Vague	Name:	 the	name	of	a	variable	or	method	 is	 so	 imprecise	 that	 it	doesn’t
convey	much	useful	information	(see	p.	123).

Hard	to	Pick	Name:	it	is	difficult	to	come	up	with	a	precise	and	intuitive	name
for	an	entity	(see	p.	125).

Hard	to	Describe:	in	order	to	be	complete,	the	documentation	for	a	variable	or
method	must	be	long.	(see	p.	131).

Nonobvious	 Code:	 the	 behavior	 or	 meaning	 of	 a	 piece	 of	 code	 cannot	 be
understood	easily.	(see	p.	148).

About	the	Author

John	Ousterhout	is	the	Bosack	Lerner	Professor	of	Computer	Science	at	Stanford
University.	He	is	the	creator	of	the	Tcl	scripting	language	and	is	also	well	known
for	 his	 work	 in	 distributed	 operating	 systems	 and	 storage	 systems.	 Ousterhout
received	a	BS	degree	 in	Physics	 from	Yale	University	 and	a	PhD	 in	Computer
Science	 from	 Carnegie	 Mellon	 University.	 He	 is	 a	 member	 of	 the	 National
Academy	of	Engineering	and	has	received	numerous	awards,	including	the	ACM
Software	 System	Award,	 the	ACM	Grace	Murray	Hopper	Award,	 the	National
Science	 Foundation	 Presidential	 Young	 Investigator	 Award,	 and	 the	 U.C.
Berkeley	Distinguished	Teaching	Award.

	Title Page
	Copyright
	Contents
	Preface
	1 Introduction
	1.1 How to use this book

	2 The Nature of Complexity
	2.1 Complexity defined
	2.2 Symptoms of complexity
	2.3 Causes of complexity
	2.4 Complexity is incremental
	2.5 Conclusion

	3 Working Code Isn’t Enough
	3.1 Tactical programming
	3.2 Strategic programming
	3.3 How much to invest?
	3.4 Startups and investment
	3.5 Conclusion

	4 Modules Should Be Deep
	4.1 Modular design
	4.2 What’s in an interface?
	4.3 Abstractions
	4.4 Deep modules
	4.5 Shallow modules
	4.6 Classitis
	4.7 Examples: Java and Unix I/O
	4.8 Conclusion

	5 Information Hiding (and Leakage)
	5.1 Information hiding
	5.2 Information leakage
	5.3 Temporal decomposition
	5.4 Example: HTTP server
	5.5 Example: too many classes
	5.6 Example: HTTP parameter handling
	5.7 Example: defaults in HTTP responses
	5.8 Information hiding within a class
	5.9 Taking it too far
	5.10 Conclusion

	6 General-Purpose Modules are Deeper
	6.1 Make classes somewhat general-purpose
	6.2 Example: storing text for an editor
	6.3 A more general-purpose API
	6.4 Generality leads to better information hiding
	6.5 Questions to ask yourself
	6.6 Conclusion

	7 Different Layer, Different Abstraction
	7.1 Pass-through methods
	7.2 When is interface duplication OK?
	7.3 Decorators
	7.4 Interface versus implementation
	7.5 Pass-through variables
	7.6 Conclusion

	8 Pull Complexity Downwards
	8.1 Example: editor text class
	8.2 Example: configuration parameters
	8.3 Taking it too far
	8.4 Conclusion

	9 Better Together Or Better Apart?
	9.1 Bring together if information is shared
	9.2 Bring together if it will simplify the interface
	9.3 Bring together to eliminate duplication
	9.4 Separate general-purpose and special-purpose code
	9.5 Example: insertion cursor and selection
	9.6 Example: separate class for logging
	9.7 Example: editor undo mechanism
	9.8 Splitting and joining methods
	9.9 Conclusion

	10 Define Errors Out Of Existence
	10.1 Why exceptions add complexity
	10.2 Too many exceptions
	10.3 Define errors out of existence
	10.4 Example: file deletion in Windows
	10.5 Example: Java substring method
	10.6 Mask exceptions
	10.7 Exception aggregation
	10.8 Just crash?
	10.9 Design special cases out of existence
	10.10 Taking it too far
	10.11 Conclusion

	11 Design it Twice
	12 Why Write Comments? The Four Excuses
	12.1 Good code is self-documenting
	12.2 I don’t have time to write comments
	12.3 Comments get out of date and become misleading
	12.4 All the comments I have seen are worthless
	12.5 Benefits of well-written comments

	13 Comments Should Describe Things that Aren’t Obvious from the Code
	13.1 Pick conventions
	13.2 Don’t repeat the code
	13.3 Lower-level comments add precision
	13.4 Higher-level comments enhance intuition
	13.5 Interface documentation
	13.6 Implementation comments: what and why, not how
	13.7 Cross-module design decisions
	13.8 Conclusion
	13.9 Answers to questions on page 113

	14 Choosing Names
	14.1 Example: bad names cause bugs
	14.2 Create an image
	14.3 Names should be precise
	14.4 Use names consistently
	14.5 A different opinion: Go style guide
	14.6 Conclusion

	15 Write The Comments First
	15.1 Delayed comments are bad comments
	15.2 Write the comments first
	15.3 Comments are a design tool
	15.4 Early comments are fun comments
	15.5 Are early comments expensive?
	15.6 Conclusion

	16 Modifying Existing Code
	16.1 Stay strategic
	16.2 Maintaining comments: keep the comments near the code
	16.3 Comments belong in the code, not the commit log
	16.4 Maintaining comments: avoid duplication
	16.5 Maintaining comments: check the diffs
	16.6 Higher-level comments are easier to maintain

	17 Consistency
	17.1 Examples of consistency
	17.2 Ensuring consistency
	17.3 Taking it too far
	17.4 Conclusion

	18 Code Should be Obvious
	18.1 Things that make code more obvious
	18.2 Things that make code less obvious
	18.3 Conclusion

	19 Software Trends
	19.1 Object-oriented programming and inheritance
	19.2 Agile development
	19.3 Unit tests
	19.4 Test-driven development
	19.5 Design patterns
	19.6 Getters and setters
	19.7 Conclusion

	20 Designing for Performance
	20.1 How to think about performance
	20.2 Measure before modifying
	20.3 Design around the critical path
	20.4 An example: RAMCloud Buffers
	20.5 Conclusion

	21 Conclusion
	Index
	Summary of Design Principles
	Summary of Red Flags
	About the Author

