
Essenঞal Scala
Noel Welsh and Dave Gurnell

Version 1.3, April 2017

underscore

Copyright 2017 Noel Welsh and Dave Gurnell.

2

Essenঞal Scala
Version 1.3, April 2017

Copyright 2017 Noel Welsh and Dave Gurnell.

Published by Underscore Consulঞng LLP, Brighton, UK.

Copies of this, and related topics, can be found at h�p://underscore.io/training.

Team discounts, when available, may also be found at that address.

Contact the author regarding this text at: hello@underscore.io.

Our courses, workshops, and other products can help you and your team create be�er so[ware and have
more fun. For more informaঞon, as well as the latest Underscore ঞtles, please visit

h�p://underscore.io/training.

Disclaimer: Every precauࢼon was taken in the preparaࢼon of this book. However, the author and Underscore
Consulࢼng LLP assume no responsibility for errors or omissions, or for damages that may result from the use of

informaࢼon (including program lisࢼngs) contained herein.

http://underscore.io
http://underscore.io/training
mailto:hello@underscore.io
http://underscore.io/training

Contents

Foreword 7

Convenঞons Used in This Book . 7

Thanks . 8

1 Geমng Started 9

1.1 Seমng up the Scala Console . 9

1.2 Seমng up Scala IDE . 11

2 Expressions, Types, and Values 19

2.1 Your First Program . 19

2.2 Interacঞng with Objects . 22

2.3 Literal Objects . 25

2.4 Object Literals . 29

2.5 Wriঞng Methods . 34

2.6 Compound Expressions . 36

2.7 Conclusion . 39

3 Objects and Classes 41

3.1 Classes . 41

3.2 Objects as Funcঞons . 48

3.3 Companion Objects . 49

3.4 Case Classes . 51

3.5 Pa�ern Matching . 55

3.6 Conclusions . 58

4 Modelling Data with Traits 59

4.1 Traits . 59

4.2 This or That and Nothing Else: Sealed Traits . 63

4.3 Modelling Data with Traits . 66

4.4 The Sum Type Pa�ern . 66

4.5 Working With Data . 68

3

4 CONTENTS

4.6 Recursive Data . 75

4.7 Extended Examples . 79

4.8 Conclusions . 81

5 Sequencing Computaঞons 83

5.1 Generics . 84

5.2 Funcঞons . 87

5.3 Generic Folds for Generic Data . 90

5.4 Modelling Data with Generic Types . 94

5.5 Sequencing Computaঞon . 98

5.6 Variance . 103

5.7 Conclusions . 108

6 Collecঞons 109

6.1 Sequences . 109

6.2 Working with Sequences . 116

6.3 For Comprehensions . 121

6.4 Opঞons . 123

6.5 Opঞons as Flow Control . 126

6.6 Monads . 128

6.7 For Comprehensions Redux . 129

6.8 Maps and Sets . 131

6.9 Ranges . 137

6.10 Generaঞng Random Data . 138

7 Type Classes 143

7.1 Type Class Instances . 143

7.2 Organising Type Class Instances . 146

7.3 Creaঞng Type Classes . 150

7.4 Implicit Parameter and Interfaces . 153

7.5 Enriched Interfaces . 156

7.6 Combining Type Classes and Type Enrichment . 157

7.7 Using Type Classes . 159

7.8 Implicit Conversions . 160

7.9 JSON Serialisaঞon . 161

8 Conclusions 165

8.1 What Now? . 165

CONTENTS 5

A Pa�ern Matching 167

A.1 Standard pa�erns . 167

A.2 Custom Pa�erns . 170

B Collecঞons Redux 175

B.1 Sequence Implementaঞons . 175

B.2 Arrays and Strings . 177

B.3 Iterators and Views . 178

B.4 Traversable and Iterable . 179

B.5 Java Interoperaঞon . 179

B.6 Mutable Sequences . 180

C Soluঞons to Exercises 183

C.1 Expressions, Types, and Values . 183

C.2 Objects and Classes . 189

C.3 Modelling Data with Traits . 197

C.4 Sequencing Computaঞons . 212

C.5 Collecঞons . 221

C.6 Type Classes . 238

C.7 Pa�ern Matching . 244

C.8 Collecঞons Redux . 245

6 CONTENTS

Foreword

This book is aimed to programmer learning Scala for the first ঞme. We assume you have some familiarity with an
object-oriented programming language such as Java, but li�le or no experience with funcঞonal programming.

Our goal is to describe how to use Scala in-the-small. To this end our focus is on the core pa�erns used in
idiomaঞc Scala code, and we introduce Scala’s features in the context of the pa�erns they enable. We are not
aiming for exhausঞve coverage of Scala’s features, and this text is not a reference manual.

Except for a few exercises we don’t rely on any external libraries. You should be able to complete all the
problems inside with only a text editor and Scala’s REPL, or an IDE such as the Scala IDE for Eclipse or IntelliJ
IDEA.

Essenঞal Scala was created by Noel Welsh and Dave Gurnell of Underscore. It was built using Underscore’s
eBook Template, plain text, and a deep and profound love of funcঞonal programming.

Convenঞons Used in This Book

This book contains a lot of technical informaঞon and program code. We use the following typographical con-
venঞons to reduce ambiguity and highlight important concepts:

Typographical Convenঞons

New terms and phrases are introduced in italics. A[er their iniঞal introducঞon they are wri�en in normal roman
font.

Terms from program code, filenames, and file contents, are wri�en in monospace font. Note that we do not
disঞnguish between singular and plural forms. For example, might write String or Strings to refer to the
java.util.String class or objects of that type.

References to external resources are wri�en as hyperlinks. References to API documentaঞon are wri�en using
a combinaঞon of hyperlinks and monospace font, for example: Option.

Source Code

Source code blocks are wri�en as follows. Syntax is highlighted appropriately where applicable:

object MyApp extends App {

println("Hello world!") // Print a fine message to the user!

}

Some lines of program code are too wide to fit on the page. In these cases we use a conࢼnuaࢼon character (curly
arrow) to indicate that longer code should all be wri�en on one line. For example, the following code:

7

http://scala-ide.org/
http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://noelwelsh.com
http://davegurnell.com/
http://underscore.io
https://github.com/underscoreio/underscore-ebook-template
https://github.com/underscoreio/underscore-ebook-template
http://underscore.io
http://www.scala-lang.org/api/current/index.html#scala.Option

8 CONTENTS

println("This code should all be written Ď

on one line.")

should actually be wri�en as follows:

println("This code should all be written on one line.")

Callout Boxes

We use three types of callout box to highlight parঞcular content:

Tip callouts indicate handy summaries, recipes, or best pracঞces.

Advanced callouts provide addiঞonal informaঞon on corner cases or underlying mechanisms. Feel free to
skip these on your first read-through—come back to them later for extra informaঞon.

Warning callouts indicate common pi�alls and gotchas. Make sure you read these to avoid problems, and
come back to them if you’re having trouble geমng your code to run.

Thanks

A big thanks to Richard Dallway and Jonathan Ferguson, who took on the herculean task of proof reading our
early dra[s and helped develop the rendering pipeline that produces the finished book.

Thanks also to Amir Aryanpour, Rebecca Grenier, Joe Halliwell, Jason Sco�, Daniel Wa�ord, N. Sriram, and
AudreyWelsh who sent us correcঞons and suggesঞons. Knowing that our work was being read and used made
the long haul of wriঞng the book worthwhile.

Chapter 1

Geমng Started

Throughout this book wewill be working with short examples of Scala code. There are two recommended ways
of doing this:

1. Using the Scala console (be�er for people who like command lines)

2. UsingWorksheets feature of Scala IDE (be�er for people who like IDEs)

We’ll walk through the setup for each process here.

1.1 Seমng up the Scala Console

Follow the instrucঞons on http://scala-lang.org to set Scala up on your computer. Once Scala is installed, you
should be able to run an interacঞve console by typing scala at your command line prompt. Here’s an example
from OS X:

dave@Jade ~> scala

Welcome to Scala version 2.11.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45).

Type in expressions to have them evaluated.

Type :help for more information.

scala>

You can enter individual expressions at the scala> prompt and press Enter to compile and execute them:

scala> "Hello world!"

res0: String = Hello world!

1.1.1 Entering Single-Line Expressions

Let’s try entering a simple expression:

scala> 1 + 2 + 3

res1: Int = 6

When we press Enter, the console responds with three things:

9

http://scala-lang.org

10 CHAPTER 1. GETTING STARTED

• an idenࢼfier res1;
• a type Int;
• a value 6.

As we will see in the next chapter, every expression in Scala has a type and a value. The type is determined at
compile ঞme and the value is determined by execuঞng the expression. Both of these are reported here.

The idenঞfier res1 is a convenience provided by the console to allow us to refer to the result of the expression
in future expressions. For example, we can mulঞply our result by two as folllows:

scala> res1 * 2

res2: Int = 12

If we enter an expression that doesn’t yield a useful value, the console won’t print anything in response:

scala> println("Hello world!")

Hello world!

Here, the output "Hello world!" is from our println statement—the expression we entered doesn’t actually
return a value. The console doesn’t provide output similar to the output we saw above.

1.1.2 Entering Mulঞ-Line Expressions

We can split long expressions across mulঞple lines quite simply. If we press enter before the end of an expres-
sion, the console will print a | character to indicate that we can conঞnue on the next line:

scala> for(i <- 1 to 3) {

| println(i)

| }

1

2

3

Someঞmeswewant to entermulঞple expressions at once. In these caseswe can use the :paste command. We
simply type :paste, press Enter, and write (or copy-and-paste) our code. When we’re done we press Ctrl+D
to compile and execute the code as normal. The console prints output for every expression in one big block at
the end of the input:

scala> :paste

// Entering paste mode (ctrl-D to finish)

val x = 1

val y = 2

x + y

// Exiting paste mode, now interpreting.

x: Int = 1

y: Int = 2

res6: Int = 3

If we have Scala code in a file, we can use :paste to paste the contents of the file into the console. This is much
more convenient than re-entering expressions in the console. For example, with a file named example.txt
containing 1 + 2 + 3 we can use :paste like so:

1.2. SETTING UP SCALA IDE 11

scala> :paste example.scala

Pasting file example.scala...

res0: Int = 6

1.1.3 Prinঞng the Type of an Expression

One final ঞp for using the console. Occasionally we want to know the type of an expression without actually
running it. To do this we can use the :type command:

scala> :type println("Hello world!")

Unit

Noঞce that the console doesn’t execute our println statement in this expression. It simply compiles it and
prints out its type, which in this case is something called Unit.

Unit is Scala’s equivalent of void from Java and C. Read Chapter 1 to find out more.

1.2 Seমng up Scala IDE

Scala IDE is a plugin that adds Scala language support to Eclipse. A complete version of Scala IDE with Eclipse
is also available as a standalone bundle from h�p://scala-ide.org. This is the easiest way to install the so[ware
so we recommend you install the standalone bundle for this course.

Go to http://scala-ide.org now, click the Get the Bundle bu�on, and follow the on-screen instrucঞons to down-
load Scala IDE for your operaঞng system:

Once you have downloaded and uncompressed the bundle you should find an applicaঞon called Eclipse. Launch
this. You will be asked to choose a folder for your workspace:

http://eclipse.org
http://scala-ide.org

12 CHAPTER 1. GETTING STARTED

Accept the default locaঞon and you will see an empty main Eclipse window:

1.2.1 Creaঞng your First Applicaঞon

Your Eclipse workspace is two things: a folder containing files and seমngs, and a main window where you will
be doing most of your Scala programming. In your workspace you can find projects for each Scala applicaঞon
you work on.

Let’s create a project for the book exercises now. Select the File menu and choose New > Scala Project:

1.2. SETTING UP SCALA IDE 13

Enter a Project name of essential-scala and click Finish. The tree view on the le[of your workspace should
now contain an empty project:

A project is no good without code to run! Let’s create our first simple Scala applicaঞon - the obligatory Hello
World app. Select the File Menu and choose New > Scala Object:

14 CHAPTER 1. GETTING STARTED

Name your object HelloWorld and click Finish. A new file called HelloWorld.scala should appear in the
tree view on the le[of the main window. Eclipse should open the new file in the main editor ready for you to
start coding:

The content of the file should read as follows:

object HelloWorld {

}

Replace this text with the following minimalist applicaঞon:

1.2. SETTING UP SCALA IDE 15

object HelloWorld {

def main(args: Array[String]): Unit = {

println("Hello world!")

}

}

Select the Run Menu and choose Run. This should execute the code in your applicaঞon, resulঞng in the words
Hello world! appearing in the Console pane at the bo�om of the window. Congratulaঞons - you just ran
your first Scala applicaঞon!

Developers with Java experience will noঞce the resemblance of the code above to the Java hello world app:

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello world!");

}

}

The resemblance is, of course, no coincidence. These two applicaঞons compile to more or less the same byte-
code and have exactly the same semanঞcs. We will learn much more about the similariঞes and differences
between Scala and Java as the course conঞnues.

1.2.2 Creaঞng your First Worksheet

Compiling and running code whenever you make a change is a ঞme consuming process that isn’t parঞcularly
suitable to a learning environment.

Fortunately, Scala IDE allows us to create special files called Scala Worksheets that are specifically designed for
training and experimentaঞon. Every ঞme you save a Worksheet, Eclipse automaঞcally compiles and runs your
code and displays the output on the right-hand side of your editor. This provides instant feedback, which is
exactly what we need when invesঞgaঞng new concepts!

16 CHAPTER 1. GETTING STARTED

Create your first Scala Worksheet by selecঞng the File Menu and choosing New > Scala Worksheet:

Enter aWorksheet name of FirstSteps and click Finish. A new file called FirstSteps.sc should appear in
the tree view on the le[of the main window, and should open it in the main editor in the middle:

Note that the object on the le[contains a single line of Scala code:

println("Welcome to the Scala worksheet")

for which Eclipse is displaying the corresponding output on the right:

Welcome to the Scala worksheet

1.2. SETTING UP SCALA IDE 17

Any expression you add to the le[of the editor is evaluated and printed on the right. To demonstrate this,
change the text in the editor to the following:

object FirstSteps {

println("Welcome to the Scala worksheet")

1 + 1

if(20 > 10) "left" else "right"

println("The ultimate answer is " + 42)

}

Save your work by selecঞng the File Menu and choosing Save (or be�er sঞll by pressing Ctrl+S). Eclipse should
automaঞcally evaluate each line of code and print the results on the right of the editor:

object FirstSteps {

println("Welcome to the Scala worksheet") //> Welcome to the Scala worksheet

1 + 1 //> res0: Int(2) = 2

if(20 > 10) "left" else "right" //> res1: String = left

println("The ultimate answer is " + 42) //> The ultimate answer is 42

}

We’ll dive into what all of the text on the right means as we proceed with the course ahead. For now you’re all
set to start honing your Scala skills!

18 CHAPTER 1. GETTING STARTED

Chapter 2

Expressions, Types, and Values

In this chapter we look at the fundamental building blocks of Scala programs: expressions, types, and values.
Understanding these concepts is necessary to build a mental model of how Scala programs work.

2.1 Your First Program

In the Scala console or worksheet enter "Hello world!" and press return (in the console) or save the work-
sheet. You should see an interacঞon similar to this:

"Hello world!"

// res: String = Hello world!

There is a lot to say about this program. It consists of a single expression, and in parঞcular a literal expression or
literal for short.

Scala runs, or evaluates, our program. When we evaluate a program in the Scala console or worksheet we are
told two pieces of informaঞon: the type of the program, and the value it evaluates to. In this case the type is
String and the value is "Hello world!".

Although the output value “Hello world!” looks the same as the program that created it, there is a difference
between the two. The literal expression is the program text we entered, while what the console prints is the
result of evaluaঞng that program. (Literals are so-named because they literally look like what they evaluate to.)

Let’s look at a slightly more complex program

"Hello world!".toUpperCase

// res: String = HELLO WORLD!

This program extends our first example by adding a method call. Evaluaঞon in Scala proceeds le[to right. First
the literal "Hello world!" is evaluated, as in the first example. Then the method toUpperCase is called on
the result. This method transforms a string value to its upper case equivalent and returns this new string. This
is the final value we see printed by the console.

Once again the type of this program is String, but in this case it evaluates to "HELLO WORLD!"

2.1.1 Compile-ঞme and Run-ঞme

There are two disঞnct stages that a Scala program goes through: first it is compiled, and if it compiles successfully
it can then be run or evaluated. We refer to the first stage as compile-ࢼme and the la�er as run-ࢼme.

19

20 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

When using the Scala console our programs are evaluated as soon as they compile, which gives the appearance
that there is only one stage. It is important to understand that compile- and run-ঞme really are disঞnct, as it is
this disঞncঞon that allows us to properly understand the difference between types and values.

Compilaঞon is a process of checking that a program makes sense. There are two ways in which a program must
“make sense”:

1. It must be syntacࢼcally correct, meaning the parts of the program must be arranged according to the
grammar of the language. An example English sentence that is not syntacঞcally correct is “on cat mat sat
the”. An example syntacঞcally incorrect Scala program is

toUpperCase."Hello world!"

// error: identifier expected but string literal found.

// toUpperCase."Hello world!"

// ^

2. It must type check, meaning it must obey certain constraints on what a sensible program is. An example
English sentence that is syntacঞcally correct but fails to make sense is “the mat sat on the cat”. A simple
program that would fail to type check is trying to convert a number to uppercase.

2.toUpperCase

// error: value toUpperCase is not a member of Int

// 2.toUpperCase

// ^

The concept of upper and lowercase doesn’t make sense for numbers, and the type system will catch this error.

If a program passes the checks at compile-ঞme it may then be run. This is the process of the computer per-
forming the instrucঞons in the program.

Even though a program successfully compiles it can sঞll fail at run-ঞme. Dividing an integer by zero causes a
run-ঞme error in Scala.

2 / 0

// java.lang.ArithmeticException: / by zero

The type of integers, Int, allows division so the program type checks. At run-ঞme the program fails because
there is no Int that can represent the result of the division.

2.1.2 Expressions, Types, and Values

So what exactly are expressions, types, and values?

Expressions are part of a program’s text—what we type into a file, or the console or worksheet. They are the
main components of a Scala program. We will see other components, namely definiࢼons and statements, in due
course. Expressions exist at compile-ঞme.

The defining characterisঞc of an expression is that it evaluates to a value. A value is informaঞon stored in the
computer’s memory. It exists at run-ঞme. For example, the expression 2 evaluates to a parঞcular sequence of
bits in a parঞcular locaঞon in the computer’s memory.

We compute with values. They are enঞঞes that our programs can pass around and manipulate. For example,
to compute the minimum of two numbers we might write a program like

2.1. YOUR FIRST PROGRAM 21

2.min(3)

// res: Int = 2

Here we have two values, 2 and 3, and we combine them into a larger program that evaluates to 2.

In Scala all values are objects, which has a parঞcular meaning we will see shortly.

Now let’s turn to types. Types are restricঞons on our programs that limit how we can manipulate objects. We
have already seen two types, String and Int, and seen that we can perform different operaঞons depending
on the type.

At this stage, the most important point about types is that expressions have types but values do not. We cannot
inspect an arbitrary piece of the computer’smemory and divine how to interpret it without knowing the program
that created it. For example, in Scala the Int and Float types are both represented by 32-bits ofmemory. There
are no tags or other indicaঞons that a given 32-bits should be interpreted as an Int or a Float.

We can show that types exist at compile-ঞme by asking the Scala console to tell us the type of an expression
that causes a run-ঞme error.

:type 2 / 0

// Int

2 / 0

// java.lang.ArithmeticException: / by zero

We see that the expression 2 / 0 has type Int even though this expression fails when we evaluate it.

Types, which exist at compile-ঞme, restrict us to wriঞng programs that give a consistent interpretaঞon to val-
ues. We cannot claim that a parঞcular 32-bits is at one point an Int and another a Float. When a program
type checks, Scala guarantees that all values are used consistently and thus it does not need to record type
informaঞon in a value’s representaঞon. This process of removing type informaঞon is called type erasure¹.

Types necessarily do not contain all possible informaঞon about the values that conform to the type. If they did,
type checking would be equivalent to running the program. We have already seen that the type system will not
prevent us from dividing an Int by zero, which causes a run-ঞme error.

An key part of designing Scala code is deciding which error cases we wish to rule out using the type system.
We will see that we can express many useful constraints in the type system, improving the reliability of our
programs. We could implement a division operator that used the type system to express the possibility of error,
if we decided this was important enough in our program. Using the type system well is one of the main themes
of this book.

2.1.3 Take Home Points

Wemust build a mental model of Scala programs if we are to use Scala. Three fundamental components of this
model are expressions, types, and values.

Expressions are the parts of a program that evaluate to a value. They are the major part of a Scala program.

Expressions have types, which express some restricঞons on programs. During compile-ࢼme the types of our
programs are checked. If they are inconsistent then compilaঞon fails and we cannot evaluate, or run, our
program.

¹This is not enঞrely true. The Java Virtual Machine, the program that runs Scala code, disঞnguishes between two kinds of objects.
Primiঞve types don’t store any type informaঞon alongwith the value they represent. Object types do store type informaঞon. However
this type informaঞon is not complete and there are occasions where it is lost. Blurring the disঞncঞon between compile- and run-ঞme
is thus dangerous. If we never rely on type informaঞon being around at run-ঞme (and the pa�erns we will show you do not) we will
never run into these issues.

22 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

Values exist in the computer’s memory, and are what a running program manipulates. All values in Scala are
objects, the meaning of which we will discuss soon.

2.1.4 Exercises

2.1.4.1 Type and Value

Using the Scala console or worksheet, determine the type and value of the following expressions:

1 + 2

See the soluঞon

"3".toInt

See the soluঞon

"foo".toInt

See the soluঞon

2.2 Interacঞng with Objects

In the previous secঞon we saw the fundamental components of Scala programs: expressions, types, and values.
We learned that all values are objects. In this secঞon we will learn more about objects and how we can interact
with them.

2.2.1 Objects

An object is a grouping of data and operaঞons on that data. For example, 2 is an object. The data is the integer
2, and the operaঞons on that data are familiar operaঞons like +, -, and so on.

We have some special terminology for the data and operaঞons of an object. The operaঞons are known as
methods. The data is stored in fields.

2.2.2 Method Calls

We interact with objects by calling methods². We have already seen some examples of calling methods. For
example, we have seen we can get the uppercase version of a String by calling its toUpperCase method.

"hello".toUpperCase

// res: String = HELLO

Some methods accept parameters or arguments, which control how the method works. The take method, for
example, takes characters from a String. We must pass a parameter to take to specify how many characters
we want.

²There is another way of interacঞng with objects, called pa�ern matching. We will introduce pa�ern matching later.

2.2. INTERACTINGWITH OBJECTS 23

"abcdef".take(3)

// res: String = abc

"abcdef".take(2)

// res: String = ab

Method Call Syntax

The syntax for a method call is

anExpression.methodName(param1, ...)

or

anExpression.methodName

where

• anExpression is any expression (which evaluates to an object)
• methodName is the name of the method
• the opঞonal param1, ... is one or more expressions evaluaঞng to the parameters to the method.

A method call is an expression, and thus evaluates to an object. This means we can chain method calls together
to make more complex programs:

"hello".toUpperCase.toLowerCase

// res: String = hello

In what order are the various expressions in a method call evaluated? Method parameters are evaluated le[-
to-right, before the method is called. So in the expression

"Hello world!".take(2 + 3)

the expression "Hello world!" is evaluated first, then 2 + 3 (which requires evaluaঞng 2 and then 3 first),
then finally "Hello world!".take(5).

2.2.3 Operators

Because every value in Scala is an object we can also call methods on primiঞve types such as Int and Boolean.
This is in contrast to Java where int and boolean are not objects:

123.toShort // this is how we define a `Short` in Scala

// res: Short = 123

123.toByte // and this is how we define a `Byte`

// res: Byte = 123

But if an Int is an object, what are the basic methemaঞcal operators such as + and -? Are they also methods?
Yes—Scala methods can have symbolic names as well as alphanumeric ones!

24 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

43 - 3 + 2

// res: Int = 42

43.-(3).+(2)

// res: Int = 42

(Note that in Scala 2.10 and earlier you would have to write (43).-(3).+(2) to prevent 43. being interpreted
as a Double.)

Infix Operator Notaঞon

Any Scala expression wri�en a.b(c) can also be wri�en a b c.

Note that a b c d e is equivalent to a.b(c).d(e), not a.b(c, d, e).

We can use infix operator notaࢼon with any method that takes one parameter, regardless of whether it has a
symbolic or alphanumeric name:

"the quick brown fox" split " "

// res: Array[String] = Array(the, quick, brown, fox)

Infix notaঞon is one of several syntacঞc shorthands that allow us towrite simple operator expressions instead of
verbosemethod calls. There are also notaঞons for prefix, postfix, right-associaࢼve, and assignment-style operators,
but there are much less common than infix notaঞon.

A quesঞon poses itself—what precedence rules should we associate with infix operators? Scala uses a set of
precedence rules derived from the idenঞfiers we use as method names that follow our intuiঞve understanding
from mathemaঞcs and logic:

2 * 3 + 4 * 5

// res: Int = 26

(2 * 3) + (4 * 5)

// res: Int = 26

2 * (3 + 4) * 5

// res: Int = 70

2.2.4 Take home points

All Scala values are objects. We interact with objects by calling methods on them. If you come from a Java
background note we can call methods on Int or any other primiঞve value.

The syntax for a method call is

anExpression.methodName(parameter, ...)

or

anExpression methodName parameter

Scala has very few operators - almost everything is a method call. We use syntacঞc convenঞons like infix operator
notaঞon to keep our code simple and readable, but we can always fall back to standard method notaঞon where
it makes sense.

As we will see, Scala’s focus on programming with expressions allows us to write much shorter code than we
can in Java. It also allows us to reason about code in a very intuiঞve way using values and types.

http://stackoverflow.com/questions/2922347/operator-precedence-in-scala

2.3. LITERAL OBJECTS 25

2.2.5 Exercises

2.2.5.1 Operator Style

Rewrite in operator-style

"foo".take(1)

See the soluঞon

Rewrite in method call style

1 + 2 + 3

See the soluঞon

2.2.5.2 Subsঞtuঞon

What is the difference between the following expressions? What are the similariঞes?

1 + 2 + 3

6

See the soluঞon

2.3 Literal Objects

We have already covered some of Scala’s basic types. In this secঞon we’re going to round out that knowledge
by covering all of Scala’s literal expressions. A literal expression represents a fixed value that stands “for itself”.
Here’s an example:

42

// res: Int = 42

This interacঞon at the REPL shows us that the literal 42 evaluates to the Int 42.

Don’t confuse a literal with the value it evaluates to! The literal expression is the representaঞon in the program
text before the program is run, and the value is the representaঞon in the computer’s memory a[er the program
has run.

If you have prior programming experience, parঞcularly Java experience, the literals in Scala should be familiar
to you.

2.3.1 Numbers

Numbers share the same types available in Java: Int for 32-bit integers, Double for 64-bit floaঞng point, Float
for 32-bit floaঞng point, and Long for 64-bit integers.

26 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

42

// res: Int = 42

42.0

// res: Double = 42.0

42.0f

// res: Float = 42.0

42L

// res: Long = 42

Scala also has 16-bit Short integers and 8-bit Bytes, but there is no literal syntax for creaঞng them. Instead,
we create them using methods called toShort and toByte.

2.3.2 Booleans

Booleans are exactly the same as Java: true or false.

true

// res: Boolean = true

false

// res: Boolean = false

2.3.3 Characters

Chars are 16-bit Unicode values wri�en as a single character enclosed in single quotes.

'a'

// res: Char = a

Scala vs Java’s Type Hierarchy

Although they are wri�en with iniঞal capitals, Scala’s Int, Double, Float, Long, Short, Byte, Boolen
and Char refer to exactly the same things as int, double, float, long, short, byte, boolean, and char
in Java.

In Scala all of these types act like objects with methods and fields. However, once your code is compiled,
a Scala Int is exactly the same as a Java int. This makes interoperability between the two languages a
breeze.

2.3.4 Strings

Strings are exactly Java’s strings, and are wri�en the same way.

"this is a string"

// res: java.lang.String = this is a string

"the\nusual\tescape characters apply"

// res: java.lang.String =

// the

2.3. LITERAL OBJECTS 27

// usual escape characters apply

2.3.5 Null

Null is the same as Java, though not used nearly as o[en. Scala’s null also has its own type: Null.

null

// res: Null = null

Using Nulls in Scala

Although nulls are common in Java code, they are considered very bad pracঞce in Scala.

The main use of null in Java is to implement opࢼonal values that have some or no value at different points
of a program’s execuঞon. However, null values cannot be checked by the compiler, leading to possible
runঞme errors in the form of NullPointerExceptions.

Later we will see that Scala has the means to define opঞonal values that are checked by the compiler. This
removes the necessity of using null, making our programs much safer.

2.3.6 Unit

Unit, wri�en (), is the Scala equivalent of Java’s void. Unit is the result of expressions that evaluate to no
interesঞng value, such as prinঞng to standard output using println. The console doesn’t print unit but we can
ask for the type of an expression to see that unit is in fact the result of some expressions.

()

:type ()

// Unit

println("something")

// something

:type println("something")

// Unit

Unit is an important concept in Scala. Many of Scala’s syntacঞc constructs are expressions that have types and
values. We need a placeholder for expressions that don’t yield a useful value, and unit provides just that.

2.3.7 Take home points

In this secঞon we have seen literal expressions, which evaluate to basic data types. These basics types are
mostly idenঞcal to Java, except for Unit which has no equivalent.

We note that every literal expression has a type, and evaluates to a value—something which is also true for more
complex Scala expressions.

In the next secঞon we will learn how to define our own object literals.

28 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

2.3.8 Exercises

2.3.8.1 Literally Just Literals

What are the values and types of the following Scala literals?

42

true

123L

42.0

See the soluঞon

2.3.8.2 Quotes and Misquotes

What is the difference between the following literals? What is the type and value of each?

'a'

"a"

See the soluঞon

2.3.8.3 An Aside on Side-Effects

What is the difference between the following expressions? What is the type and value of each?

"Hello world!"

println("Hello world!")

See the soluঞon

2.3.8.4 Learning By Mistakes

What is the type and value of the following literal? Try wriঞng it on the REPL or in a Scala worksheet and see
what happens!

'Hello world!'

See the soluঞon

2.4. OBJECT LITERALS 29

2.4 Object Literals

So far we’ve seen how to create objects of built-in types like Int and String and combine them into expres-
sions. In this secঞon we will see how to create objects of our own design using object literals.

When we write an object literal we use a declaraࢼon, which is a different kind of program to an expression. A
declaraঞon does not evaluate to a value. Instead is gives a name to a value. This name can then be used to
refer to the value in other code.

We can declare an empty object as follows:

object Test {}

This is not an expression—it does not evaluate to a value. Rather, it binds a name (Test) to a value (an empty
object).

Once we have bound the name Test we can use it in expressions, where it evaluates to the object we have
declared. The simplest expression is just the name on its own, which evaluates to the value itself:

Test

// res: Test.type = Test$@1668bd43

This expression is equivalent to wriঞng a literal like 123 or "abc". Note that the type of the object is reported
as Test.type. This is not like any type we’ve seen before—it’s a new type, created just for our object, called a
singleton type. We cannot create other values of this type.

Empty objects are not so useful. Within the body (between the braces) of an object declaraঞon we can put
expressions. It is more common, however, to put declaraঞons such as declaring methods, fields, or even more
objects.

Object Declaraঞon Syntax

The syntax for declaring an object is

object name {

declarationOrExpression ...

}

where

• name is the name of the object; and
• the opঞonal declarationOrExpressions are declaraঞons or expressions.

Let’s see how to declare methods and fields.

2.4.1 Methods

We interact with objects via methods so let’s create an object with a method.

30 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

object Test2 {

def name: String = "Probably the best object ever"

}

Here we’ve create a method called name. We can call it in the usual way.

Test2.name

// res: String = Probably the best object ever

Here’s an object with a more complex method:

object Test3 {

def hello(name: String) =

"Hello " + name

}

defined object Test3

Test3.hello("Noel")

// res: String = Hello Noel

Method Declaraঞon Syntax

The syntax for declaring a method is

def name(parameter: type, ...): resultType =

bodyExpression

or

def name: resultType =

bodyExpression

where

• name is the name of the method;
• the opঞonal parameters are the names given to parameters to the method;
• the types are the types of the method parameters;
• the opঞonal resultType is the type of the result of the method;
• the bodyExpression is an expression that calling the method evaluates to.

Method parameters are opঞonal, but if a method has parameters their type must be given. Although the
result type is opঞonal it is good pracঞce to define it as it serves as (machine checked!) documentaঞon.

The term argument may be used interchangably with parameter.

2.4. OBJECT LITERALS 31

Return is Implicit

The return value of the method is determined by evaluaঞng the body—there is no need to write return
like you would in Java.

2.4.2 Fields

An object can also contain other objects, called fields. We introduce these using the keywords val or var, which
look similar to def:

object Test4 {

val name = "Noel"

def hello(other: String): String =

name + " says hi to " + other

}

Test4.hello("Dave")

// res: String = Noel says hi to Dave

Field Declaraঞon Syntax

The syntax for declaring a field is

val name: type = valueExpression

or

var name: type = valueExpression

where

• name is the name of the field;
• the opঞonal type declaraঞon gives the type of the field;
• the valueExpression evaluates to the object that is bound to the name.

Using val defines an immutable field, meaning we cannot change the value bound to the name. A var field is
mutable, allowing us to change the bound value.

Always prefer val to var. Scala programmers prefer to use immutable fields wherever possible, as this maintains
subsঞtuঞon. While you will no doubt create the occassional mutable field in your applicaঞon code, we will stay
away from var for most of this course and you should do the same in your Scala programming.

2.4.3 Methods versus fields

Youmight wonder whywe need fields whenwe can havemethods of no arguments that seem towork the same.
The difference is subtle—a field gives a name to a value, whereas a method gives a name to a computaঞon that
produces a value.

Here’s an object that shows the difference:

32 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

object Test7 {

val simpleField = {

println("Evaluating simpleField")

42

}

def noParameterMethod = {

println("Evaluating noParameterMethod")

42

}

}

Herewe have used a println expression to print something to the console, and a block expression (expressions
surrounded by { and }) to group expressions. We’ll see more about block expressions in the next secঞon.

Noঞce how the console says we’ve defined a object, but it hasn’t run either of our println statements? This
is due to a quirk of Scala and Java called lazy loading.

Objects and classes (which we’ll see later) aren’t loaded unঞl they are referenced by other code. This is what
prevents Scala loading the enঞre standard library into memory to run a simple "Hello world!" app.

Let’s force Scala to evaluate our object body by referencing Test7 in an expression:

Test7

// Evaluating simpleField

// res: Test7.type = Test7$@b22e8c9

When the object is first loaded, Scala runs through its definiঞons and calculates the values of each of its fields.
This results in the code prinঞng "Evaluating simpleField" as a side-effect.

The body expression of a field is run only once a[er which the final value is stored in the object. The expression is
never evaluated again—noঞce the lack of println output below.

Test7.simpleField

// res: Int = 42

Test7.simpleField

// res: Int = 42

The body of a method, on the other hand, is evaluated every ঞme we call the method—noঞce the repreated
println output below.

Test7.noParameterMethod

// Evaluating noParameterMethod

// res: Int = 42

Test7.noParameterMethod

// Evaluating noParameterMethod

// res: Int = 42

2.4.4 Take home points

In this secঞon we have created our own objects, given them methods and fields, and referenced them in ex-
pressions.

We have seen the syntax for declaring objects

2.4. OBJECT LITERALS 33

object name {

declarationOrExpression ...

}

for declaring methods

def name(parameter: type, ...): resultType = bodyExpression

and for declaring fields

val name = valueExpression

var name = valueExpression

All of these are declaraࢼons, binding names to values. Declaraঞons are different to expressions. They do not
evaluate to a value and do not have a type.

We have also seen the difference between methods and fields—fields refer to values stored within an object,
whereas methods refer to computaঞons that produce values.

2.4.5 Exercises

2.4.5.1 Cat-o-maঞque

The table below shows the names, colour, and favourite foods of three cats. Define an object for each cat. (For
experienced programmers: we haven’t covered classes yet.)

Name Colour Food

Oswald Black Milk
Henderson Ginger Chips
Quenঞn Tabby and white Curry

See the soluঞon

2.4.5.2 Square Dance!

Define an object called calcwith amethod square that accepts a Double as an argument and…you guessed it…
squares its input. Add a method called cube that cubes its input calling square as part of its result calculaঞon.

See the soluঞon

2.4.5.3 Precise Square Dance!

Copy and paste calc from the previous exercise to create a calc2 that is generalized to work with Ints as well
as Doubles. If you have Java experience, this should be fairly straigh�orward. If not, read the soluঞon below.

See the soluঞon

34 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

2.4.5.4 Order of evaluaঞon

When entered on the console, what does the following program output, and what is the type and value of the
final expression? Think carefully about the types, dependencies, and evaluaঞon behaviour of each field and
method.

object argh {

def a = {

println("a")

1

}

val b = {

println("b")

a + 2

}

def c = {

println("c")

a

b + "c"

}

}

argh.c + argh.b + argh.a

See the soluঞon

2.4.5.5 Greeঞngs, human

Define an object called person that contains fields called firstName and lastName. Define a second object
called alien containing a method called greet that takes your person as a parameter and returns a greeঞng
using their firstName.

What is the type of the greet method? Can we use this method to greet other objects?

See the soluঞon

2.4.5.6 The Value of Methods

Are methods values? Are they expressions? Why might this be the case?

See the soluঞon

2.5 Wriঞng Methods

In the previous secঞon we saw the syntax of methods. One of our main goals in this course is to go beyond
syntax and give you systemaঞc methods for construcঞng Scala programs. This is our first secঞon dealing with
such ma�ers. In this secঞon we’re going to look at a systemaঞc method for construcঞng methods. As you gain
experience with Scala you can drop some of the steps of this method, but we strongly suggest you follow this
method during the course.

To make the advice concrete we’ll use this exercise from the previous secঞon as an example:

Define an object called calc with a method square that accepts a Double as an argument and… you guessed it…
squares its input. Add a method called cube that cubes its input, calling square as part of its result calculaࢼon.

2.5. WRITING METHODS 35

2.5.1 Idenঞfy the Input and Output

Your first step is to idenঞfy the types of the input parameters, if any, and the result of the method.

In many cases the exercises will tell you the types and you can just read them straight from the descripঞon. In
the example above the input type is given as Double. The result type we can infer is also Double.

2.5.2 Prepare Test Cases

Types alone don’t tell all the story. There are many Double to Double funcঞons, but few that implement
squaring. Thus we should prepare some test cases that illustrate the expected behaviour of the method.

We’re not going to use a tesঞng library in this course, as we’re trying to avoid external dependencies. We can
implement a poor-man’s tesঞng library using the assert funcঞon that Scala provides. For our square example
we might have test cases like

assert(square(2.0) == 4.0)

assert(square(3.0) == 9.0)

assert(square(-2.0) == 4.0)

2.5.3 Write the Declaraঞon

With types and test cases ready we can now write the method declaraঞon. We haven’t developed the body
yet so use ???, another ni[y Scala feature, in its place.

def square(in: Double): Double =

???

This step should be mechanical given the informaঞon gathered in the previous steps.

2.5.4 Run the Code

Run the code and check it compiles (and thus we haven’t made any typos) and also that our tests fail (and thus
are tesঞng something). You may need to place the tests a[er the method declaraঞon.

2.5.5 Write the Body

We’re now ready to write the body of our method. We will develop a number of techniques for this throughout
the course. For now, we’re going to look at two techniques.

2.5.5.1 Consider the Result Type

The first technique is to look at the result type, in this case Double. How can we create Double values? We
could write a literal, but that obviously won’t be correct in this case. The other way we know to create a Double
is to call a method on some object, which brings us to the next technique.

36 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

2.5.5.2 Consider the Input Type

Our next technique is to look at the type of input parameters to the method. In this case we have a Double.
We have established we need to create a Double, so what methods can we call to create a Double from our
input? There are many such methods, and here we have to use our domain knowledge to select * as the correct
method to call.

We can now write our complete method as

def square(in: Double): Double =

in * in

2.5.6 Run the Code, Again

Finally we should run the code again and check that the tests all pass in this case.

This is very simple example but pracঞcing the process now will serve you well for the more complicated exam-
ples we will encounter later.

Process for Wriঞng Methods

We have a six-step process for wriঞng methods in a systemaঞc way.

1. Idenঞfy the type of the inputs and output of the method.
2. Write some test cases for the expected output of the method given example input. We can use
the assert funcঞon to write down these cases.

3. Write the method declaraঞon using ??? for the body like so:

def name(parameter: type, ...): resultType =

???

4. Run the code to check the test cases do in fact fail.
5. Write the body of the method. We currently have two techniques to apply here:

• consider the result type and how we can create an instance of it; and
• consider the input type and methods we can call to transform it to the result type.

6. Run the code again and check the test cases pass.

2.6 Compound Expressions

We have almost finished our basic introducঞon to Scala. In this secঞon we are going to look at two special
kinds of expressions, condiࢼonals and blocks, we will need in more complicated programs.

2.6.1 Condiঞonals

A condiঞonal allows us to choose an expression to evaluate based on some condiঞon. For example, we can
choose a string based on which of two numbers is the smallest.

2.6. COMPOUND EXPRESSIONS 37

if(1 < 2) "Yes" else "No"

// res: String = Yes

Condiঞonals are Expressions

Scala’s if statement has the same syntax as Java’s. One important difference is that Scala’s condiࢼonal is
an expression—it has a type and returns a value.

The expression that is not selected does not get evaluated. This is apparent if we use an expression with a
side-effect.

if(1 < 2) println("Yes") else println("No")

// Yes

We can tell the expression println("No") is not evaluated because No is not output to the console.

Condiঞonal Expression Syntax

The syntax for a condiঞonal expression is

if(condition)

trueExpression

else

falseExpression

where

• condition is an expression with Boolean type;
• trueExpression is the expression evaluated if condition evaluates to true; and
• falseExpression is the expression evaluated if condition evaluates to false.

2.6.2 Blocks

Blocks are expressions that allow us to sequence computaঞons together. They are wri�en as a pair of braces
containing sub-expressions separated by semicolons or newlines.

{ 1; 2; 3 }

// warning: a pure expression does nothing in statement position; you may be omitting Ď

// necessary parentheses

// { 1; 2; 3 }

// ^

// warning: a pure expression does nothing in statement position; you may be omitting Ď

// necessary parentheses

// { 1; 2; 3 }

// ^

// res: Int = 3

38 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

As you can see, execuঞng this code causes the console to raise a number of warnings and return the Int value
3.

A block is a sequence of expressions or declaraঞons surrounded by braces. A block is also an expression: it
executes each of its sub-expressions in order and returns the value of the last expression.

Why execute 1 and 2 if we’re going to throw their values away? This is a good quesঞon, and is the reason the
Scala compiler raised those warnings above.

One reason to use a block is to use code that produces side-effects before calculaঞng a final value:

{

println("This is a side-effect")

println("This is a side-effect as well")

3

}

// This is a side-effect

// This is a side-effect as well

// res: Int = 3

We can also use a block when we want to name intermediate results, such as

def name: String = {

val title = "Professor"

val name = "Funkenstein"

title + " " + name

}

name

// res: String = Professor Funkenstein

Block Expression Syntax

The syntax of a block expression is

{

declarationOrExpression ...

expression

}

where

• the opঞonal declarationOrExpressions are declaraঞons or expression; and
• expression is an expression determining the type and value of the block expression.

2.6.3 Take home points

Condiঞonal expressions allow us to choose an expression to evaluate based on a Boolean condiঞon. The syntax
is

2.7. CONCLUSION 39

if(condition)

trueExpression

else

falseExpression

A condiঞonal, being an expression, has a type and evaluates to an object.

A block allows us to sequence expressions and declaraঞons. It is commonly used when we want to sequence
expressions with side-effects, or name intermediate results in a computaঞon. The syntax is

{

declarationOrExpression ...

expression

}

The type and value of a block is that of the last expression in the block.

2.6.4 Exercises

2.6.4.1 A Classic Rivalry

What is the type and value of the following condiঞonal?

if(1 > 2) "alien" else "predator"

See the soluঞon

2.6.4.2 A Less Well Known Rivalry

What about this condiঞonal?

if(1 > 2) "alien" else 2001

See the soluঞon

2.6.4.3 An if Without an else

What about this condiঞonal?

if(false) "hello"

See the soluঞon

2.7 Conclusion

We have had a very brief introducঞon to the fundamentals of Scala:

• expressions, which evaluate to values; and
• declaraঞons, which gives names to values.

40 CHAPTER 2. EXPRESSIONS, TYPES, AND VALUES

We’ve seen how we can write literals for many objects, and use method calls and compound expressions to
create new objects from exisঞng ones.

We have also declared our own objects, and constructed methods and fields.

Next we’re going to see how a new kind of declaraঞon, a class, provides a template for creaঞng objects. Classes
allow us to reuse code and unify similar objects will a common type.

Chapter 3

Objects and Classes

In the previous chapter we saw how to create objects and interact with them via method calls. In this secঞon
we’re going to see how we can abstract over objects using classes. Classes are a template for construcঞng
objects. Given a class we can make many objects that have the same type and share common properঞes.

3.1 Classes

A class is a template for creaঞng objects that have similar methods and fields. In Scala a class also defines a
type, and objects created from a class all share the same type. This allows us to overcome the problem we had
in the Greeࢼngs, Human exercise in the last chapter.

3.1.1 Defining a Class

Here is a declaraঞon for a simple Person class:

class Person {

val firstName = "Noel"

val lastName = "Welsh"

def name = firstName + " " + lastName

}

Like an object declaraঞon, a class declaraঞon binds a name (in this case Person) and is not an expression.
However, unlike an object name, we cannot use a class name in an expression. A class is not a value, and there
is a different namespace in which classes live.

Person

// error: not found: value Person

// Person

// ^

We can create a new Person object using the new operator. Objects are values and we access their methods
and fields in the usual way:

val noel = new Person

// noel: Person = Person@3235186a

noel.firstName

41

42 CHAPTER 3. OBJECTS AND CLASSES

// res: String = Noel

Noঞce the type of the object is Person. Each call to new creates a disঞnct object of the same type:

noel // noel is the object that prints '@3235186a'

// res: Person = Person@3235186a

val newNoel = new Person // each new object prints a new number

// newNoel: Person = Person@2792b987

val anotherNewNoel = new Person

// anotherNewNoel: Person = Person@63ee4826

This means we can write a method that takes any Person as a parameter:

object alien {

def greet(p: Person) =

"Greetings, " + p.firstName + " " + p.lastName

}

alien.greet(noel)

// res: String = Greetings, Noel Welsh

alien.greet(newNoel)

// res: String = Greetings, Noel Welsh

Java Tip

Scala classes are all subclasses of java.lang.Object and are, for the most part, usable from Java as
well as Scala. The default prinঞng behaviour of Person comes from the toString method defined in
java.lang.Object.

3.1.2 Constructors

As it stands our Person class is rather useless: we can create as many new objects as we want but they all have
the same firstName and lastName. What if we want to give each person a different name?

The soluঞon is to introduce a constructor, which allows us to pass parameters to new objects as we create them:

class Person(first: String, last: String) {

val firstName = first

val lastName = last

def name = firstName + " " + lastName

}

val dave = new Person("Dave", "Gurnell")

// dave: Person = Person@3ed12df7

dave.name

// res: String = Dave Gurnell

The constructor parameters first and last can only be used within the body of the class. We must declare a
field or method using val or def to access data from outside the object.

Constructor arguments and fields are o[en redundant. Fortunately, Scala provides us a useful short-hand way
of declaring both in one go. We can prefix constructor parameters with the val keyword to have Scala define
fields for them automaঞcally:

3.1. CLASSES 43

class Person(val firstName: String, val lastName: String) {

def name = firstName + " " + lastName

}

new Person("Dave", "Gurnell").firstName

// res: String = Dave

val fields are immutable—they are iniঞalized once a[er which we cannot change their values. Scala also pro-
vides the var keyword for defining mutable fields.

Scala programmers tend to prefer to write immutability and side-effect-free code so we can reason about it
using the subsঞtuঞon model. In this course we will concentrate almost exclusively on immutable val fields.

Class Declaraঞon Syntax

The syntax for declaring a class is

class Name(parameter: type, ...) {

declarationOrExpression ...

}

or

class Name(val parameter: type, ...) {

declarationOrExpression ...

}

where

• Name is the name of the class;
• the opঞonal parameters are the names given to constructor parameters;
• the types are the types of the constructor parameters;
• the opঞonal declarationOrExpressions are declaraঞons or expressions.

3.1.3 Default and Keyword Parameters

All Scala methods and constructors support keyword parameters and default parameter values.

When we call a method or constructor, we can use parameter names as keywords to specify the parameters in
an arbitrary order:

new Person(lastName = "Last", firstName = "First")

// res: Person = Person(First,Last)

This comes in doubly useful when used in combinaঞon with default parameter values, defined like this:

def greet(firstName: String = "Some", lastName: String = "Body") =

"Greetings, " + firstName + " " + lastName + "!"

If a parameter has a default value we can omit it in the method call:

44 CHAPTER 3. OBJECTS AND CLASSES

greet("Awesome")

// res: String = Greetings, Awesome Body!

Combining keywords with default parameter values let us skip earlier parameters and just provide values for
later ones:

greet(lastName = "Dave")

// res: String = Greetings, Some Dave!

Keyword Parameters

Keyword parameters are robust to changes in the number and order of parameters. For example, if we add a
title parameter to the greetmethod, themeaning of keywordless method calls changes but keyworded
calls remain the same:

def greet(title: String = "Citizen", firstName: String = "Some", lastName: String = "Body") =

"Greetings, " + title + " " + firstName + " " + lastName + "!"

greet("Awesome") // this is now incorrect

// res: String = Greetings, Awesome Some Body

greet(firstName = "Awesome") // this is still correct

// res: String = Greetings, Citizen Awesome Body

This is parঞcularly useful when creaঞng methods and constructors with a large number of parameters.

3.1.4 Scala’s Type Hierarchy

Unlike Java, which separates primiঞve and object types, everything in Scala is an object. As a result, “primiঞve”
value types like Int and Boolean form part of the same type hierarchy as classes and traits.

Any

AnyVal

Int
= java int

Double
= java double

Boolean
= java boolean

Array[T]
= java array

All Java
classes

All Scala
classes

java.lang.String

AnyRef
= java.lang.Object

Nothing
type of throw

Null
type of null

Unit
~ java void

etc…

Scala has a grand supertype called Any, under which there are two types, AnyVal and AnyRef. AnyVal is the
supertype of all value types, which AnyRef is the supertype of all “reference types” or classes. All Scala and
Java classes are subtypes of AnyRef¹.

¹We can actually define subtypes of AnyVal, which are known as value classes. These are useful in a few specialised circumstances
and we’re not going to discuss them here.

http://docs.scala-lang.org/overviews/core/value-classes.html

3.1. CLASSES 45

Some of these types are simply Scala aliases for types that exist in Java: Int is int, Boolean is boolean, and
AnyRef is java.lang.Object.

There are two special types at the bo�om of the hierarchy. Nothing is the type of throw expressions, and Null
is the type of the value null. These special types are subtypes of everything else, which helps us assign types
to throw and null while keeping other types in our code sane. The following code illustrates this:

def badness = throw new Exception("Error")

// badness: Nothing

null

// res: Null = null

val bar = if(true) 123 else badness

// bar: Int = 123

val baz = if(false) "it worked" else null

// baz: String = null

Although the types of badness and res are Nothing and Null respecঞvely, the types of bar and baz are
sঞll sensible. This is because Int is the least common supertype of Int and Nothing, and String is the least
common supertype of String and Null.

3.1.5 Take Home Points

In this secঞon we learned how to define classes, which allow us to create many objects with the same type.
Thus, classes let us abstract across objects that have similar properঞes.

The properঞes of the objects of a class take the form of fields and methods. Fields are pre-computed values
stored within the object and methods are computaঞons we can call.

The syntax for declaring classes is

class Name(parameter: type, ...) {

declarationOrExpression ...

}

We create objects from a class by calling the constructor using the keyword new.

We also learned about keyword parameters and default parameters.

Finally we learned about Scala’s type hierarchy, including the overlap with Java’s type hierarchy, the special
types Any, AnyRef, AnyVal, Nothing, Null, and Unit, and the fact that Java and Scala classes both occupy
the same subtree of the type hierarchy.

3.1.6 Exercises

We now have enough machinery to have some fun playing with classes.

3.1.6.1 Cats, Again

Recall the cats from a previous exercise:

46 CHAPTER 3. OBJECTS AND CLASSES

Name Colour Food

Oswald Black Milk
Henderson Ginger Chips
Quenঞn Tabby and white Curry

Define a class Cat and then create an object for each cat in the table above.

See the soluঞon

3.1.6.2 Cats on the Prowl

Define an object ChipShop with a method willServe. This method should accept a Cat and return true if
the cat’s favourite food is chips, and false otherwise.

See the soluঞon

3.1.6.3 Directorial Debut

Write two classes, Director and Film, with fields and methods as follows:

• Director should contain:

– a field firstName of type String
– a field lastName of type String
– a field yearOfBirth of type Int
– a method called name that accepts no parameters and returns the full name

• Film should contain:

– a field name of type String
– a field yearOfRelease of type Int
– a field imdbRating of type Double
– a field director of type Director
– a method directorsAge that returns the age of the director at the ঞme of release
– a method isDirectedBy that accepts a Director as a parameter and returns a Boolean

Copy-and-paste the following demo data into your code and adjust your constructors so that the code works
without modificaঞon:

val eastwood = new Director("Clint", "Eastwood", 1930)

val mcTiernan = new Director("John", "McTiernan", 1951)

val nolan = new Director("Christopher", "Nolan", 1970)

val someBody = new Director("Just", "Some Body", 1990)

val memento = new Film("Memento", 2000, 8.5, nolan)

val darkKnight = new Film("Dark Knight", 2008, 9.0, nolan)

val inception = new Film("Inception", 2010, 8.8, nolan)

val highPlainsDrifter = new Film("High Plains Drifter", 1973, 7.7, eastwood)

val outlawJoseyWales = new Film("The Outlaw Josey Wales", 1976, 7.9, eastwood)

val unforgiven = new Film("Unforgiven", 1992, 8.3, eastwood)

val granTorino = new Film("Gran Torino", 2008, 8.2, eastwood)

val invictus = new Film("Invictus", 2009, 7.4, eastwood)

val predator = new Film("Predator", 1987, 7.9, mcTiernan)

3.1. CLASSES 47

val dieHard = new Film("Die Hard", 1988, 8.3, mcTiernan)

val huntForRedOctober = new Film("The Hunt for Red October", 1990, 7.6, mcTiernan)

val thomasCrownAffair = new Film("The Thomas Crown Affair", 1999, 6.8, mcTiernan)

eastwood.yearOfBirth // should be 1930

dieHard.director.name // should be "John McTiernan"

invictus.isDirectedBy(nolan) // should be false

Implement a method of Film called copy. This method should accept the same parameters as the constructor
and create a new copy of the film. Give each parameter a default value so you can copy a film changing any
subset of its values:

highPlainsDrifter.copy(name = "L'homme des hautes plaines")

// returns Film("L'homme des hautes plaines", 1973, 7.7, /* etc */)

thomasCrownAffair.copy(yearOfRelease = 1968,

director = new Director("Norman", "Jewison", 1926))

// returns Film("The Thomas Crown Affair", 1926, /* etc */)

inception.copy().copy().copy()

// returns a new copy of `inception`

See the soluঞon

3.1.6.4 A Simple Counter

Implement a Counter class. The constructor should take an Int. The methods inc and dec should increment
and decrement the counter respecঞvely returning a new Counter. Here’s an example of the usage:

new Counter(10).inc.dec.inc.inc.count

// res: Int = 12

See the soluঞon

3.1.6.5 Counঞng Faster

Augment the Counter from the previous exercise to allow the user can opঞonally pass an Int parameter to
inc and dec. If the parameter is omi�ed it should default to 1.

See the soluঞon

3.1.6.6 Addiঞonal Counঞng

Here is a simple class called Adder.

class Adder(amount: Int) {

def add(in: Int) = in + amount

}

Extend Counter to add a method called adjust. This method should accept an Adder and return a new
Counter with the result of applying the Adder to the count.

See the soluঞon

48 CHAPTER 3. OBJECTS AND CLASSES

3.2 Objects as Funcঞons

In the final exercise of the previous secঞon, we defined a class called Adder:

class Adder(amount: Int) {

def add(in: Int): Int = in + amount

}

In the discussion we described an Adder as an object represenঞng a computaঞon—a bit like having a method
that we can pass around as a value.

This is such a powerful concept that Scala has a fully blown set of language features for creaঞng objects that
behave like computaঞons. These objects are called funcࢼons, and are the basis of funcࢼonal programming.

3.2.1 The apply method

For now we are going to look at just one of Scala’s features supporঞng funcঞonal programming—funcࢼon appli-
caࢼon syntax.

In Scala, by convenঞon, an object can be “called” like a funcঞon if it has a method called apply. Naming a
method apply affords us a special shortened call syntax: foo.apply(args) becomes foo(args).

For example, let’s rename the add method in Adder to apply:

class Adder(amount: Int) {

def apply(in: Int): Int = in + amount

}

val add3 = new Adder(3)

// add3: Adder = Adder@1d4f0fb4

add3(2) // shorthand for add3.apply(2)

// res: Int = 5

With this one simple trick, objects can “look” syntacঞcally like funcঞons. There are lots of things that we can
do with objects that we can’t do with methods, including assign them to variables and pass them around as
arguments.

Funcঞon Applicaঞon Syntax

The method call object.apply(parameter, ...) can also be wri�en as object(parameter, ...)

3.2.2 Take home points

In this secঞon we looked at funcࢼon applicaࢼon syntax, which lets us “call” an object as if it is a funcঞon.

Funcঞon applicaঞon syntax is available for any object defining an apply method.

With funcঞon applicaঞon syntax, we now have first class values that behave like computaঞons. Unlikemethods,
objects can be passed around as data. This takes us one step closer towards true funcঞonal programming in
Scala.

3.3. COMPANION OBJECTS 49

3.2.3 Exercises

3.2.3.1 When is a Funcঞon not a Funcঞon?

We’ll get a chance to write some code at the end of the next secঞon. For now we should think about an
important theoreঞcal quesঞon:

How close does funcঞon applicaঞon syntax get us to creaঞng truly reusable objects to do computaঞons for us?
What are we missing?

See the soluঞon

3.3 Companion Objects

Someঞmes we want to create a method that logically belongs to a class but is independent of any parঞcular
object. In Java we would use a staࢼc method for this, but Scala has a simpler soluঞon that we’ve seen already:
singleton objects.

One common use case is auxiliary constructors. Although Scala does have syntax that lets us define mulঞple
constructors for a class, Scala programmers almost always prefer to implement addiঞonal constructors as apply
methods on an object with the same name as the class. We refer to the object as the companion object of the
class. For example:

class Timestamp(val seconds: Long)

object Timestamp {

def apply(hours: Int, minutes: Int, seconds: Int): Timestamp =

new Timestamp(hours*60*60 + minutes*60 + seconds)

}

Timestamp(1, 1, 1).seconds

// res: Long = 3661

Using the Console Effecঞvely

Note our use of the :paste command in the transcript above. Companion objects must be defined in the
same compilaঞon unit as the classes they support. In a normal codebase this simply means defining the
class and object in the same file, but on the REPL we have to enter then in one command using :paste.

You can enter :help on the REPL to find out more.

As we saw earlier, Scala has two namespaces: a space of type names and a space of value names. This separaঞon
allows us to name our class and companion object the same thing without conflict.

It is important to note that the companion object is not an instance of the class—it is a singleton object with its
own type:

Timestamp // note that the type is `Timestamp.type`, not `Timestamp`

// res: Timestamp.type = Timestamp$@602b24e6

50 CHAPTER 3. OBJECTS AND CLASSES

Companion Object Syntax

To define a companion object for a class, in the same file as the class define an object with the same name.

class Name {

...

}

object Name {

...

}

3.3.1 Take home points

Companion objects provide us with a means to associate funcঞonality with a class without associaঞng it with
any instance of that class. They are commonly used to provide addiঞonal constructors.

Companion objects replace Java’s staࢼc methods. They provide equivalent funcঞonality and are more flexible.

A companion object has the same name as its associated class. This doesn’t cause a naming conflict because Scala
has two namespaces: the namespace of values and the namespace of types.

A companion object must be defined in the same file as the associated class. When typing on the REPL, the class
and companion object must be entered in the same block of code using :paste mode.

3.3.2 Exercises

3.3.2.1 Friendly Person Factory

Implement a companion object for Person containing an applymethod that accepts a whole name as a single
string rather than individual first and last names.

Tip: you can split a String into an Array of components as follows:

val parts = "John Doe".split(" ")

// parts: Array[String] = Array(John, Doe)

parts(0)

// res: String = John

See the soluঞon

3.3.2.2 Extended Body of Work

Write companion objects for Director and Film as follows:

• the Director companion object should contain:

– an apply method that accepts the same parameters as the constructor of the class and returns a
new Director;

– a method older that accepts two Directors and returns the oldest of the two.

3.4. CASE CLASSES 51

• the Film companion object should contain:

– an apply method that accepts the same parameters as the constructor of the class and returns a
new Film;

– a method highestRating that accepts two Films and returns the highest imdbRating of the
two;

– a method oldestDirectorAtTheTime that accepts two Films and returns the Director who
was oldest at the respecঞve ঞme of filming.

See the soluঞon

3.3.2.3 Type or Value?

The similarity in naming of classes and companion objects tends to cause confusion for new Scala developers.
When reading a block of code it is important to know which parts refer to a class or type and which parts refer
to a singleton object or value.

This is the inspiraঞon for the new hit quiz, Type or Value?, which we will be piloঞng below. In each case idenঞfy
whether the word Film refers to the type or value:

val prestige: Film = bestFilmByChristopherNolan()

See the soluঞon

new Film("Last Action Hero", 1993, mcTiernan)

See the soluঞon

Film("Last Action Hero", 1993, mcTiernan)

See the soluঞon

Film.newer(highPlainsDrifter, thomasCrownAffair)

See the soluঞon

Finally a tough one…

Film.type

See the soluঞon

3.4 Case Classes

Case classes are an excepঞonally useful shorthand for defining a class, a companion object, and a lot of sensible
defaults in one go. They are ideal for creaঞng lightweight data-holding classes with the minimum of hassle.

Case classes are created simply by prepending a class definiঞon with the keyword case:

52 CHAPTER 3. OBJECTS AND CLASSES

case class Person(firstName: String, lastName: String) {

def name = firstName + " " + lastName

}

Whenever we declare a case class, Scala automaঞcally generates a class and companion object:

val dave = new Person("Dave", "Gurnell") // we have a class

// dave: Person = Person(Dave,Gurnell)

Person // and a companion object too

// res: Person.type = Person

What’s more, the class and companion are pre-populated with some very useful features.

3.4.1 Features of a case class

1. A field for each constructor argument—we don’t even need to write val in our constructor definiঞon,
although there’s no harm in doing so.

dave.firstName

// res: String = Dave

2. A default toStringmethod that prints a sensible constructor-like representaঞon of the class (no more @
signs and crypঞc hex numbers):

dvae

// res: Person = Person("Dave","Gurnell")

3. Sensible equals, and hashCodemethods that operate on the field values in the object.

This makes it easy to use case classes with collecঞons like Lists, Sets and Maps. It also means we can compare
objects on the basis of their contents rather than their reference idenঞty:

new Person("Noel", "Welsh").equals(new Person("Noel", "Welsh"))

// res: Boolean = true

new Person("Noel", "Welsh") == new Person("Noel", "Welsh")

// res: Boolean = true

4. A copymethod that creates a new object with the same field values as the current one:

dave.copy()

// res: Person = Person(Dave,Gurnell)

Note that the copy method creates and returns a new object of the class rather than returning the current one:

dave.copy() eq res0

// res: Boolean = false

The copy method actually accepts opঞonal parameters matching each of the constructor parameters. If a
parameter is specified the new object uses that value instead of the exisঞng value from the current object. This
is ideal for use with keyword parameters to let us copy an object while changing the values of one or more
fields:

3.4. CASE CLASSES 53

dave.copy(firstName = "Dave2")

// res: Person = Person(Dave2,Gurnell)

dave.copy(lastName = "Gurnell2")

// res: Person = Person(Dave,Gurnell2)

Value and Reference Equality

Scala’s == operator is different from Java’s—it delegates to equals rather than comparing values on ref-
erence idenঞty.

Scala has an operator called eq with the same behaviour as Java’s ==. However, it is rarely used in appli-
caঞon code:

new Person("Noel", "Welsh") eq (new Person("Noel", "Welsh"))

// res: Boolean = false

dave eq dave

// res: Boolean = true

3.4.2 Features of a case class companion object

The companion object contains an apply method with the same arguments as the class constructor. Scala
programmers tend to prefer the apply method over the constructor for the brevity of omiমng new, which
makes constructors much easier to read inside expressions:

Person("Dave", "Gurnell") == Person("Noel", "Welsh")

// res: Boolean = false

Person("Dave", "Gurnell") == Person("Dave", "Gurnell")

// res: Boolean = true

Finally, the companion object also contains code to implement an extractor pa�ern for use in pa�ern matching.
We’ll see this later this chapter.

Case Class Declaraঞon Syntax

The syntax to declare a case class is

case class Name(parameter: type, ...) {

declarationOrExpression ...

}

where

• Name is the name of the case class;
• the opঞonal parameters are the names given to constructor parameters;

54 CHAPTER 3. OBJECTS AND CLASSES

• the types are the types of the constructor parameters;
• the opঞonal declarationOrExpressions are declaraঞons or expressions.

3.4.3 Case objects

A final note. If you find yourself defining a case class with no constructor arguments you can instead a define
a case object. A case object is defined just like a case class and has the same default methods as a case class.

case object Citizen {

def firstName = "John"

def lastName = "Doe"

def name = firstName + " " + lastName

}

The differences between a case object and a regular singleton object are:

• The case object keyword defines a class and an object, and makes the object an instance (actually the
only instance) of the class:

class Citizen { /* ... */ }

object Citizen extends Citizen { /* ... */ }

• With a case object we sঞll get all of the funcঞonality defined for case classes above.

3.4.4 Take Home Points

Case classes are the bread and bu�er of Scala data types. Use them, learn them, love them.

The syntax for declaring a case class is the same as for declaring a class, but with case appended

case class Name(parameter: type, ...) {

declarationOrExpression ...

}

Case classes have numerous auto-generated methods and features that save typing. We can override this
behaviour on a piece-by-piece basis by implemenঞng the relevant methods ourselves.

In Scala 2.10 and earlier we can define case classes containing 0 to 22 fields. In Scala 2.11 we gain the ability
to define arbitrarily-sized case classes.

3.4.5 Exercises

3.4.5.1 Case Cats

Recall that a Cat has a String colour and food. Define a case class to represent a Cat.

See the soluঞon

3.5. PATTERN MATCHING 55

3.4.5.2 Roger Ebert Said it Best…

No good movie is too long and no bad movie is short enough.

The same can’t always be said for code, but in this case we can get rid of a lot of boilerplate by converঞng
Director and Film to case classes. Do this conversion and work out what code we can cut.

See the soluঞon

3.4.5.3 Case Class Counter

Reimplement Counter as a case class, using copy where appropriate. Addiঞonally iniঞalise count to a default
value of 0.

See the soluঞon

3.4.5.4 Applicaঞon, Applicaঞon, Applicaঞon

What happens when we define a companion object for a case class? Let’s see.

Take our Person class from the previous secঞon and turn it into a case class (hint: the code is above). Make
sure you sঞll have the companion object with the alternate apply method as well.

See the soluঞon

3.5 Pa�ern Matching

Unঞl now we have interacted with objects by calling methods or accessing fields. With case classes we can
interact in another way, via pa�ern matching.

Pa�ern matching is like an extended if expression that allows us to evaluate an expression depending on the
“shape” of the data. Recall the Person case class we’ve seen in previous examples:

case class Person(firstName: String, lastName: String)

Now imagine we wanted to implement a Stormtrooper that is looking for members of the rebellion. We could
use pa�ern matching like this:

object Stormtrooper {

def inspect(person: Person): String =

person match {

case Person("Luke", "Skywalker") => "Stop, rebel scum!"

case Person("Han", "Solo") => "Stop, rebel scum!"

case Person(first, last) => s"Move along, $first"

}

}

Noঞce the syntax for a pa�ern (Person("Luke", "Skywalker")) matches the syntax for construcঞng the
object the pa�ern matches (Person("Luke", "Skywalker")).

Here it is in use:

56 CHAPTER 3. OBJECTS AND CLASSES

Stormtrooper.inspect(Person("Noel", "Welsh"))

// res: String = Move along, Noel

Stormtrooper.inspect(Person("Han", "Solo"))

// res: String = Stop, rebel scum!

Pa�ern Matching Syntax

The syntax of a pa�ern matching expression is

expr0 match {

case pattern1 => expr1

case pattern2 => expr2

...

}

where

• the expression expr0 evaluates to the value we match;
• the pa�erns, or guards, pattern1, pattern2, and so on are checked against this value in order;
and

• the right-hand side expression (expr1, expr2, and so on) of the first pa�ern that matches is evalu-
ated�.

Pa�ern matching is itself an expression and thus evaluates to a value—the value of the matched expres-
sion.

�In reality pa�erns are compiled to a more efficient form than a sequence of tests, but the semanঞcs are the same.

3.5.1 Pa�ern Syntax

Scala has an expressive syntax for wriঞng pa�erns or guards. For case classes the pa�ern syntax matches the
constructor syntax. Take the data

Person("Noel", "Welsh")

A pa�ern to match against the Person type is wri�en

Person(pat0, pat1)

where pat0 and pat1 are pa�erns to match against the firstName and lastName respecঞvely. There are four
possible pa�erns we could use in place of pat0 or pat1:

1. A name, which matches any value at that posiঞon and binds it to the given name. For example, the
pa�ern Person(first, last) binds the name first to the value "Noel", and the name last to the
value "Welsh".

2. An underscore (_), which matches any value and ignores it. For example, as Stormtroopers only care
about the first name of ordinary ciঞzens we could just write Person(first, _) to avoid binding a
name to the value of the lastName.

3.5. PATTERN MATCHING 57

3. A literal, which successfully matches only the value the literal respresents. So , for example, the pa�ern
Person("Han", "Solo") matches the Person with first name "Han" and last name "Solo".

4. Another case class using the same constructor style syntax.

Note there is a lot more we can do with pa�ern matching, and pa�ern matching is actually extensible. We’ll
look at these features in a later secঞon.

3.5.2 Take Home Points

Case classes allow a new form of interacঞon, called pa�ern matching. Pa�ern matching allows us to take apart
a case class, and evaluate different expressions depending on what the case class contains.

The syntax for pa�ern matching is

expr0 match {

case pattern1 => expr1

case pattern2 => expr2

...

}

A pa�ern can be one of

1. a name, binding any value to that name;
2. an underscore, matching any value and ignoring it;
3. a literal, matching the value the literal denotes; or
4. a constructor-style pa�ern for a case class.

3.5.3 Exercises

3.5.3.1 Feed the Cats

Define an object ChipShopwith a method willServe. This method should accept a Cat and return true if the
cat’s favourite food is chips, and false otherwise. Use pa�ern matching.

See the soluঞon

3.5.3.2 Get Off My Lawn!

In this exercise we’re going to write a simulator of myDad, the movie criঞc. It’s quite simple: anymovie directed
by Clint Eastwood gets a raঞng 10.0, any movie directed by John McTiernan gets a 7.0, while any other movie
gets a 3.0. Implement an object called Dad with a method rate which accepts a Film and returns a Double.
Use pa�ern matching.

See the soluঞon

58 CHAPTER 3. OBJECTS AND CLASSES

3.6 Conclusions

In this secঞon we’ve explored classes. We have seen that classes allow us to abstract over objects. That is, to
define objects that share properঞes in common and have a common type.

We also looked at companion objects, which are used in Scala to define auxillary constructors and other uঞlity
methods that don’t belong on a class.

Finally, we introduced case classes, which greatly reduce boilerplate code and allow pa�ern-matching, a new
way of interacঞng with objects, in addiঞon to method calls.

Chapter 4

Modelling Data with Traits

We looked in depth at classes in the previous chapter. Classes provide us with a way to abstract over objects
that have similar properঞes, allowing us to write code that works with any object in a class.

In this chapter we explore abstracࢼon over classes, allowing us to write code that works with objects of different
classes. We achieve this with a mechanism called traits.

This chapter also marks a change in our focus. In previous chapters we have addressed the technical aspects
of construcঞng Scala code. In this chapter we will iniঞally focus on the technical aspects of traits. Our focus
will then change to using Scala as a medium to express our thoughts.

We will see how we can mechanically transform a descripঞon of data, called an algebraic datatype, into code.
Using structural recursion we can mechanically write code that transforms an algebraic datatype.

4.1 Traits

Traits are templates for creaঞng classes, in the same way that classes are templates for creaঞng objects. Traits
allow us to express that two or more classes can be considered the same, and thus both implement the same
operaঞons. In other words, traits allow us to express that mulঞple classes share a common super-type (outside
of the Any super-type that all classes share).

Traits vs Java Interfaces

Traits are very much like Java 8’s interfaces with default methods. If you have not used Java 8, you can
think of traits as being like a cross between interfaces and abstract classes.

4.1.1 An Example of Traits

Let’s start with an example of a trait. Imagine we’re modelling visitors to a website. There are two types of
visitor: those who have registered on our site and those who are anonymous. We can model this with two
classes:

import java.util.Date

case class Anonymous(id: String, createdAt: Date = new Date())

case class User(

59

60 CHAPTER 4. MODELLING DATAWITH TRAITS

id: String,

email: String,

createdAt: Date = new Date()

)

With these class definiঞons we’re saying that both anonymous and registered visitors have an id and a creaঞon
date. But we only know the email address of registered visitors.

There is obvious duplicaঞon here, and it would be nice to not have to write the same definiঞons twice. More
important though, is to create some common type for the two kinds of visitors. If they had some type in common
(other than AnyRef and Any) we could write methods that worked on any kind of visitor. We can do this with
a trait like so:

import java.util.Date

trait Visitor {

def id: String // Unique id assigned to each user

def createdAt: Date // Date this user first visited the site

// How long has this visitor been around?

def age: Long = new Date().getTime - createdAt.getTime

}

case class Anonymous(id: String, createdAt: Date = new Date()) extends Visitor

case class User(

id: String,

email: String,

createdAt: Date = new Date()

) extends Visitor

Note the two changes:

• we defined the trait Visitor; and
• we declared that Anonymous and User are subtypes of the Visitor trait by using the extends keyword.

The Visitor trait expresses an interface that any subtype must implement: they must implement a String
called id and a createdAt Date. Any sub-type of Visitor also automaঞcally has a method age as defined in
Visitor.

By defining the Visitor trait we can write methods that work with any subtype of visitor, like so:

scala> def older(v1: Visitor, v2: Visitor): Boolean =

v1.createdAt.before(v2.createdAt)

scala> older(Anonymous("1"), User("2", "test@example.com"))

older(Anonymous("1"), User("2", "test@example.com"))

res4: Boolean = true

Here themethod older can be calledwith either an Anonymous or a User as they are both subtypes of Visitor.

Trait Syntax

To declare a trait we write

4.1. TRAITS 61

trait TraitName {

declarationOrExpression ...

}

To declare that a class is a subtype of a trait we write

class Name(...) extends TraitName {

...

}

More commonly we’ll use case classes, but the syntax is the same

case class Name(...) extends TraitName {

...

}

4.1.2 Traits Compared to Classes

Like a class, a trait is a named set of field and method definiঞons. However, it differs from a class in a few
important ways:

• A trait cannot have a constructor—we can’t create objects directly from a trait. Instead we can use a trait
to create a class, and then create objects from that class. We can base as many classes as we like on a
trait.

• Traits can define abstract methods that have names and type signatures but no implementaঞon. We saw
this in the Visitor trait. We must specify the implementaঞon when we create a class that extends the
trait, but unঞl that point we’re free to leave definiঞons abstract.

Let’s return to the Visitor trait to further explore abstract definiঞons. Recall the definiঞon of Visitor is

import java.util.Date

trait Visitor {

def id: String // Unique id assigned to each user

def createdAt: Date // Date this user first visited the site

// How long has this visitor been around?

def age: Long = new Date().getTime - createdAt.getTime

}

Visitor prescribes two abstract methods. That is, methods which do not have an implementaঞon but must
be implemented by extending classes. These are id and createdAt. It also defines a concrete method, age,
that is defined in terms of one of the abstract methods.

Visitor is used as a building block for two classes: Anonymous and User. Each class extends Visitor,
meaning it inherits all of its fields and methods:

scala> Anonymous("anon1")

res14: Anonymous = Anonymous(anon1)

scala> res14.createdAt

res15: java.util.Date = Mon Mar 24 15:11:45 GMT 2014

62 CHAPTER 4. MODELLING DATAWITH TRAITS

scala> res14.age

res16: Long = 8871

id and createdAt are abstract so they must be defined in extending classes. Our classes implement them
as vals rather than defs. This is legal in Scala, which sees def as a more general version of val¹. It is good
pracঞce to never define vals in a trait, but rather to use def. A concrete implementaঞon can then implement
it using using a def or val as appropriate.

4.1.3 Take Home Points

Traits are a way of abstracࢼng over classes that have similar properঞes, just like classes are a way of abstracঞng
over objects.

Using a traits has two parts. Declaring the trait

trait TraitName {

declarationOrExpression ...

}

and extending the trait from a class (usually a case class)

case class Name(...) extends TraitName {

...

}

4.1.4 Exercises

4.1.4.1 Cats, and More Cats

Demand for Cat Simulator 1.0 is exploding! For v2 we’re going to go beyond the domesঞc cat to model Tigers,
Lions, and Panthers in addiঞon to the Cat. Define a trait Feline and then define all the different species as
subtypes of Feline. To make things interesঞng, define:

• on Feline a colour as before;
• on Feline a String sound, which for a cat is "meow" and is "roar" for all other felines;
• only Cat has a favourite food; and
• Lions have an Int maneSize.

See the soluঞon

4.1.4.2 Shaping UpWith Traits

Define a trait called Shape and give it three abstract methods:

• sides returns the number of sides;
• perimeter returns the total length of the sides;
• area returns the area.

¹This is all part of the uniform access principle we saw in the exercises for Object Literals.

http://en.wikipedia.org/wiki/Uniform_access_principle
object-literals.html

4.2. THIS OR THAT AND NOTHING ELSE: SEALED TRAITS 63

Implement Shape with three classes: Circle, Rectangle, and Square. In each case provide implementaঞons
of each of the three methods. Ensure that the main constructor parameters of each shape (e.g. the radius of
the circle) are accessible as fields.

Tip: The value of π is accessible as math.Pi.

See the soluঞon

4.1.4.3 Shaping Up 2 (Da Streets)

The soluঞon from the last exercise delivered three disঞnct types of shape. However, it doesn’t model the
relaঞonships between the three correctly. A Square isn’t just a Shape—it’s also a type of Rectangle where
the width and height are the same.

Refactor the soluঞon to the last exercise so that Square and Rectangle are subtypes of a common type
Rectangular.

Tip: A trait can extend another trait.

See the soluঞon

4.2 This or That and Nothing Else: Sealed Traits

In many cases we can enumerate all the possible classes that can extend a trait. For example, we previously
modelled a website visitor as Anonymous or a logged in User. These two cases cover all the possibiliঞes as one
is the negaঞon of the other. We can model this case with a sealed trait, which allows the compiler to provide
extra checks for us.

We create a sealed trait by simply wriঞng sealed in front of our trait declaraঞon:

sealed trait Visitor {

def id: String

def createdAt: Date

def age: Long = new Date().getTime() - createdAt.getTime()

}

When we mark a trait as sealed we must define all of its subtypes in the same file. Once the trait is sealed,
the compiler knows the complete set of subtypes and will warn us if a pa�ern matching expression is missing
a case:

scala> def missingCase(v: Visitor) =

v match {

case User(_, _, _) => "Got a user"

}

<console>:21: warning: match may not be exhaustive.

It would fail on the following input: Anonymous(_, _)

v match {

^

missingCase: (v: Visitor)String

We will not get a similar warning from an unsealed trait.

We can sঞll extend the subtypes of a sealed trait outside of the file where they are defined. For example, we
could extend User or Anonymous further elsewhere. If we want to prevent this possibility we should declare
them as sealed (if we want to allow extensions within the file) or final if we want to disallow all extensions.
For the visitors example it probably doesn’t make sense to allow any extension to User or Anonymous, so the
simplified code should look like this:

64 CHAPTER 4. MODELLING DATAWITH TRAITS

sealed trait Visitor { /* ... */ }

final case class User(/* ... */) extends Visitor

final case class Anonymous(/* ... */) extends Visitor

This is a very powerful pa�ern and one we will use frequently.

Sealed Trait Pa�ern

If all the subtypes of a trait are known, seal the trait

sealed trait TraitName {

...

}

Consider making subtypes final if there is no case for extending them

final case class Name(...) extends TraitName {

...

}

Remember subtypes must be defined in the same file as a sealed trait.

4.2.1 Take home points

Sealed traits and final (case) classes allow us to control extensibility of types. The majority of cases should use
the sealed trait / final case class pa�ern.

sealed trait TraitName { ... }

final case class Name(...) extends TraitName

The main advantages of this pa�ern are:

• the compiler will warn if we miss a case in pa�ern matching; and
• we can control extension points of sealed traits and thus make stronger guarantees about the behaviour
of subtypes.

4.2.2 Exercises

4.2.2.1 Prinঞng Shapes

Let’s revisit the Shapes example from the previous secঞon.

First make Shape a sealed trait. Then write a singleton object called Draw with an apply method that takes a
Shape as an argument and returns a descripঞon of it on the console. For example:

Draw(Circle(10)) // returns "A circle of radius 10cm"

Draw(Rectangle(3, 4)) // returns "A rectangle of width 3cm and height 4cm"

// and so on...

4.2. THIS OR THAT AND NOTHING ELSE: SEALED TRAITS 65

Finally, verify that the compiler complains when you comment out a case clause.

See the soluঞon

4.2.2.2 The Color and the Shape

Write a sealed trait Color to make our shapes more interesঞng.

• give Color three properঞes for its RGB values;
• create three predefined colours: Red, Yellow, and Pink;
• provide a means for people to produce their own custom Colors with their own RGB values;
• provide a means for people to tell whether any Color is “light” or “dark”.

A lot of this exercise is le[deliberately open to interpretaঞon. The important thing is to pracঞce working with
traits, classes, and objects.

Decisions such as how to model colours and what is considered a light or dark colour can either be le[up to
you or discussed with other class members.

Edit the code for Shape and its subtypes to add a colour to each shape.

Finally, update the code for Draw.apply to print the colour of the argument as well as its shape and dimensions:

• if the argument is a predefined colour, print that colour by name:

Draw(Circle(10, Yellow)) // returns "A yellow square of size 10cm"

• if the argument is a custom colour rather than a predefined one, print the word “light” or “dark” instead.

You may want to deal with the colour in a helper method.

See the soluঞon

4.2.2.3 A Short Division Exercise

Good Scala developers don’t just use types to model data. Types are a great way to put arঞficial limitaঞons
in place to ensure we don’t make mistakes in our programs. In this exercise we will see a simple (if contrived)
example of this—using types to prevent division by zero errors.

Dividing by zero is a tricky problem—it can lead to excepঞons. The JVM has us covered as far as floaঞng point
division is concerned but integer division is sঞll a problem:

scala> 1.0 / 0.0

res0: Double = Infinity

scala> 1 / 0

java.lang.ArithmeticException: / by zero

Let’s solve this problem once and for all using types!

Create an object called divide with an apply method that accepts two Ints and returns DivisionResult.
DivisionResult should be a sealed trait with two subtypes: a Finite type encapsulaঞng the result of a valid
division, and an Infinite type represenঞng the result of dividing by 0.

Here’s some example usage:

66 CHAPTER 4. MODELLING DATAWITH TRAITS

scala> divide(1, 2)

res7: DivisionResult = Finite(0)

scala> divide(1, 0)

res8: DivisionResult = Infinite

Finally, write a sample funcঞon that calls divide, matches on the result, and returns a sensible descripঞon.

See the soluঞon

4.3 Modelling Data with Traits

In this secঞon we’re going to shi[our focus from language features to programming pa�erns. We’re going to
look at modelling data and learn a process for expressing in Scala any data model defined in terms of logical ors
and ands. Using the terminology of object-oriented programming, we will express is-a and has-a relaঞonships.
In the terminology of funcঞonal programming we are learning about sum and product types, which are together
called algebraic data types.

Our goal in this secঞon is to see how to translate a data model into Scala code. In the next secঞon we’ll see
pa�erns for code that uses algebraic data types.

4.3.1 The Product Type Pa�ern

Our first pa�ern is to model data that contains other data. We might describe this as “A has a B and C”. For
example, a Cat has a colour and a favourite food; a Visitor has an id and a creaঞon date; and so on.

The way we write this is to use a case class. We’ve already done this many ঞmes in exercises; now we’re
formalising the pa�ern.

Product Type Pa�ern

If A has a b (with type B) and a c (with type C) write

case class A(b: B, c: C)

or

trait A {

def b: B

def c: C

}

4.4 The Sum Type Pa�ern

Our next pa�ern is to model data that is two or more disঞnct cases. We might describe this as “A is a B or C”.
For example, a Feline is a Cat, Lion, or Tiger; a Visitor is an Anonymous or User; and so on.

We write this using the sealed trait / final case class pa�ern.

4.4. THE SUM TYPE PATTERN 67

Sum Type Pa�ern

If A is a B or C write

sealed trait A

final case class B() extends A

final case class C() extends A

4.4.1 Algebraic Data Types

An algebraic data type is any data that uses the above two pa�erns. In the funcঞonal programming literature,
data using the “has-a and” pa�ern is known as a product type, and the “is-a or” pa�ern is a sum type.

4.4.2 The Missing Pa�erns

We have looked at relaঞonships along two dimensions: is-a/has-a, and and/or. We can draw up a li�le table
and see we only have pa�erns for two of the four table cells.

And Or

Is-a Sum type
Has-a Product type

What about the missing two pa�erns?

The “is-a and” pa�ern means that A is a B and C. This pa�ern is in someways the inverse of the sum type pa�ern,
and we can implement it as

trait B

trait C

trait A extends B with C

In Scala a trait can extend as many traits as we like using the with keyword like A extends B with C with D

and so on. We aren’t going to use this pa�ern in this course. If we want to represent that some data conforms
to a number of different interfaces we will o[en be be�er off using a type class, which we will explore later.
There are, however, several legiঞmate uses of this pa�ern:

• for modularity, using what’s known as the cake pa�ern; and
• sharing implementaঞon across several classes where it doesn’t make sense to make default implementa-
ঞons in the main trait.

The “has-a or” pa�erns means that A has a B or C. There are two ways we can implement this. We can say that
A has a d of type D, where D is a B or C. We can mechanically apply our two pa�erns to implement this:

trait A {

def d: D

}

sealed trait D

http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di/

68 CHAPTER 4. MODELLING DATAWITH TRAITS

final case class B() extends D

final case class C() extends D

Alternaঞvely we could implement this as A is a D or E, and D has a B and E has a C. Again this translates directly
into code

sealed trait A

final case class D(b: B) extends A

final case class E(c: C) extends A

4.4.3 Take Home Points

We have seen that we can mechanically translate data using the “has-a and” and “is-a or” pa�erns (or, more
succintly, the product and sum types) into Scala code. This type of data is known as an algebraic data type.
Understanding these pa�erns is very important for wriঞng idiomaঞc Scala code.

4.4.4 Exercises

4.4.4.1 Stop on a Dime

A traffic light is red, green, or yellow. Translate this descripঞon into Scala code.

See the soluঞon

4.4.4.2 Calculator

A calculaঞon may succeed (with an Int result) or fail (with a String message). Implement this.

See the soluঞon

4.4.4.3 Water, Water, Everywhere

Bo�ledwater has a size (an Int), a source (which is a well, spring, or tap), and a Boolean carbonated. Implement
this in Scala.

See the soluঞon

4.5 Working With Data

In the previous secঞon we saw how to define algebraic data types using a combinaঞon of the sum (or) and
product type (and) pa�erns. In this secঞon we’ll see a pa�ern for using algebraic data types, known as structural
recursion. We’ll actually see two variants of this pa�ern: one using polymorphism and one using pa�ernmatching.

Structural recursion is the precise opposite of the process of building an algebraic data type. If A has a B and C
(the product-type pa�ern), to construct an A we must have a B and a C. The sum and product type pa�erns tell
us how to combine data to make bigger data. Structural recursion says that if we have an A as defined before,
we must break it into its consঞtuent B and C that we then combine in some way to get closer to our desired
answer. Structural recursion is essenঞally the process of breaking down data into smaller pieces.

Just as we have two pa�erns for building algebraic data types, we will have two pa�erns for decomposing them
using structural recursion. We will actually have two variants of each pa�ern, one using polymorphism, which

4.5. WORKINGWITH DATA 69

is the typical object-oriented style, and one using pa�ern matching, which is typical funcঞonal style. We’ll end
this secঞon with some rules for choosing which pa�ern to use.

4.5.1 Structural Recursion using Polymorphism

Polymorphic dispatch, or just polymorphism for short, is a fundamental object-oriented technique. If we define
amethod in a trait, and have different implementaঞons in classes extending that trait, whenwe call that method
the implementaঞon on the actual concrete instance will be used. Here’s a very simple example. We start with
a simple definiঞon using the familiar product type (or) pa�ern.

sealed trait A {

def foo: String

}

final case class B() extends A {

def foo: String =

"It's B!"

}

final case class C() extends A {

def foo: String =

"It's C!"

}

We declare a value with type A but we see the concrete implementaঞon on B or C is used.

scala> val anA: A = B()

anA: A = B()

scala> anA.foo

res1: String = It's B!

scala> val anA: A = C()

anA: A = C()

scala> anA.foo

res2: String = It's C!

We can define an implementaঞon in a trait, and change the implementaঞon in an extending class using the
override keyword.

sealed trait A {

def foo: String =

"It's A!"

}

final case class B() extends A {

override def foo: String =

"It's B!"

}

final case class C() extends A {

override def foo: String =

"It's C!"

}

The behaviour is as before; the implementaঞon on the concrete class is selected.

70 CHAPTER 4. MODELLING DATAWITH TRAITS

scala> val anA: A = B()

anA: A = B()

scala> anA.foo

res3: String = It's B!

Remember that if you provide a default implementaঞon in a trait, you should ensure that implementaঞon is
valid for all subtypes.

Now we understand how polymorphism works, how do we use it with an algebraic data types? We’ve actually
seen everything we need, but let’s make it explicit and see the pa�erns.

The Product Type Polymorphism Pa�ern

If A has a b (with type B) and a c (with type C), and we want to write a method f returning an F, simply
write the method in the usual way.

case class A(b: B, c: C) {

def f: F = ???

}

In the body of the method we must use b, c, and any method parameters to construct the result of type
F.

The Sum Type Polymorphism Pa�ern

If A is a B or C, and we want to write a method f returning an F, define f as an abstract method on A and
provide concrete implementaঞons in B and C.

sealed trait A {

def f: F

}

final case class B() extends A {

def f: F =

???

}

final case class C() extends A {

def f: F =

???

}

4.5.2 Structural Recursion using Pa�ern Matching

Structural recursion with pa�ern matching proceeds along the same lines as polymorphism. We simply have a
case for every subtype, and each pa�ern matching case must extract the fields we’re interested in.

4.5. WORKINGWITH DATA 71

The Product Type Pa�ern Matching Pa�ern

If A has a b (with type B) and a c (with type C), and we want to write a method f that accepts an A and
returns an F, write

def f(a: A): F =

a match {

case A(b, c) => ???

}

In the body of the method we use b and c to construct the result of type F.

The Sum Type Pa�ern Matching Pa�ern

If A is a B or C, and we want to write a method f accepঞng an A and returning an F, define a pa�ern
matching case for B and C.

def f(a: A): F =

a match {

case B() => ???

case C() => ???

}

4.5.3 A Complete Example

Let’s look at a complete example of the algebraic data type and structural recursion pa�erns, using our familiar
Feline data type.

We start with a descripঞon of the data. A Feline is a Lion, Tiger, Panther, or Cat. We’re going to simplify
the data descripঞon, and just say that a Cat has a String favouriteFood. From this descripঞon we can
immediately apply our pa�ern to define the data.

sealed trait Feline

final case class Lion() extends Feline

final case class Tiger() extends Feline

final case class Panther() extends Feline

final case class Cat(favouriteFood: String) extends Feline

Now let’s implement a method using both polymorphism and pa�ern matching. Our method, dinner, will
return the appropriate food for the feline in quesঞon. For a Cat their dinner is their favouriteFood. For
Lions it is antelope, for Tigers it is ঞger food, and for Panthers it is licorice.

We could represent food as a String, but we can do be�er and represent it with a type. This avoids, for
example, spelling mistakes in our code. So let’s define our Food type using the now familiar pa�erns.

sealed trait Food

final case object Antelope extends Food

final case object TigerFood extends Food

final case object Licorice extends Food

final case class CatFood(food: String) extends Food

Now we can implement dinner as a method returning Food. First using polymorphism:

72 CHAPTER 4. MODELLING DATAWITH TRAITS

sealed trait Feline {

def dinner: Food

}

final case class Lion() extends Feline {

def dinner: Food =

Antelope

}

final case class Tiger() extends Feline {

def dinner: Food =

TigerFood

}

final case class Panther() extends Feline {

def dinner: Food =

Licorice

}

final case class Cat(favouriteFood: String) extends Feline {

def dinner: Food =

CatFood(favouriteFood)

}

Now using pa�ern matching. We actually have two choices when using pa�ern matching. We can implement
our code in a single method on Feline or we can implement it in a method on another object. Let’s see both.

sealed trait Feline {

def dinner: Food =

this match {

case Lion() => Antelope

case Tiger() => TigerFood

case Panther() => Licorice

case Cat(favouriteFood) => CatFood(favouriteFood)

}

}

object Diner {

def dinner(feline: Feline): Food =

feline match {

case Lion() => Antelope

case Tiger() => TigerFood

case Panther() => Licorice

case Cat(food) => CatFood(food)

}

}

Note how we can directly apply the pa�erns, and the code falls out. This is the main point we want to make
with structural recursion: the code follows the shape of the data, and can be produced in an almost mechanical
way.

4.5.4 Choosing Which Pa�ern to Use

We have three way of implemenঞng structural recursion:

1. polymorphism;
2. pa�ern matching in the base trait; and
3. pa�ern matching in an external object (as in the Diner example above).

4.5. WORKINGWITH DATA 73

Which should we use? The first two methods give the same result: a method defined on the classes of interest.
We should use whichever is more convenient. This normally ends up being pa�ern matching on the base trait
as it requires less code duplicaঞon.

When we implement a method in the classes of interest we can have only one implementaঞon of the method,
and everything that method requires to work must be contained within the class and parameters we pass to the
method. When we implement methods using pa�ern matching in an external object we can provide mulঞple
implementaঞons, one per object (mulঞple Diners in the example above).

The general rule is: if a method only depends on other fields and methods in a class it is a good candidate to be
implemented inside the class. If the method depends on other data (for example, if we needed a Cook to make
dinner) consider implemenঞng is using pa�ern matching outside of the classes in quesঞon. If we want to have
more than one implementaঞon we should use pa�ern matching and implement it outside the classes.

4.5.5 Object-Oriented vs Funcঞonal Extensibility

In classic funcঞonal programming style we have no objects, only data without methods and funcঞons. This
style of programming makes extensive use of pa�ern matching. We can mimic it in Scala using the algebraic
data type pa�ern and pa�ern matching in methods defined on external objects.

Classic object oriented style uses polymorphism and allow open extension of classes. In Scala terms this means
no sealed traits.

What are the tradeoffs we make in the two different styles?

One advantage of funcঞonal style is it allows the compiler to help us more. By sealing traits we are telling the
compiler it knows all the possible subtypes of that trait. It can then tell us if we miss out a case in our pa�ern
matching. This is especially useful if we add or remove subtypes later in development. We could argue we get
the same benefit from object-oriented style, as we must implement all methods defined on the base trait in any
subtypes. This is true, but in pracঞce classes with a large number of methods are very difficult to maintain and
we’ll inevitably end up factoring some of the code into different classes – essenঞally duplicaঞng the funcঞonal
style.

This doesn’t mean funcঞonal style is to be preferred in all cases. There is a fundamental difference between the
kind of extensibility that object-oriented style and funcঞonal style gives us. With OO style we can easily add
new data, by extending a trait, but adding a new method requires us to change exisঞng code. With funcঞonal
style we can easily add a new method but adding new data requires us to modify exisঞng code. In tabular form:

Add new method Add new data

OO Change exisঞng code Exisঞng code unchanged
FP Exisঞng code unchanged Change exisঞng code

In Scala we have the flexibility to use both polymorphism and pa�ern matching, and we should use whichever
is appropriate. However we generally prefer sealed traits as it gives us greater guarantees about our code’s
semanঞcs, and we can use typeclasses, which we’ll explore later, to get us OO-style extensibility.

4.5.6 Exercises

4.5.6.1 Traffic Lights

In the previous secঞon we implemented a TrafficLight data type like so:

74 CHAPTER 4. MODELLING DATAWITH TRAITS

sealed trait TrafficLight

final case object Red extends TrafficLight

final case object Green extends TrafficLight

final case object Yellow extends TrafficLight

Using polymorphism and then using pa�ern matching implement a method called next which returns the next
TrafficLight in the standard Red -> Green -> Yellow -> Red cycle. Do you think it is be�er to implement
this method inside or outside the class? If inside, would you use pa�ern matching or polymorphism? Why?

See the soluঞon

4.5.6.2 Calculaঞon

In the last secঞon we created a Calculation data type like so:

sealed trait Calculation

final case class Success(result: Int) extends Calculation

final case class Failure(reason: String) extends Calculation

We’re now going to write some methods that use a Calculation to perform a larger calculaঞon. These meth-
ods will have a somewhat unusual shape—this is a precursor to things we’ll be exploring soon—but if you follow
the pa�erns you will be fine.

Create a Calculator object. On Calculator define methods + and - that accept a Calculation and an Int,
and return a new Calculation. Here are some examples

assert(Calculator.+(Success(1), 1) == Success(2))

assert(Calculator.-(Success(1), 1) == Success(0))

assert(Calculator.+(Failure("Badness"), 1) == Failure("Badness"))

See the soluঞon

Now write a division method that fails if the divisor is 0. The following tests should pass. Note the behavior for
the last test. This indicates “fail fast” behavior. If a calculaঞon has already failed we keep that failure and don’t
process any more data even if, as is the case in the test, doing so would lead to another failure.

assert(Calculator./(Success(4), 2) == Success(2))

assert(Calculator./(Success(4), 0) == Failure("Division by zero"))

assert(Calculator./(Failure("Badness"), 0) == Failure("Badness"))

See the soluঞon

4.5.6.3 Email

Recall the Visitor trait we looked at earlier: a website Visitor is either Anonymous or a signed-in User. Now
imagine we wanted to add the ability to send emails to visitors. We can only email signed-in users, and sending
an email requires a lot of knowledge about SMTP seমngs, MIME headers, and so on. Would an emailmethod
be be�er implemented using polymorphismon the Visitor trait or using pa�ernmatching in an EmailService
object? Why?

See the soluঞon

4.6. RECURSIVE DATA 75

4.6 Recursive Data

A parঞcular use of algebraic data types that comes up very o[en is defining recursive data. This is data that
is defined in terms of itself, and allows us to create data of potenঞally unbounded size (though any concrete
instance will be finite).

We can’t define recursive data like²

final case class Broken(broken: Broken)

as we could never actually create an instance of such a type—the recursion never ends. To define valid recursive
data we must define a base case, which is the case that ends the recursion.

Here is a more useful recursive definiঞon: an IntList is either the empty list End, or a Pair³ containing an
Int and an IntList. We can directly translate this to code using our familiar pa�erns:

sealed trait IntList

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Here End is the base case. We construct the list containing 1, 2, and 3 as follows:

Pair(1, Pair(2, Pair(3, End)))

This data structure is known as a singly-linked list. In this example we have four links in our chain. We can write
this out in a longer form to be�er understand the structure of the list. Below, d represents an empty list, and a,
b, and c are pairs built on top of it.

val d = End()

val c = Pair(3, d)

val b = Pair(2, c)

val a = Pair(1, b)

In addiঞon to being links in a chain, these data structures all represent complete sequences of integers:

• a represents the sequence 1, 2, 3

• b represents the sequence 2, 3

• c represents the sequence 3 (only one element)
• d represents an empty sequence

Using this implementaঞon, we can build lists of arbitrary length by repeatedly taking an exisঞng list and prepend-
ing a new element⁴.

²We actually can define data in this manner if we delay the construcঞon of the recursive case, like final case class

LazyList(head: Int, tail: () => LazyList). This uses a feature of Scala, funcঞons, that we haven’t seen yet. We can do
some fairly mind-bending things with this construcঞon, such as defining an infinite stream of ones with the declaraঞon val ones:

LazyList = LazyList(1, () => ones). Since we only ever realise a finite amount of this list we can use it to implement certain
types of data that would be difficult to implement in other ways. If you’re interested in exploring this area further, what we have im-
plemented in called a lazy list, and an “odd lazy list” in parঞcular. The “even list”, described in How to add laziness to a strict language
wihtout even being odd, is a be�er implementaঞon. If you wish to explore further, there is a rich literature on lazy datastructures and
more mind melঞng theory under the name of “coinducঞve data”.
³The tradiঞonal name this element is a Cons cell. We don’t use this name as it’s a bit confusing if you don’t know the story behind

it.
⁴This is how Scala’s built-in List data structure works. We will be introduced to List in the chapter on Collecࢼons.

http://www.cs.rice.edu/~taha/publications/conference/sml98.pdf
http://www.cs.rice.edu/~taha/publications/conference/sml98.pdf

76 CHAPTER 4. MODELLING DATAWITH TRAITS

We can apply the same structural recursion pa�erns to process a recursive algebraic data type. The only wrinkle
is that we must make a recursive call when the data definiঞon is recursion.

Let’s add together all the elements of an IntList. We’ll use pa�ernmatching, but as we know the same process
applies to using polymorphism.

Start with the tests and method declaraঞon.

val example = Pair(1, Pair(2, Pair(3, End)))

assert(sum(example) == 6)

assert(sum(example.tail) == 5)

assert(sum(End) == 0)

def sum(list: IntList): Int = ???

Note how the tests define 0 to be the sum of the elements of an End list. It is important that we define an
appropriate base case for our method as we will build our final result of this base case.

Now we apply our structural recursion pa�ern to fill out the body of the method.

def sum(list: IntList): Int =

list match {

case End => ???

case Pair(hd, tl) => ???

}

Finally we have to decide on the bodies of our cases. We have already decided that 0 is answer for End. For
Pair we have two bits of informaঞon to guide us. We know we need to return an Int and we know that we
need to make a recursive call on tl. Let’s fill in what we have.

def sum(list: IntList): Int =

list match {

case End => 0

case Pair(hd, tl) => ??? sum(tl)

}

The recursive call will return the sum of the tail of the list, by definiঞon. Thus the correct thing to do is to add
hd to this result. This gives us our final result:

def sum(list: IntList): Int =

list match {

case End => 0

case Pair(hd, tl) => hd + sum(tl)

}

4.6.1 Understanding the Base Case and Recursive Case

Our pa�erns will carry us most of the way to a correct answer, but we sঞll need to supply the method bodies
for the base and recursive cases. There is some general guidance we can use:

• For the base case we should generally return the idenࢼty for the funcঞon we’re trying to compute. The
idenঞty is an element that doesn’t change the result. E.g. 0 is the idenঞty for addiঞon, because a + 0

== a for any a. If we were calculaঞng the product of elements the idenঞty would be 1 as a * 1 == a

for all a.

4.6. RECURSIVE DATA 77

• For the recursive case, assume the recursion will return the correct result and work out what you need
to add to get the correct answer. We saw this for sum, where we assume the recursive call will give us
the correct result for the tail of the list and we then just add on the head.

Recursive Algebraic Data Types Pa�ern

When defining recursive algebraic data types, there must be at least two cases: one that is recursive, and
one that is not. Cases that are not recursive are known as base cases. In code, the general skeleton is:

sealed trait RecursiveExample

final case class RecursiveCase(recursion: RecursiveExample) extends RecursiveExample

final case object BaseCase extends RecursiveExample

Recursive Structural Recursion Pa�ern

When wriঞng structurally recursive code on a recursive algebraic data type:

• whenever we encounter a recursive element in the data we make a recursive call to our method;
and

• whenever we encounter a base case in the data we return the idenঞty for the operaঞon we are
performing.

4.6.2 Tail Recursion

You may be concerned that recursive calls will consume excessive stack space. Scala can apply an opঞmisaঞon,
called tail recursion, to many recursive funcঞons to stop them consuming stack space.

A tail call is a method call where the caller immediately returns the value. So this is a tail call

def method1: Int =

1

def tailCall: Int =

method1

because tailCall immediately returns the result of calling method1 while

def notATailCall: Int =

method1 + 2

because notATailCall does not immediatley return—it adds an number to the result of the call.

A tail call can be opঞmised to not use stack space. Due to limitaঞons in the JVM, Scala only opঞmises tail calls
where the caller calls itself. Since tail recursion is an important property to maintain, we can use the @tailrec
annotaঞon to ask the compiler to check that methods we believe are tail recursion really are. Here we have
two versions of sum annotated. One is tail recursive and one is not. You can see the compiler complains about
the method that is not tail recursive.

78 CHAPTER 4. MODELLING DATAWITH TRAITS

scala> import scala.annotation.tailrec

import scala.annotation.tailrec

scala> @tailrec

def sum(list: IntList): Int =

list match {

case End => 0

case Pair(hd, tl) => hd + sum(tl)

}

<console>:15: error: could not optimize @tailrec annotated method sum: it contains a recursive call

Ď

not in tail position

list match {

^

scala> @tailrec

def sum(list: IntList, total: Int = 0): Int =

list match {

case End => total

case Pair(hd, tl) => sum(tl, total + hd)

}

sum: (list: IntList, total: Int)Int

Any non-tail recursion funcঞon can be transformed into a tail recursive version by adding an accumulator as
we have done with sum above. This transforms stack allocaঞon into heap allocaঞon, which someঞmes is a win,
and other ঞmes is not.

In Scala we tend not to work directly with tail recursive funcঞons as there is a rich collecঞons library that
covers the most common cases where tail recursion is used. Should you need to go beyond this, because
you’re implemenঞng your own datatypes or are opঞmising code, it is useful to know about tail recursion.

4.6.3 Exercises

4.6.3.1 A List of Methods

Using our definiঞon of IntList

sealed trait IntList

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

define a method length that returns the length of the list. There is test data below you can use to check your
soluঞon. For this exercise it is best to use pa�ern matching in the base trait.

val example = Pair(1, Pair(2, Pair(3, End)))

assert(example.length == 3)

assert(example.tail.length == 2)

assert(End.length == 0)

See the soluঞon

Define a method to compute the product of the elements in an IntList. Test cases are below.

4.7. EXTENDED EXAMPLES 79

assert(example.product == 6)

assert(example.tail.product == 6)

assert(End.product == 1)

See the soluঞon

Define a method to double the value of each element in an IntList, returning a new IntList. The following
test cases should hold:

assert(example.double == Pair(2, Pair(4, Pair(6, End))))

assert(example.tail.double == Pair(4, Pair(6, End)))

assert(End.double == End)

See the soluঞon

4.6.3.2 The Forest of Trees

A binary tree of integers can be defined as follows:

A Tree is a Node with a le[and right Tree or a Leaf with an element of type Int.

Implement this algebraic data type.

See the soluঞon

Implement sum and double on Tree using polymorphism and pa�ern matching.

See the soluঞon

4.7 Extended Examples

To test your skills with algebraic data types and structural recursion here are some larger projects to a�empt.

4.7.0.1 A Calculator

In this exercise we’ll implement a simple interpreter for programs containing only numeric operaঞons.

We start by defining some types to represent the expressions we’ll be operaঞng on. In the compiler literature
this is known as an abstract syntax tree.

Our representaঞon is:

• An Expression is an Addition, Subtraction, or a Number;
• An Addiঞon has a left and right Expression;
• A Subtracঞon has a left and right Expression; or
• A Number has a value of type Double.

Implement this in Scala.

See the soluঞon

Now implement a method eval that converts an Expression to a Double. Use polymorphism or pa�ern
matching as you see fit. Explain your choice of implementaঞon method.

See the soluঞon

80 CHAPTER 4. MODELLING DATAWITH TRAITS

We’re now going to add some expressions that call fail: division and square root. Start by extending the abstract
syntax tree to include representaঞons for Division and SquareRoot.

See the soluঞon

Now we’re going to change eval to represent that a computaঞon can fail. (Double uses NaN to indicate a
computaঞon failed, but wewant to be helpful to the user and tell themwhy the computaঞon failed.) Implement
an appropriate algebraic data type.

See the soluঞon

Now change eval to return your result type, which I have called Calculation in my implementaঞon. Here
are some examples:

assert(Addition(SquareRoot(Number(-1.0)), Number(2.0)).eval ==

Failure("Square root of negative number"))

assert(Addition(SquareRoot(Number(4.0)), Number(2.0)).eval == Success(4.0))

assert(Division(Number(4), Number(0)).eval == Failure("Division by zero"))

See the soluঞon

4.7.0.2 JSON

In the calculator exercise we gave you the algebraic data type representaঞon. In this exercise we want you to
design the algebraic data type yourself. We’re going to work in what is hopefully a familiar domain: [JSON][link-
json].

Design an algebraic data type to represent JSON. Don’t go directly to code. Start by sketching out the design
in terms of logical ands and ors—the building blocks of algebraic data types. You might find it useful to use
a notaঞon similar to [BNF][link-bnf]. For example, we could represent the Expression data type from the
previous exercise as follows:

Expression ::= Addition left:Expression right:Expression

| Subtraction left:Expression right:Expression

| Division left:Expression right:Expression

| SquareRoot value:Expression

| Number value:Int

This simplified notaঞon allows us to concentrate on the structure of the algebraic data type without worrying
about the intricacies of Scala syntax.

Note you’ll need a sequence type to model JSON, and we haven’t looked at Scala’s collecঞon library yet. How-
ever we have seen how to implement a list as an algebraic data type.

Here are some examples of JSON you’ll need to be able to represent

["a string", 1.0, true]

{

"a": [1,2,3],

"b": ["a","b","c"]

"c": { "doh":true, "ray":false, "me":1 }

}

See the soluঞon

Translate your representaঞon to Scala code.

4.8. CONCLUSIONS 81

See the soluঞon

Now add a method to convert your JSON representaঞon to a String. Make sure you enclose strings in quotes,
and handle arrays and objects properly.

See the soluঞon

Test your method works. Here are some examples using the representaঞon I chose.

SeqCell(JsString("a string"), SeqCell(JsNumber(1.0), SeqCell(JsBoolean(true), SeqEnd))).print

// res: String = ["a string", 1.0, true]

ObjectCell(

"a", SeqCell(JsNumber(1.0), SeqCell(JsNumber(2.0), SeqCell(JsNumber(3.0), SeqEnd))),

ObjectCell(

"b", SeqCell(JsString("a"), SeqCell(JsString("b"), SeqCell(JsString("c"), SeqEnd))),

ObjectCell(

"c", ObjectCell("doh", JsBoolean(true),

ObjectCell("ray", JsBoolean(false),

ObjectCell("me", JsNumber(1.0), ObjectEnd))),

ObjectEnd

)

)

).print

// res: String = {"a": [1.0, 2.0, 3.0], "b": ["a", "b", "c"], "c": {"doh": true, "ray": false, "me":

1.0}}

4.7.0.3 Music

In the JSON exercise there was a well defined specificaঞon to model. In this exercise we want to work on
modelling skills given a rather fuzzy specificaঞon. The goal is to model music. You can choose to interpret this
how you want, making your model as simple or complex as you like. The criঞcal thing is to be able to jusঞfy the
decisions you made, and to understand the limits of your model.

You might find it easiest to use the BNF notaঞon, introduced in the JSON exercise, to write down your model.

See the soluঞon

4.8 Conclusions

In this chapter we have made an extremely important change in our focus, away from language features and
towards the programming pa�erns they support. This conঞnues for the rest of the book.

We have explored two extremely important pa�erns: algebraic data types and structural recursion. These pat-
terns allow us to go from amental model of data, to the representaঞon and processing of that data in Scala in an
almost enঞrely mechanical way. Not only in the structure of our code formulaic, and thus easy to comprehend,
but the compiler can catch common errors for us which makes development and maintenance easier. These
two tools are among the most commonly used in idiomaঞc funcঞonal code, and it is hard to over-emphasize
their importance.

In the exercises we developed a few common data structures, but we were limited to storing a fixed type of
data, and our code contained a lot of repeঞঞon. In the next secঞon we will look at how we can abstract over
types and methods, and introduce some important concepts of sequencing operaঞons.

82 CHAPTER 4. MODELLING DATAWITH TRAITS

Chapter 5

Sequencing Computaঞons

In this secঞon we’re going to look at two more language features, generics and funcࢼons, and see some abstrac-
ঞons we can build using these features: functors, and monads.

Our starঞng point is code that we developed in the previous secঞon. We developed IntList, a list of integers,
and wrote code like the following:

sealed trait IntList {

def length: Int =

this match {

case End => 0

case Pair(hd, tl) => 1 + tl.length

}

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

}

def product: Int =

this match {

case End => 1

case Pair(hd, tl) => hd * tl.product

}

def sum: Int =

this match {

case End => 0

case Pair(hd, tl) => hd + tl.sum

}

}

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

There are two problemswith this code. The first is that our list is restricted to storing Ints. The second problem
is that here is a lot of repeঞঞon. The code has the same general structure, which is unsurprising given we’re
using our structural recursion pa�ern, and it would be nice to reduce the amount of duplicaঞon.

We will address both problems in this secঞon. For the former we will use generics to abstract over types, so
we can create data that works with user specified types. For the la�er we will use funcঞons to abstract over
methods, so we can reduce duplicaঞon in our code.

As we work with these techniques we’ll see some general pa�erns emerge. We’ll name and invesঞgate these
pa�erns in more detail at the end of this secঞon.

83

84 CHAPTER 5. SEQUENCING COMPUTATIONS

5.1 Generics

Generic types allow us to abstract over types. There are useful for all sorts of data structures, but commonly
encountered in collecঞons so that’s where we’ll start.

5.1.1 Pandora’s Box

Let’s start with a collecঞon that is even simpler than our list—a box that stores a single value. We don’t care
what type is stored in the box, but we want to make sure we preserve that type when we get the value out of
the box. To do this we use a generic type.

final case class Box[A](value: A)

Box(2)

// res0: Box[Int] = Box(2)

res0.value

// res1: Int = 2

Box("hi") // if we omit the type parameter, scala will infer its value

// res2: Box[String] = Box(hi)

res2.value

// res3: String = hi

The syntax [A] is called a type parameter. We can also add type parameters to methods, which limits the scope
of the parameter to the method declaraঞon and body:

def generic[A](in: A): A = in

generic[String]("foo")

// res: String = foo

generic(1) // again, if we omit the type parameter, scala will infer it

/ res: Int = 1

Type parameters work in a way analogous tomethod parameters. Whenwe call a methodwe bind themethod’s
parameter names to the values given in the method call. For example, when we call generic(1) the name in
is bound to the value 1 within the body of generic.

When we call a method or construct a class with a type parameter, the type parameter is bound to the concrete
type within the method or class body. So when we call generic(1) the type parameter A is bound to Int in
the body of generic.

Type Parameter Syntax

We declare generic types with a list of type names within square brackets like [A, B, C]. By convenঞon
we use single uppercase le�ers for generic types.

Generic types can be declared in a class or trait declaraঞon in which case they are visible throughout the
rest of the declaraঞon.

case class Name[A](...){ ... }

trait Name[A]{ ... }

5.1. GENERICS 85

Alternaঞvely they may be declared in a method declaraঞon, in which case they are only visible within the
method.

def name[A](...){ ... }

5.1.2 Generic Algebraic Data Types

Wedescribed type parameters as analogous to method parameters, and this analogy conঞnues when extending
a trait that has type parameters. Extending a trait, as we do in a sum type, is the type level equivalent of calling
a method and we must supply values for any type parameters of the trait we’re extending.

In previous secঞons we’ve seen sum types like the following:

sealed trait Calculation

final case class Success(result: Double) extends Calculation

final case class Failure(reason: String) extends Calculation

Let’s generalise this so that our result is not restricted to a Double but can be some generic type. In doing so
let’s change the name from Calculation to Result as we’re not restricted to numeric calculaঞons anymore.
Now our data definiঞon becomes:

A Result of type A is either a Success of type A or a Failure with a String reason. This translates to the
following code

sealed trait Result[A]

case class Success[A](result: A) extends Result[A]

case class Failure[A](reason: String) extends Result[A]

Noঞce that both Success and Failure introduce a type parameter A which is passed to Result when it is
extended. Success also has a value of type A, but Failure only introduces A so it can pass it onward to
Result. In a later secঞon we’ll introduce variance, giving us a cleaner way to implement this, but for now this
is the pa�ern we’ll use.

Invariant Generic Sum Type Pa�ern

If A of type T is a B or C write

sealed trait A[T]

final case class B[T]() extends A[T]

final case class C[T]() extends A[T]

5.1.3 Exercises

5.1.3.1 Generic List

Our IntList type was defined as

sealed trait IntList

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

86 CHAPTER 5. SEQUENCING COMPUTATIONS

Change the name to LinkedList and make it generic in the type of data stored in the list.

See the soluঞon

5.1.3.2 Working With Generic Types

There isn’t much we can do with our LinkedList type. Remember that types define the available operaঞons,
and with a generic type like A there isn’t a concrete type to define any available operaঞons. (Generic types are
made concrete when a class is instanঞated, which is too late to make use of the informaঞon in the definiঞon
of the class.)

However, we can sঞll do some useful things with our LinkedList! Implement length, returning the length of
the LinkedList. Some test cases are below.

val example = Pair(1, Pair(2, Pair(3, End())))

assert(example.length == 3)

assert(example.tail.length == 2)

assert(End().length == 0)

See the soluঞon

On the JVM we can compare all values for equality. Implement a method contains that determines whether
or not a given item is in the list. Ensure your code works with the following test cases:

val example = Pair(1, Pair(2, Pair(3, Empty())))

assert(example.contains(3) == true)

assert(example.contains(4) == false)

assert(Empty().contains(0) == false)

// This should not compile

// example.contains("not an Int")

See the soluঞon

Implement a method apply that returns the nth item in the list

Hint: If you need to signal an error in your code (there’s one situaঞon in which you will need to do this), consider
throwing an excepঞon. Here is an example:

throw new Exception("Bad things happened")

Ensure your soluঞon works with the following test cases:

val example = Pair(1, Pair(2, Pair(3, Empty())))

assert(example(0) == 1)

assert(example(1) == 2)

assert(example(2) == 3)

assert(try {

example(3)

false

} catch {

case e: Exception => true

})

See the soluঞon

Throwing an excepঞon isn’t cool. Whenever we throw an excepঞon we lose type safety as there is nothing in
the type system that will remind us to deal with the error. It would be much be�er to return some kind of result
that encodes we can succeed or failure. We introduced such a type in this very secঞon.

5.2. FUNCTIONS 87

sealed trait Result[A]

case class Success[A](result: A) extends Result[A]

case class Failure[A](reason: String) extends Result[A]

Change apply so it returns a Result, with a failure case indicaঞng what went wrong. Here are some test cases
to help you:

assert(example(0) == Success(1))

assert(example(1) == Success(2))

assert(example(2) == Success(3))

assert(example(3) == Failure("Index out of bounds"))

See the soluঞon

5.2 Funcঞons

Funcঞons allow us to abstract over methods, turning methods into values that we can pass around and manipu-
late within our programs.

Let’s look at three methods we wrote that manipulate IntList.

sealed trait IntList {

def length: Int =

this match {

case End => 0

case Pair(hd, tl) => 1 + tl.length

}

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

}

def product: Int =

this match {

case End => 1

case Pair(hd, tl) => hd * tl.product

}

def sum: Int =

this match {

case End => 0

case Pair(hd, tl) => hd + tl.sum

}

}

All of these methods have the same general pa�ern, which is not surprising as they all use structural recursion.
It would be nice to be able to remove the duplicaঞon.

Let’s start by focusing on the methods that return an Int: length, product, and sum. We want to write a
method like

def abstraction(end: Int, f: ???): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.abstraction(f, end))

}

88 CHAPTER 5. SEQUENCING COMPUTATIONS

I’ve used f to denote some kind of object that does the combinaঞon of the head and recursive call for the
Pair case. At the moment we don’t know how to write down the type of this value, or how to construct one.
However, we can guess from the ঞtle of this secঞon that what we want is a funcঞon!

A funcঞon is like a method: we can call it with parameters and it evaluates to a result. Unlike a method a
funcঞon is value. We can pass a funcঞon to a method or to another funcঞon. We can return a funcঞon from a
method, and so on.

Much earlier in this course we introduced the apply method, which lets us treat objects as funcঞons in a
syntacঞc sense:

object add1 {

def apply(in: Int) = in + 1

}

add1(2)

// res: Int = 3

This is a big step towards doing real funcঞonal programming in Scala but we’re missing one important compo-
nent: types.

As we have seen, types allow us to abstract across values. We’ve seen all sorts of special case funcঞons like
Adders and ActionListeners, but what we really want is a generalised set of types that allow us to represent
computaঞons of any kind.

Enter Scala’s Function types.

5.2.1 Funcঞon Types

We write a funcঞon type like (A, B) => C where A and B are the types of the parameters and C is the result
type. The same pa�ern generalises from funcঞons of no arguments to an arbitrary number of arguments.

In our example above wewant f to be a funcঞon that accepts two Ints as parameters and returns an Int. Thus
we can write it as (Int, Int) => Int.

Funcঞon Type Declaraঞon Syntax

To declare a funcঞon type, write

(A, B, ...) => C

where

• A, B, ... are the types of the input parameters; and
• C is the type of the result.

If a funcঞon only has one parameter the parentheses may be dropped:

A => B

5.2. FUNCTIONS 89

5.2.2 Funcঞon literals

Scala also gives us a funcࢼon literal syntax specifically for creaঞng new funcঞons. Here are some example
funcঞon literals:

val sayHi = () => "Hi!"

// sayHi: () => String = <function0>

sayHi()

// res: String = Hi!

val add1 = (x: Int) => x + 1

// add1: Int => Int = <function1>

add1(10)

// res: Int = 11

val sum = (x: Int, y:Int) => x + y

// sum: (Int, Int) => Int = <function2>

sum(10, 20)

// res: Int = 30

In code where we know the argument types, we can someঞmes drop the type annotaࢼons and allow Scala to
infer them¹. There is no syntax for declaring the result type of a funcঞon and it is normally inferred, but if we
find ourselves needing to do this we can put a type on the funcঞon’s body expression:

(x: Int) => (x + 1): Int

Funcঞon Literal Syntax

The syntax for declaring a funcঞon literal is

(parameter: type, ...) => expression

where - the opঞonal parameters are the names given to the funcঞon parameters; - the types are the
types of the funcঞon parameters; and - the expression determines the result of the funcঞon.

5.2.3 Exercises

5.2.3.1 A Be�er Abstracঞon

We started developing an abstracঞon over sum, length, and product which we sketched out as

def abstraction(end: Int, f: ???): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.abstraction(f, end))

}

¹Note that we only can drop the parentheses around the argument list on single-argument funcঞons—we sঞll have to write () =>

foo and (a, b) => foo on funcঞons of other ariঞes.

90 CHAPTER 5. SEQUENCING COMPUTATIONS

Rename this funcঞon to fold, which is the name it is usually known as, and finish the implementaঞon.

See the soluঞon

Now reimplement sum, length, and product in terms of fold.

See the soluঞon

Is it more convenient to rewrite methods in terms of fold if they were implemented using pa�ern matching or
polymorphic? What does this tell us about the best use of fold?

See the soluঞon

Why can’t we write our double method in terms of fold? Is it feasible we could if we made some change to
fold?

See the soluঞon

Implement a generalised version of fold and rewrite double in terms of it.

See the soluঞon

5.3 Generic Folds for Generic Data

We’ve seen that when we define a class with generic data, we cannot implement very many methods on that
class. The user supplies the generic type, and thus we must ask the user to supply funcঞons that work with
that type. Nonetheless, there are some common pa�erns for using generic data, which is what we explore in
this secঞon. We have already seen fold in the context of our IntList. Here we will explore fold in more detail,
and learn the pa�ern for implemenঞng fold for any algebraic data type.

5.3.1 Fold

Last ঞme we saw fold we were working with a list of integers. Let’s generalise to a list of a generic type. We’re
already see all the tools we need. First our data definiঞon, in this instance slightly modified to use the invariant
sum type pa�ern.

sealed trait LinkedList[A]

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

The last version of fold that we saw on IntList was

def fold[A](end: A, f: (Int, A) => A): A =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

It’s reasonably straigh�orward to extend this to LinkedList[A]. We merely have to account for the head
element of a Pair being of type A not Int.

sealed trait LinkedList[A] {

def fold[B](end: B, f: (A, B) => B): B =

this match {

case End() => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

5.3. GENERIC FOLDS FOR GENERIC DATA 91

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

Fold is just an adaptaঞon of structural recursion where we allow the user to pass in the funcঞons we apply at
each case. As structural recursion is the generic pa�ern for wriঞng any funcঞon that transforms an algebraic
datatype, fold is the concrete realisaঞon of this generic pa�ern. That is, fold is the generic transformaঞon or
iteraঞon method. Any funcࢼon you care to write on an algebraic datatype can be wri�en in terms of fold.

Fold Pa�ern

For an algebraic datatype A, fold converts it to a generic type B. Fold is a structural recursion with:

• one funcঞon parameter for each case in A;
• each funcঞon takes as parameters the fields for its associated class;
• if A is recursive, any funcঞon parameters that refer to a recursive field take a parameter of type B.

The right-hand side of pa�ern matching cases, or the polymorphic methods as appropriate, consists of
calls to the appropriate funcঞon.

Let’s apply the pa�ern to derive the fold method above. We start with our basic template:

sealed trait LinkedList[A] {

def fold[B](???): B =

this match {

case End() => ???

case Pair(hd, tl) => ???

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

This is just the structural recursion template with the addiঞon of a generic type parameter for the return type.

Now we add one funcঞon for each of the two classes in LinkedList.

def fold[B](end: ???, pair: ???): B =

this match {

case End() => ???

case Pair(hd, tl) => ???

}

From the rules for the funcঞon types:

• end has no parameters (as End stores no values) and returns B. Thus its type is () => B, which we can
opঞmise to just a value of type B; and

• pair has two parameters, one for the list head and one for the tail. The argument for the head has type
A, and the tail is recursive and thus has type B. The final type is therefore (A, B) => B.

Subsঞtuঞng in we get

92 CHAPTER 5. SEQUENCING COMPUTATIONS

def fold[B](end: B, pair: (A, B) => B): B =

this match {

case End() => end

case Pair(hd, tl) => pair(hd, tl.fold(end, pair))

}

5.3.2 Working With Funcঞons

There are a few tricks in Scala for working with funcঞons and methods that accept funcঞons (known as higher-
order methods). Here we are going to look at:

1. a compact syntax for wriঞng funcঞons;
2. converঞng methods to funcঞons; and
3. a way to write higher-order methods that assists type inference.

5.3.2.1 Placeholder syntax

In very simple situaঞons we can write inline funcঞons using an extreme shorthand called placeholder syntax. It
looks like this:

((_: Int) * 2)

// res: Int => Int = <function1>

(_: Int) * 2 is expanded by the compiler to (a: Int) => a * 2. It ismore idiomaঞc to use the placeholder
syntax only in the cases where the compiler can infer the types. Here are a few more examples:

_ + _ // expands to `(a, b) => a + b`

foo(_) // expands to `(a) => foo(a)`

foo(_, b) // expands to `(a) => foo(a, b)`

_(foo) // expands to `(a) => a(foo)`

// and so on...

Placeholder syntax, while wonderfully terse, can be confusing for large expressions and should only be used
for very small funcঞons.

5.3.3 Converঞng methods to funcঞons

Scala contains another feature that is directly relevant to this secঞon—the ability to convert method calls to
funcঞons. This is closely related to placeholder syntax—simply follow a method with an underscore:

object Sum {

def sum(x: Int, y: Int) = x + y

}

Sum.sum

// <console>:9: error: missing arguments for method sum in object Sum;

// follow this method with `_' if you want to treat it as a partially applied function

// Sum.sum

// ^

(Sum.sum _)

// res: (Int, Int) => Int = <function2>

5.3. GENERIC FOLDS FOR GENERIC DATA 93

In situaঞons where Scala can infer that we need a funcঞon, we can even drop the underscore and simply write
the method name—the compiler will promote the method to a funcঞon automaঞcally:

object MathStuff {

def add1(num: Int) = num + 1

}

Counter(2).adjust(MathStuff.add1)

// res: Counter = Counter(3)

5.3.3.1 Mulঞple Parameter Lists

Methods in Scala can actually have mulঞple parameter lists. Such methods work just like normal methods,
except we must bracket each parameter list separately.

def example(x: Int)(y: Int) = x + y

// example: (x: Int)(y: Int)Int

example(1)(2)

// res: Int = 3

Mulঞple parameter lists have two relevant uses: they look nicer when defining funcঞons inline and they assist
with type inference.

The former is the ability to write funcঞons that look like code blocks. For example, if we define fold as

def fold[B](end: B)(pair: (A, B) => B): B =

this match {

case End() => end

case Pair(hd, tl) => pair(hd, tl.fold(end, pair))

}

then we can call it as

fold(0){ (total, elt) => total + elt }

which is a bit easier to read than

fold(0, (total, elt) => total + elt)

More important is the use of mulঞple parameter lists to ease type inference. Scala’s type inference algorithm
cannot use a type inferred for one parameter for another parameter in the same list. For example, given fold
with a signature like

def fold[B](end: B, pair: (A, B) => B): B

if Scala infers B for end it cannot then use this inferred type for the B inpair, so we must o[en write a type
declaraঞon on pair. However, Scala can use types inferred for one parameter list in another parameter list. So
if we write fold as

def fold[B](end: B)(pair: (A, B) => B): B

then inferring B from end (which is usually easy) allows B to be used when inferring the type pair. This means
fewer type declaraঞons and a smoother development process.

94 CHAPTER 5. SEQUENCING COMPUTATIONS

5.3.4 Exercises

5.3.4.1 Tree

A binary tree can be defined as follows:

A Tree of type A is a Node with a le[and right Tree or a Leaf with an element of type A.

Implement this algebraic data type along with a fold method.

See the soluঞon

Using fold convert the following Tree to a String

val tree: Tree[String] =

Node(Node(Leaf("To"), Leaf("iterate")),

Node(Node(Leaf("is"), Leaf("human,")),

Node(Leaf("to"), Node(Leaf("recurse"), Leaf("divine")))))

Remember you can append Strings using the + method.

See the soluঞon

5.4 Modelling Data with Generic Types

In this secঞon we’ll see the addiঞonal power the generic types give us when modelling data. We see that with
generic types we can implement generic sum and product types, and also model some other useful abstracঞons
such as opࢼonal values.

5.4.1 Generic Product Types

Let’s look at using generics to model a product type. Consider a method that returns two values—for example,
an Int and a String, or a Boolean and a Double:

def intAndString: ??? = // ...

def booleanAndDouble: ??? = // ...

The quesঞon is what do we use as the return types? We could use a regular class without any type parameters,
with our usual algebraic data type pa�erns, but then we would have to implement one version of the class for
each combinaঞon of return types:

case class IntAndString(intValue: Int, stringValue: String)

def intAndString: IntAndString = // ...

case class BooleanAndDouble(booleanValue: Boolean, doubleValue: Double)

def booleanAndDouble: BooleanAndDouble = // ...

The answer is to use generics to create a product type—for example a Pair—that contains the relevant data for
both return types:

5.4. MODELLING DATAWITH GENERIC TYPES 95

def intAndString: Pair[Int, String] = // ...

def booleanAndDouble: Pair[Boolean, Double] = // ...

Generics provide a different approach to defining product types— one that relies on aggregaঞon as opposed to
inheritance.

5.4.1.1 Exercise: Pairs

Implement the Pair class from above. It should store two values—one and two—and be generic in both argu-
ments. Example usage:

val pair = Pair[String, Int]("hi", 2)

// pair: Pair[String,Int] = Pair(hi,2)

pair.one

// res: String = hi

pair.two

// res: Int = 2

See the soluঞon

5.4.2 Tuples

A tuple is the generalisaঞon of a pair to more terms. Scala includes built-in generic tuple types with up to 22
elements, along with special syntax for creaঞng them. With these classes we can represent any kind of this and
that relaঞonship between almost any number of terms.

The classes are called Tuple1[A] through to Tuple22[A, B, C, ...] but they can also be wri�en in the
sugared² form (A, B, C, ...). For example:

Tuple2("hi", 1) // unsugared syntax

// res: (String, Int) = (hi,1)

("hi", 1) // sugared syntax

// res: (String, Int) = (hi,1)

("hi", 1, true)

// res: (String, Int, Boolean) = (hi,1,true)

We can define methods that accept tuples as parameters using the same syntax:

def tuplized[A, B](in: (A, B)) = in._1

// tuplized: [A, B](in: (A, B))A

tuplized(("a", 1))

// res: String = a

We can also pa�ern match on tuples as follows:

²The term “syntacঞc sugar” is used to refer to convenience syntax that is not needed but makes programming sweeter. Operator
syntax is another example of syntacঞc sugar that Scala provides.

96 CHAPTER 5. SEQUENCING COMPUTATIONS

(1, "a") match {

case (a, b) => a + b

}

// res: String = 1a

Although pa�ern matching is the natural way to deconstruct a tuple, each class also has a complement of fields
named _1, _2 and so on:

val x = (1, "b", true)

// x: (Int, String, Boolean) = (1,b,true)

x._1

// res: Int = 1

x._3

// res: Boolean = true

5.4.3 Generic Sum Types

Now let’s look at using generics to model a sum type. Again, we have previously implemented this using our
algebraic data type pa�ern, factoring out the common aspects into a supertype. Generics allow us to abstract
over this pa�ern, providing a … well … generic implementaঞon.

Consider a method that, depending on the value of its parameters, returns one of two types:

def intOrString(input: Boolean) =

if(input == true) 123 else "abc"

// intOrString: (input: Boolean)Any

We can’t simply write this method as shown above because the compiler infers the result type as Any. Instead
we have to introduce a new type to explicitly represent the disjuncঞon:

def intOrString(input: Boolean): Sum[Int, String] =

if(input == true) {

Left[Int, String](123)

} else {

Right[Int, String]("abc")

}

How do we implement Sum? We just have to use the pa�erns we’ve already seen, with the addiঞon of generic
types.

5.4.3.1 Exercise: Generic Sum Type

Implement a trait Sum[A, B] with two subtypes Left and Right. Create type parameters so that Left and
Right can wrap up values of two different types.

Hint: you will need to put both type parameters on all three types. Example usage:

Left[Int, String](1).value

// res: Int = 1

Right[Int, String]("foo").value

// res: String = foo

val sum: Sum[Int, String] = Right("foo")

5.4. MODELLING DATAWITH GENERIC TYPES 97

// sum: Sum[Int,String] = Right(foo)

sum match {

case Left(x) => x.toString

case Right(x) => x

}

// res: String = foo

See the soluঞon

5.4.4 Generic Opঞonal Values

Many expressions may someঞmes produce a value and someঞmes not. For example, when we look up an
element in a hash table (associaঞve array) by a key, there may not be a value there. If we’re talking to a web
service, that service may be down and not reply to us. If we’re looking for a file, that file may have been deleted.
There are a number of ways to model this situaঞon of an opঞonal value. We could throw an excepঞon, or we
could return null when a value is not available. The disadvantage of both these methods is they don’t encode
any informaঞon in the type system.

We generally want to write robust programs, and in Scala we try to uঞlise the type system to encode properঞes
we want our programs to maintain. One common property is “correctly handle errors”. If we can encode an
opࢼonal value in the type system, the compiler will force us to consider the case where a value is not available,
thus increasing the robustness of our code.

5.4.4.1 Exercise: Maybe that Was a Mistake

Create a generic trait called Maybe of a generic type A with two subtypes, Full containing an A, and Empty
containing no value. Example usage:

val perhaps: Maybe[Int] = Empty[Int]

// perhaps: Maybe[Int] = Empty()

val perhaps: Maybe[Int] = Full(1)

// perhaps: Maybe[Int] = Full(1)

See the soluঞon

5.4.5 Take Home Points

In this secঞon we have used generics to model sum types, product types, and opঞonal values using generics.

These abstracঞons are commonly used in Scala code and have implementaঞons in the Scala standard library.
The sum type is called Either, products are tuples, and opঞonal values are modelled with Option.

5.4.6 Exercises

5.4.6.1 Generics versus Traits

Sum types and product types are general concepts that allow us to model almost any kind of data structure.
We have seen two methods of wriঞng these types—traits and generics. When should we consider using each?

See the soluঞon

98 CHAPTER 5. SEQUENCING COMPUTATIONS

5.4.6.2 Folding Maybe

In this secঞon we implemented a sum type for modelling opঞonal data:

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Implement fold for this type.

See the soluঞon

5.4.6.3 Folding Sum

In this secঞon we implemented a generic sum type:

sealed trait Sum[A, B]

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

Implement fold for Sum.

See the soluঞon

5.5 Sequencing Computaঞon

We have now mastered generic data and folding over algebraic data types. Now we will look as some other
common pa�erns of computaঞon that are 1) o[en more convenient to use than fold for algebraic data types
and 2) can be implemented for certain types of data that do not support a fold. These methods are known as
map and flatMap.

5.5.1 Map

Imagine we have a list of Int user IDs, and a funcঞon which, given a user ID, returns a User record. We want
to get a list of user records for all the IDs in the list. Wri�en as types we have List[Int] and a funcঞon Int
=> User, and we want to get a List[User].

Imagine we have an opঞonal value represenঞng a user record loaded from the database and a funcঞon that will
load their most recent order. If we have a record we want to then lookup the user’s most recent order. That is,
we have a Maybe[User] and a funcঞon User => Order, and we want a Maybe[Order].

Imagine we have a sum type represenঞng an error message or a completed order. If we have a completed order
we want to get the total value of the order. That is, we have a Sum[String, Order] and a funcঞon Order =>

Double, and we want Sum[String, Double].

What these all have in common is we have a type F[A] and a funcঞon A => B, and we want a result F[B]. The
method that performs this operaঞon is called map.

Let’s implement map for LinkedList. We start by outlining the types and adding the general structural recur-
sion skeleton:

5.5. SEQUENCING COMPUTATION 99

sealed trait LinkedList[A] {

def map[B](fn: A => B): LinkedList[B] =

this match {

case Pair(hd, tl) => ???

case End() => ???

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

Weknowwe can use the structural recursion pa�ern aswe know thatfold (which is just the structural recursion
pa�ern abstracted) is the universal iterator for an algebraic data type. Thus:

• For Pair we have to combine head and tail to return a LinkedList[B] (as the types tell us) and we
also know we need to recurse on tail. We can write

case Pair(hd, tl) => {

val newTail: LinkedList[B] = tail.map(fn)

// Combine newTail and head to create LinkedList[B]

}

We can convert head to a B using fn, and then build a larger list from newTail and our B giving us the final
soluঞon

case Pair(hd, tl) => Pair(fn(hd), tl.map(fn))

• For End we don’t have any value of A to apply to the funcঞon. The only thing we can return is an End.

Therefore the complete soluঞon is

sealed trait LinkedList[A] {

def map[B](fn: A => B): LinkedList[B] =

this match {

case Pair(hd, tl) => Pair(fn(hd), tl.map(fn))

case End() => End[B]()

}

}

Noঞce how using the types and pa�erns guided us to a soluঞon.

5.5.2 FlatMap

Now imagine the following examples:

• We have a list of users and we want to get a list of all their orders. That is, we have LinkedList[User]
and a funcঞon User => LinkedList[Order], and we want LinkedList[Order].

• We have an opঞonal value represenঞng a user loaded from the database, and we want to lookup their
most recent order—another opঞonal value. That is, we have Maybe[User] and User => Maybe[Order],
and we want Maybe[Order].

100 CHAPTER 5. SEQUENCING COMPUTATIONS

• We have a sum type holding an error message or an Order, and we want to email an invoice to the user.
Emailing returns either an error message or a message ID. That is, we have Sum[String, Order] and a
funcঞon Order => Sum[String, Id], and we want Sum[String, Id].

What these all have in common is we have a type F[A] and a funcঞon A => F[B], and we want a result F[B].
The method that performs this operaঞon is called flatMap.

Let’s implement flatMap for Maybe (we need an append method to implement flatMap for LinkedList). We
start by outlining the types:

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] = ???

}

final case class Full[A](value: A) extends Maybe[A]

final case object Empty[A]() extends Maybe[A]

We use the same pa�ern as before: it’s a structural recursion and our types guide us in filling in the method
bodies.

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] =

this match {

case Full(v) => fn(v)

case Empty() => Empty[B]()

}

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

5.5.3 Functors and Monads

A type like F[A] with a map method is called a functor. If a functor also has a flatMap method it is called a
monad[ˆmonads].

[ˆmonads:] There is a li�le bit more to being a functor or monad. For a monadwe require a constructor, typically
called point, and there are some algebraic laws that our map and flatMap operaঞonsmust obey. A quick search
online will find more informaঞon on monads, or they are covered in more detail in our “Advanced Scala” book.

Although the most immediate applicaঞons of map and flatMap are in collecঞon classes like lists, the bigger
picture is sequencing computaঞons. Imagine we have a number of computaঞons that can fail. For instance

def mightFail1: Maybe[Int] =

Full(1)

def mightFail2: Maybe[Int] =

Full(2)

def mightFail3: Maybe[Int] =

Empty // This one failed

We want to run these computaঞons one a[er another. If any one of them fails the whole computaঞon fails.
Otherwise we’ll add up all the numbers we get. We can do this with flatMap as follows.

5.5. SEQUENCING COMPUTATION 101

mightFail1 flatMap { x =>

mightFail2 flatMap { y =>

mightFail3 flatMap { z =>

Full(x + y + z)

}

}

}

The result of this is Empty. If we drop mightFail3, leaving just

mightFail1 flatMap { x =>

mightFail2 flatMap { y =>

Full(x + y)

}

}

the computaঞon succeeds and we get Full(3).

The general idea is a monad represents a value in some context. The context depends on the monad we’re
using. We’ve seen examples where the context is:

• an opঞonal value, such as we might get when retrieving a value from a database;
• an sum of values, which might represent a error message and a value we’re compuঞng with; and
• a list of values.

We use mapwhen we want to transform the value within the context to a new value, while keeping the context
the same. We use flatMap when we want to transform the value and provide a new context.

5.5.4 Exercises

5.5.4.1 Mapping Lists

Given the following list

val list: LinkedList[Int] = Pair(1, Pair(2, Pair(3, Empty)))

• double all the elements in the list;
• add one to all the elements in the list; and
• divide by three all the elements in the list.

See the soluঞon

5.5.4.2 Mapping Maybe

Implement map for Maybe.

See the soluঞon

For bonus points, implement map in terms of flatMap.

See the soluঞon

102 CHAPTER 5. SEQUENCING COMPUTATIONS

5.5.4.3 Sequencing Computaঞons

We’re going to use Scala’s builঞn List class for this exercise as it has a flatMap method.

Given this list

val list = List(1, 2, 3)

return a List[Int] containing both all the elements and their negaঞon. Order is not important. Hint: Given
an element create a list containing it and its negaঞon.

See the soluঞon

Given this list

val list = List(Full(3), Full(2), Full(1))

return a List[Maybe[Int]] containing None for the odd elements. Hint: If x % 2 == 0 then x is even.

See the soluঞon

5.5.4.4 Sum

Recall our Sum type.

sealed trait Sum[A, B] {

def fold[C](left: A => C, right: B => C): C =

this match {

case Left(a) => left(a)

case Right(b) => right(b)

}

}

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

To prevent a name collision between the built-in Either, rename the Left and Right cases to Failure and
Success respecঞvely.

See the soluঞon

Now things are going to get a bit trickier. We are going to implement map and flatMap, again using pa�ern
matching in the Sum trait. Start with map. The general recipe for map is to start with a type like F[A] and apply
a funcঞon A => B to get F[B]. Sum however has two generic type parameters. To make it fit the F[A] pa�ern
we’re going to fix one of these parameters and allow map to alter the other one. The natural choice is to fix
the type parameter associated with Failure and allow map to alter a Success. This corresponds to “fail-fast”
behaviour. If our Sum has failed, any sequenced computaঞons don’t get run.

In summary map should have type

def map[C](f: B => C): Sum[A, C] =

See the soluঞon

Now implement flatMap using the same logic as map.

See the soluঞon

5.6. VARIANCE 103

5.6 Variance

In this secঞon we cover variance annotaࢼons, which allow us to control subclass relaঞonships between types
with type parameters. To moঞvate this, let’s look again at our invariant generic sum type pa�ern.

Recall our Maybe type, which we defined as

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Ideally we would like to drop the unused type parameter on Empty and write something like

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case object Empty extends Maybe[???]

Objects can’t have type parameters. In order to make Empty an object we need to provide a concrete type
in the extends Maybe part of the definiঞon. But what type parameter should we use? In the absence of a
preference for a parঞcular data type, we could use something like Unit or Nothing. However this leads to
type errors:

scala> :paste

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case object Empty extends Maybe[Nothing]

^D

defined trait Maybe

defined class Full

defined module Empty

scala> val possible: Maybe[Int] = Empty

<console>:9: error: type mismatch;

found : Empty.type

required: Maybe[Int]

val possible: Maybe[Int] = Empty

The problem here is that Empty is a Maybe[Nothing] and a Maybe[Nothing] is not a subtype of Maybe[Int].
To overcome this issue we need to introduce variance annotaঞons.

5.6.1 Invariance, Covariance, and Contravariance

Variance is Hard

Variance is one of the trickier aspects of Scala’s type system. Although it is useful to be aware of its
existence, we rarely have to use it in applicaঞon code.

If we have some type Foo[A], and A is a subtype of B, is Foo[A] a subtype of Foo[B]? The answer depends on
the variance of the type Foo. The variance of a generic type determines how its supertype/subtype relaঞonships
change with respect with its type parameters:

104 CHAPTER 5. SEQUENCING COMPUTATIONS

A type Foo[T] is invariant in terms of T, meaning that the types Foo[A] and Foo[B] are unrelated regardless
of the relaঞonship between A and B. This is the default variance of any generic type in Scala.

A type Foo[+T] is covariant in terms of T, meaning that Foo[A] is a supertype of Foo[B] if A is a supertype of
B. Most Scala collecঞon classes are covariant in terms of their contents. We’ll see these next chapter.

A type Foo[-T] is contravariant in terms of T, meaning that Foo[A] is a subtype of Foo[B] if A is a supertype of
B. The only example of contravariance that I am aware of is funcঞon arguments.

5.6.2 Funcঞon Types

When we discussed funcঞon types we glossed over how exactly they are implemented. Scala has 23 built-in
generic classes for funcঞons of 0 to 22 arguments. Here’s what they look like:

trait Function0[+R] {

def apply: R

}

trait Function1[-A, +B] {

def apply(a: A): B

}

trait Function2[-A, -B, +C] {

def apply(a: A, b: B): C

}

// and so on...

Funcঞons are contravariant in terms of their arguments and covariant in terms of their return type. This seems
counterintuiঞve but it makes sense if we look at it from the point of view of funcঞon arguments. Consider
some code that expects a Function1[A, B]:

class Box[A](value: A) {

/** Apply `func` to `value`, returning a `Box` of the result. */

def map[B](func: Function1[A, B]): Box[B] =

Box(func(a))

}

To understand variance, consider what funcঞons can we safely pass to this map method:

• A funcঞon from A to B is clearly ok.

• A funcঞon from A to a subtype of B is ok because it’s result type will have all the properঞes of B that we
might depend on. This indicates that funcঞons are covariant in their result type.

• A funcঞon expecঞng a supertype of A is also ok, because the A we have in the Box will have all the
properঞes that the funcঞon expects.

• A funcঞon expecঞng a subtype of A is not ok, because our value may in reality be a different subtype of
A.

5.6.3 Covariant Sum Types

Now we know about variance annotaঞons we can solve our problem with Maybe by making it covariant.

5.6. VARIANCE 105

sealed trait Maybe[+A]

final case class Full[A](value: A) extends Maybe[A]

final case object Empty extends Maybe[Nothing]

In use we get the behaviour we expect. Empty is a subtype of all Full values.

val perhaps: Maybe[Int] = Empty

// perhaps: Maybe[Int] = Empty

This pa�ern is the most commonly used one with generic sum types. We should only use covariant types where
the container type is immutable. If the container allows mutaঞon we should only use invariant types.

Covariant Generic Sum Type Pa�ern

If A of type T is a B or C, and C is not generic, write

sealed trait A[+T]

final case class B[T](t: T) extends A[T]

final case object C extends A[Nothing]

This pa�ern extends to more than one type parameter. If a type parameter is not needed for a specific
case of a sum type, we can subsঞtute Nothing for that parameter.

5.6.4 Contravariant Posiঞon

There is another pa�ern we need to learn for covariant sum types, which involves the interacঞon of covariant
type parameters and contravariant method and funcঞon parameters. To illustrate this issue let’s develop a
covariant Sum.

5.6.4.1 Exercise: Covariant Sum

Implement a covariant Sum using the covariant generic sum type pa�ern.

See the soluঞon

Now let’s see what happens when we implement flatMap on Sum.

5.6.4.2 Exercise: Some sort of flatMap

Implement flatMap and verify you receive an error like

error: covariant type A occurs in contravariant position in type B => Sum[A,C] of value f

def flatMap[C](f: B => Sum[A, C]): Sum[A, C] =

^

See the soluঞon

What is going on here? Let’s momentarily switch to a simpler example that illustrates the problem.

106 CHAPTER 5. SEQUENCING COMPUTATIONS

case class Box[+A](value: A) {

def set(a: A): Box[A] = Box(a)

}

which causes the error

error: covariant type A occurs in contravariant position in type A of value a

def set(a: A): Box[A] = Box(a)

^

Remember that funcঞons, and hence methods, which are just like funcঞons, are contravariant in their input
parameters. In this case we have specified that A is covariant but in setwe have a parameter of type A and the
type rules requires A to be contravariant here. This is what the compiler means by a “contravariant posiঞon”.

The soluঞon is introduce a new type that is a supertype of A. We can do this with the notaঞon [AA >: A] like
so:

case class Box[+A](value: A) {

def set[AA >: A](a: AA): Box[AA] = Box(a)

}

This successfully compiles.

Back to flatMap, the funcঞon f is a parameter, and thus in a contravariant posiঞon. This means we accept
supertypes of f. It is declaredwith type B => Sum[A, C] and thus a supertype is covariant in B and contravariant
in A and C. B is declared as covariant, so that is fine. C is invariant, so that is fine as well. A on the other hand is
covariant but in a contravariant posiঞon. Thus we have to apply the same soluঞon we did for Box above.

sealed trait Sum[+A, +B] {

def flatMap[AA >: A, C](f: B => Sum[AA, C]): Sum[AA, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

final case class Failure[A](value: A) extends Sum[A, Nothing]

final case class Success[B](value: B) extends Sum[Nothing, B]

Contravariant Posiঞon Pa�ern

If A of a covariant type T and amethod f of A complains that T is used in a contravariant posiঞon, introduce
a type TT >: T in f.

case class A[+T] {

def f[TT >: T](t: TT): A[TT]

}

5.6.5 Type Bounds

We have see some type bounds above, in the contravariant posiঞon pa�ern. Type bounds extend to specify
subtypes as well as supertypes. The syntax is A <: Type to declare A must be a subtype of Type and A >:

Type to declare a supertype.

For example, the following type allows us to store a Visitor or any subtype:

5.6. VARIANCE 107

case class WebAnalytics[A <: Visitor](

visitor: A,

pageViews: Int,

searchTerms: List[String],

isOrganic: Boolean

)

5.6.6 Exercises

5.6.6.1 Covariance and Contravariance

Using the notaঞon A <: B to indicate A is a subtype of B and assuming:

• Siamese <: Cat <: Animal; and
• Purr <: CatSound <: Sound

if I have a method

def groom(groomer: Cat => CatSound): CatSound =

val oswald = Cat("Black", "Cat food")

groomer(oswald)

}

which of the following can I pass to groom?

• A funcঞon of type Animal => Purr

• A funcঞon of type Siamese => Purr

• A funcঞon of type Animal => Sound

See the soluঞon

5.6.6.2 Calculator Again

We’re going to return to the interpreter example we saw at the end of the last chapter. This ঞme we’re going to
use the general abstracঞons we’ve created in this chapter, and our new knowledge of map, flatMap, and fold.

We’re going to represent calculaঞons as Sum[String, Double], where the String is an error message. Ex-
tend Sum to have map and fold method.

See the soluঞon

Now we’re going to reimplement the calculator from last ঞme. We have an abstract syntax tree defined via the
following algebraic data type:

sealed trait Expression

final case class Addition(left: Expression, right: Expression) extends Expression

final case class Subtraction(left: Expression, right: Expression) extends Expression

final case class Division(left: Expression, right: Expression) extends Expression

final case class SquareRoot(value: Expression) extends Expression

final case class Number(value: Double) extends Expression

Now implement a method eval: Sum[String, Double] on Expression. Use flatMap and map on Sum and
introduce any uঞlity methods you see fit to make the code more compact. Here are some test cases:

108 CHAPTER 5. SEQUENCING COMPUTATIONS

assert(Addition(Number(1), Number(2)).eval == Success(3))

assert(SquareRoot(Number(-1)).eval == Failure("Square root of negative number"))

assert(Division(Number(4), Number(0)).eval == Failure("Division by zero"))

assert(Division(Addition(Subtraction(Number(8), Number(6)), Number(2)), Number(2)).eval == Success

(2.0))

See the soluঞon

5.7 Conclusions

In this secঞonwe have explored generic types and funcঞons, which allow us to abstract over types andmethods
respecঞvely.

We have seen new pa�erns for generic algebraic types, and generic structural recursion. Using these building
blocks we have seen some common pa�erns for working with generic types, namely fold, map, and flatMap.

In the next secঞon we will explore these topics further by working with the collecঞons classes in Scala.

Chapter 6

Collecঞons

We hardly need to state how important collecঞon classes are. The Collecঞons API was one of the most signifi-
cant addiঞons to Java, and Scala’s collecঞons framework, completely revised and updated in 2.8, is an equally
important addiঞon to Scala.

In this secঞon we’re going to look at three key datastructures in Scala’s collecঞon library: sequences, opࢼons,
and maps.

We will start with sequences. We begin with basic operaঞons on sequences, and then briefly examine the
disঞncঞon Scala makes between interface and implementaঞon, and mutable and immutable sequences. We
then explore in depth the methods Scala provides to transform sequences.

A[er covering the main collecঞon types we turn to for comprehensions, a syntax that allows convenient specifi-
caঞon of operaঞons on collecঞons.

With for comprehensions under our belt we will move onto opࢼons, which are used frequently in the APIs for
sequences and maps. Opঞons provide a means to sequence computaঞons and are an essenঞal companion to
for comprehensions.

We’ll then look at monads, which we have introduced before, and see how they work with for comprehensions.

Next we will cover the other main collecঞon classes: maps and sets. We will discover that they share a great
deal in common with sequences, so most of our knowledge transfers directly.

We finish with discussion of ranges, which can represent large sequences of integers without storing every
intermediate value in memory.

In the previous two chapters we have been focused on Scala concepts. The focus in this chapter is not on fun-
damental concepts, but on gaining pracঞce with an important API and reinforcing concepts we have previously
seen.

6.1 Sequences

A sequence is a collecঞon of items with a defined and stable order. Sequences are one of the most common
data structures. In this secঞon we’re going to look at the basics of sequences: creaঞng them, key methods on
sequences, and the disঞncঞon between mutable and immutable sequences.

Here’s how you create a sequence in Scala:

val sequence = Seq(1, 2, 3)

// sequence: Seq[Int] = List(1, 2, 3)

109

110 CHAPTER 6. COLLECTIONS

This immediately shows off a key feature of Scala’s collecঞons, the separaࢼon between interface and implemen-
taࢼon. In the above, the value has type Seq[Int] but is implemented by a List.

6.1.1 Basic operaঞons

Sequences implement many methods. Let’s look at some of the most common.

6.1.1.1 Accessing elements

We can access the elements of a sequence using its applymethod, which accepts an Int index as a parameter.
Indices start from 0.

sequence.apply(0)

// res: Int = 1

sequence(0) // sugared syntax

// res: Int = 1

An excepঞon is raised if we use an index that is out of bounds:

sequence(3)

// java.lang.IndexOutOfBoundsException: 3

// at ...

We can also access the head and tail of the sequence:

sequence.head

// res: Int = 1

sequence.tail

// res: Seq[Int] = List(2, 3)

sequence.tail.head

// res: Int = 2

Again, trying to access an element that doesn’t exist throws an excepঞon:

Seq().head

// java.util.NoSuchElementException: head of empty list

// at scala.collection.immutable.Nil$.head(List.scala:337)

// ...

Seq().tail

// java.lang.UnsupportedOperationException: tail of empty list

// at scala.collection.immutable.Nil$.tail(List.scala:339)

// ...

If we want to safely get the head without risking an excepঞon, we can use headOption:

sequence.headOption

// res: Option[Int] = Some(1)

Seq().headOption

// res: Option[Nothing] = None

http://docs.scala-lang.org/overviews/collections/seqs.html

6.1. SEQUENCES 111

The Option class here is Scala’s built-in equivalent of our Maybe class from earlier. It has two subtypes—Some
and None—represenঞng the presence and absence of a value respecঞvely.

6.1.2 Sequence length

Finding the length of a sequence is straigh�orward:

sequence.length

// res: Int = 3

6.1.3 Searching for elements

There are a few ways of searching for elements. The contains method tells us whether a sequence contains
an element (using == for comparison):

sequence.contains(2)

// res: Boolean = true

The find method is like a generalised version of contains - we provide a test funcঞon and the sequence
returns the first item for which the test returns true:

sequence.find(_ == 3)

// res: Option[Int] = Some(3)

sequence.find(_ > 4)

// res: Option[Int] = None

The filter method is a variant of find that returns all the matching elements in the sequence:

sequence.filter(_ > 1)

// res: Seq[Int] = List(2, 3)

6.1.4 Sorঞng elements

We can use the sortWith method to sort a list using a binary funcঞon. The funcঞon takes two list items as
parameters and returns true if they are in the correct order and false if they are the wrong way around:

sequence.sortWith(_ < _)

// res: Seq[Int] = List(3, 2, 1)

6.1.5 Appending/prepending elements

There are many ways to add elements to a sequence. We can append an element with the :+ method:

sequence.:+(4)

// res: Seq[Int] = List(1, 2, 3, 4)

It is more idiomaঞc to call :+ as an infix operator:

112 CHAPTER 6. COLLECTIONS

sequence :+ 4

// res: Seq[Int] = List(1, 2, 3, 4)

We can similarly prepend an element using the +: method:

sequence.+:(0)

// res: Seq[Int] = List(0, 1, 2, 3)

Again, it is more idiomaঞc to call +: as an infix operator. Here the trailing colon makes it right associaࢼve, so we
write the operator-style expression the other way around:

0 +: sequence

// res: Seq[Int] = List(0, 1, 2, 3)

This is another of Scala’s general syntax rules—any method ending with a : character becomes right associaࢼve
when wri�en as an infix operator. This rule is designed to replicate Haskell-style operators for things like list
prepend (::) and list concatenaঞon (:::). We’ll look at this in more detail in a moment.

Finally we can concatenate enঞre sequences using the ++ method.

sequence ++ Seq(4, 5, 6)

// res: Seq[Int] = List(1, 2, 3, 4, 5, 6)

6.1.6 Lists

The default implementaঞon of Seq is a List, which is a classic linked list data structure similar to the one
we developed in an earlier exercise. Some Scala libraries work specifically with Lists rather than using more
generic types like Seq. For this reason we should familiarize ourselves with a couple of list-specific methods.

We can write an empty list using the singleton object Nil:

Nil

// res: scala.collection.immutable.Nil.type = List()

Longer lists can be created by prepending elements in classic linked-list style using the :: method, which is
equivalent to +::

val list = 1 :: 2 :: 3 :: Nil

// list: List[Int] = List(1, 2, 3)

4 :: 5 :: list

// res: List[Int] = List(4, 5, 1, 2, 3)

We can also use the List.apply method for a more convenঞonal constructor notaঞon:

List(1, 2, 3)

// res: List[Int] = List(1, 2, 3)

Finally, the ::: method is a right-associaঞve List-specific version of ++:

List(1, 2, 3) ::: List(4, 5, 6)

// res: List[Int] = List(1, 2, 3, 4, 5, 6)

:: and ::: are specific to lists whereas +:, :+ and ++ work on any type of sequence.

Lists have well known performance characterisঞcs—constant-ঞme prepend and head/tail operaঞons and linear-
ঞme append and search operaঞons. Other immutable sequences are available in Scala with different perfor-
mance characterisঞcs to match all situaঞons. It is up to us as developers to decide whether we want to ঞe our
code to a specific sequence type like List or refer to our sequences as Seqs to simplify swapping implementa-
ঞons.

http://en.wikipedia.org/wiki/Linked_list
http://www.scala-lang.org/docu/files/collections-api/collections_40.html
http://www.scala-lang.org/docu/files/collections-api/collections_40.html

6.1. SEQUENCES 113

6.1.7 Imporঞng Collecঞons and Other Libraries

The Seq and List types are so ubiquitous in Scala that they are made automaঞcally available at all ঞmes. Other
collecঞons like Vector and Queue have to be brought into scope manually.

The main collecঞons package is called scala.collection.immutable. We can import specific collecঞons
from this package as follows:

import scala.collection.immutable.Vector

Vector(1, 2, 3)

// res: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

We can also use wildcard imports to import everything in a package:

import scala.collection.immutable._

Queue(1, 2, 3)

// res: scala.collection.immutable.Queue[Int] = Queue(1, 2, 3)

We can also use import to bring methods and fields into scope from a singleton:

import scala.collection.immutable.Vector.apply

apply(1, 2, 3)

// res: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)

We can write import statements anywhere in our code—imported idenঞfiers are lexically scoped to the block
where we use them:

// `empty` is unbound here

def someMethod = {

import scala.collection.immutable.Vector.empty

// `empty` is bound to `Vector.empty` here

empty[Int]

}

// `empty` is unbound again here

Import Statements

Import statements in Scala are very flexible. The main points are nicely described in the Scala Wikibook.

6.1.8 Take Home Points

Seq is Scala’s general sequence datatype. It has a number of general subtypes such as List, Stack, Vector,
Queue, and Array, and specific subtypes such as String.

The default sequences in Scala are immutable. We also have access to mutable sequences, which are covered
separately in the Collecঞons Redux chapter.

We have covered a variety of methods that operate on sequences. Here is a type table of everything we have
seen so far:

http://en.wikibooks.org/wiki/Scala/Import
/collections-redux/index.html

114 CHAPTER 6. COLLECTIONS

Method We have We provide We get

Seq(...) [A], … Seq[A]

apply Seq[A] Int A

head Seq[A] A

tail Seq[A] Seq[A]

length Seq[A] Int

contains Seq[A] A Boolean

find Seq[A] A => Boolean Option[A]

filter Seq[A] A => Boolean Seq[A]

sortWith Seq[A] (A, A) => Boolean Seq[A]

:+, +: Seq[A] A Seq[A]

++ Seq[A] Seq[A] Seq[A]

:: List[A] A List[A]

::: List[A] List[A] List[A]

We can always use Seq and List in our code. Other collecঞons can be brought into scope using the import
statement as we have seen.

6.1.9 Exercises

6.1.9.1 Documentaঞon

Discovering Scala’s collecঞon classes is all about knowing how to read the API documentaঞon. Look up the
Seq and List types now and answer the following:

• There is a synonym of length defined on Seq—what is it called?

• There are two methods for retrieving the first item in a List – what are they called and how do they
differ?

• What method can be used used to display the elements of the sequence as a string?

• What method of Option can be used to determine whether the opঞon contains a value?

Tip: There is a link to the Scala API documentaঞon at http://scala-lang.org.

See the soluঞon

6.1.9.2 Animals

Create a Seq containing the Strings "cat", "dog", and "penguin". Bind it to the name animals.

See the soluঞon

Append the element "tyrannosaurus" to animals and prepend the element "mouse".

See the soluঞon

What happens if you prepend the Int 2 to animals? Why? Try it out… were you correct?

See the soluঞon

http://scala-lang.org

6.1. SEQUENCES 115

6.1.9.3 Intranet Movie Database

Let’s revisit our films and directors example from the Classes chapter.

The code below is a parঞal rewrite of the previous sample code in which Films are stored as a field of Director
instead of the other way around. Copy and paste this into a new Scala worksheet and conঞnue with the
exercises below:

case class Film(

name: String,

yearOfRelease: Int,

imdbRating: Double)

case class Director(

firstName: String,

lastName: String,

yearOfBirth: Int,

films: Seq[Film])

val memento = new Film("Memento", 2000, 8.5)

val darkKnight = new Film("Dark Knight", 2008, 9.0)

val inception = new Film("Inception", 2010, 8.8)

val highPlainsDrifter = new Film("High Plains Drifter", 1973, 7.7)

val outlawJoseyWales = new Film("The Outlaw Josey Wales", 1976, 7.9)

val unforgiven = new Film("Unforgiven", 1992, 8.3)

val granTorino = new Film("Gran Torino", 2008, 8.2)

val invictus = new Film("Invictus", 2009, 7.4)

val predator = new Film("Predator", 1987, 7.9)

val dieHard = new Film("Die Hard", 1988, 8.3)

val huntForRedOctober = new Film("The Hunt for Red October", 1990, 7.6)

val thomasCrownAffair = new Film("The Thomas Crown Affair", 1999, 6.8)

val eastwood = new Director("Clint", "Eastwood", 1930,

Seq(highPlainsDrifter, outlawJoseyWales, unforgiven, granTorino, invictus))

val mcTiernan = new Director("John", "McTiernan", 1951,

Seq(predator, dieHard, huntForRedOctober, thomasCrownAffair))

val nolan = new Director("Christopher", "Nolan", 1970,

Seq(memento, darkKnight, inception))

val someGuy = new Director("Just", "Some Guy", 1990,

Seq())

val directors = Seq(eastwood, mcTiernan, nolan, someGuy)

// TODO: Write your code here!

Using this sample code, write implementaঞons of the following methods:

• Accept a parameter numberOfFilms of type Int—find all directors who have directed more than
numberOfFilms:

See the soluঞon

• Accept a parameter year of type Int—find a director who was born before that year:

116 CHAPTER 6. COLLECTIONS

See the soluঞon

• Accept two parameters, year and numberOfFilms, and return a list of directors who were born before
year who have also directed more than than numberOfFilms:

See the soluঞon

• Accept a parameter ascending of type Boolean that defaults to true. Sort the directors by age in the
specified order:

See the soluঞon

6.2 Working with Sequences

In the previous secঞon we looked at the basic operaঞons on sequences. Now we’re going to look at pracঞcal
aspects of working with sequences—how funcঞonal programming allows us to process sequences in a terse
and declaraঞve style.

6.2.1 Bulk Processing of Elements

When working with sequences we o[en want to deal with the collecঞon as a whole, rather than accessing and
manipulaঞng individual elements. Scala gives us a number of powerful opঞons that allow us to solve many
problems more directly.

6.2.2 Map

Let’s start with something simple—suppose we want to double every element of a sequence. You might wish
to express this as a loop. However, this requires wriঞng several lines of looping machinery for only one line of
actual doubling funcঞonality.

In Scala we can use the map method defined on any sequence. Map takes a funcঞon and applies it to every
element, creaঞng a sequence of the results. To double every element we can write:

val sequence = Seq(1, 2, 3)

// sequence: Seq[Int] = List(1, 2, 3)

sequence.map(elt => elt * 2)

// res: Seq[Int] = List(2, 4, 6)

If we use placeholder syntax we can write this even more compactly:

sequence.map(_ * 2)

// res: Seq[Int] = List(2, 4, 6)

Given a sequence with type Seq[A], the funcঞon we pass to mapmust have type A => B and we get a Seq[B]
as a result. This isn’t right for every situaঞon. For example, suppose we have a sequence of strings, and we
want to generate a sequence of all the permutaঞons of those strings. We can call the permutations method
on a string to get all permutaঞons of it:

6.2. WORKINGWITH SEQUENCES 117

"dog".permutations

// res: Iterator[String] = non-empty iterator

This returns an Iterable, which is a bit like a Java Iterator. We’re going to look at iterables in more detail
later. For now all we need to know is that we can call the toList method to convert an Iterable to a List.

"dog".permutations.toList

// res: List[String] = List(dog, dgo, odg, ogd, gdo, god)

Thus we could write

Seq("a", "wet", "dog").map(_.permutations.toList)

// res: Seq[List[String]] = List(List(a), List(wet, wte, ewt, etw, twe, tew), List(dog, dgo, odg,

ogd, Ď

gdo,

god))

but we end up with a sequence of sequences. Let’s look at the types in more detail to see what’s gone wrong:

Method We have We provide We get

map Seq[A] A => B Seq[B]

map Seq[String] String => List[String] Seq[List[String]]

??? Seq[A] A => Seq[B] Seq[B]

What is the method ??? that we can use to collect a single flat sequence?

6.2.3 FlatMap

Our mystery method above is called flatMap. If we simply replace map with flatMap we get the answer we
want:

Seq("a", "wet", "dog").flatMap(_.permutations.toList)

// res: Seq[String] = List(a, wet, wte, ewt, etw, twe, tew, dog, dgo, odg, ogd, gdo, god)

flatMap is similar to map except that it expects our funcঞon to return a sequence. The sequences for each
input element are appended together. For example:

Seq(1, 2, 3).flatMap(num => Seq(num, num * 10))

// res: List[Int] = List(1, 10, 2, 20, 3, 30)

The end result is (nearly) always the same type as the original sequence: aList.flatMap(...) returns another
List, aVector.flatMap(...) returns another Vector, and so on:

import scala.collection.immutable.Vector

Vector(1, 2, 3).flatMap(num => Seq(num, num * 10))

// res: scala.collection.immutable.Vector[Int] = Vector(1, 10, 2, 20, 3, 30)

6.2.4 Folds

Now let’s look at another kind of operaঞon. Say we have a Seq[Int] and we want to add all the numbers
together. map and flatMap don’t apply here for two reasons:

118 CHAPTER 6. COLLECTIONS

1. they expect a unary funcঞon, whereas + is a binary operaঞon;
2. they both return sequences of items, whereas we want to return a single Int.

There are also two further wrinkles to consider.

1. What result do we expect if the sequence is empty? If we’re adding items together then 0 seems like a
natural result, but what is the answer in general?

2. Although + is commutaঞve (i.e. a+b == b+a), in general we may need to specify an order in which to
pass arguments to our binary funcঞon.

Let’s make another type table to see what we’re looking for:

Method We have We provide We get

??? Seq[Int] 0 and (Int, Int) => Int Int

The methods that fit the bill are called folds, with two common cases foldLeft and foldRight corresponding
to the order the fold is applied. The job of these methods is to traverse a sequence and accumulate a result.
The types are as follows:

Method We have We provide We get

foldLeft Seq[A] B and (B, A) => B B

foldRight Seq[A] B and (A, B) => B B

Given the sequence Seq(1, 2, 3), 0, and + the methods calculate the following:

Method Operaঞons Notes

Seq(1, 2, 3).foldLeft(0)(_ +

_)

(((0 + 1) + 2) + 3) Evaluaঞon starts on the le[

Seq(1, 2, 3).foldRight(0)(_ +

_)

(1 + (2 + (3 + 0))) Evaluaঞon starts on the right

As we know from studying algebraic data types, the fold methods are very flexible. We can write any transfor-
maঞon on a sequence in terms of fold.

6.2.5 Foreach

There is one more traversal method that is commonly used: foreach. Unlike map, flatMap and the folds,
foreach does not return a useful result—we use it purely for its side-effects. The type table is:

Method We have We provide We get

foreach Seq[A] A => Unit Unit

A common example of using foreach is prinঞng the elements of a sequence:

6.2. WORKINGWITH SEQUENCES 119

List(1, 2, 3).foreach(num => println("And a " + num + "..."))

And a 1...

And a 2...

And a 3...

6.2.6 Algebra of Transformaঞons

We’ve seen the four major traversal funcঞons, map, flatMap, fold, and foreach. It can be difficult to know
which to use, but it turns out there is a simple way to decide: look at the types! The type table below gives
the types for all the operaঞons we’ve seen so far. To use it, start with the data you have (always a Seq[A] in
the table below) and then look at the funcঞons you have available and the result you want to obtain. The final
column will tell you which method to use.

We have We provide We want Method

Seq[A] A => Unit Unit foreach

Seq[A] A => B Seq[B] map

Seq[A] A => Seq[B] Seq[B] flatMap

Seq[A] B and (B, A) => B B foldLeft

Seq[A] B and (A, B) => B B foldRight

This type of analysis may see foreign at first, but you will quickly get used to it. Your two steps in solving any
problem with sequences should be: think about the types, and experiment on the REPL!

6.2.7 Exercises

The goals of this exercise are for you to learn your way around the collecঞons API, but more importantly to
learn to use types to drive implementaঞon. When approaching each exercise you should answer:

1. What is the type of the data we have available?
2. What is the type of the result we want?
3. What is the type of the operaঞons we will use?

When you have answered these quesঞons look at the type table above to find the correct method to use. Done
in this way the actual programming should be straigh�orward.

6.2.7.1 Heroes of the Silver Screen

These exercises re-use the example code from the Intranet Movie Database exercise from the previous secঞon:

Nolan Films

Starঞng with the definiঞon of nolan, create a list containing the names of the films directed by Christopher
Nolan.

See the soluঞon

Cinephile

Starঞng with the definiঞon of directors, create a list containing the names of all films by all directors.

See the soluঞon

120 CHAPTER 6. COLLECTIONS

Vintage McTiernan

Starঞng with mcTiernan, find the date of the earliest McTiernan film.

Tip: you can concisely find the minimum of two numbers a and b using math.min(a, b).

See the soluঞon

High Score Table

Starঞng with directors, find all films sorted by descending IMDB raঞng:

See the soluঞon

Starঞng with directors again, find the average score across all films:

See the soluঞon

Tonight’s Lisࢼngs

Starঞng with directors, print the following for every film: "Tonight only! FILM NAME by DIRECTOR!"

See the soluঞon

From the Archives

Finally, starঞng with directors again, find the earliest film by any director:

See the soluঞon

6.2.7.2 Do-It-Yourself

Now we know the essenঞal methods of Seq, we can write our own versions of some other library methods.

Minimum

Write a method to find the smallest element of a Seq[Int].

See the soluঞon

Unique

Given Seq(1, 1, 2, 4, 3, 4) create the sequence containing each number only once. Order is not impor-
tant, so Seq(1, 2, 4, 3) or Seq(4, 3, 2, 1) are equally valid answers. Hint: Use contains to check if a
sequence contains a value.

See the soluঞon

Reverse

Write a funcঞon that reverses the elements of a sequence. Your output does not have to use the same concrete
implementaঞon as the input. Hint: use foldLeft.

See the soluঞon

Map

Write map in terms of foldRight.

See the soluঞon

Fold Le[

Write your own implementaঞon of foldLeft that uses foreach and mutable state. Remember you can create
a mutable variable using the var keyword, and assign a new value using =. For example

6.3. FOR COMPREHENSIONS 121

var mutable = 1

var mutable = 1

mutable: Int = 1

mutable = 2

mutable = 2

mutable: Int = 2

See the soluঞon

There are many other methods on sequences. Consult the API documentaঞon for the Seq trait for more infor-
maঞon.

6.3 For Comprehensions

We’ve discussed the main collecঞon transformaঞon funcঞons—map, flatMap, foldLeft, foldRight, and
foreach—and seen that they provide a powerful way of working with collecঞons. They can become unwieldy
toworkwith when dealing withmany collecঞons or many nested transformaঞons. Fortunately Scala has special
syntax for working with collecঞons (in fact any class that implements map and flatMap) that makes complicated
operaঞons simpler to write. This syntax is known as a for comprehension.

Not Your Father’s For Loops

for comprehensions in Scala are very different to the C-style for loops in Java. There is no direct equivalent
of either language’s syntax in the other.

Let’s start with a simple example. Say we have the sequence Seq(1, 2, 3) and we wish to create a sequence
with every element doubled. We know we can write

Seq(1, 2, 3).map(_ * 2)

// res: Seq[Int] = List(2, 4, 6)

The equivalent program wri�en with a for comprehension is:

for {

x <- Seq(1, 2, 3)

} yield x * 2

// res: Seq[Int] = List(2, 4, 6)

We call the expression containing the <- a generator, with a pa�ern on the le[hand side and a generator expres-
sion on the right. A for comprehension iterates over the elements in the generator, binding each element to the
pa�ern and calling the yield expression. It combines the yielded results into a sequence of the same type as
the original generator.

In simple examples like this one we don’t really see the power of for comprehensions—direct use of map and
flatMap are o[en more compact in the simplest case. Let’s try a more complicated example. Say we want to
double all the numbers in Seq(Seq(1), Seq(2, 3), Seq(4, 5, 6)) and return a fla�ened sequence of the
results. To do this with map and flatMap we must nest calls:

http://www.scala-lang.org/api/current/scala/collection/Seq.html

122 CHAPTER 6. COLLECTIONS

val data = Seq(Seq(1), Seq(2, 3), Seq(4, 5, 6))

// data: Seq[Seq[Int]] = List(List(1), List(2, 3), List(4, 5, 6))

data.flatMap(_.map(_ * 2))

// res: Seq[Int] = List(2, 4, 6, 8, 10, 12)

This is geমng complicated. The equivalent for comprehension is much more … comprehensible.

for {

subseq <- data

element <- subseq

} yield element * 2

// res: Seq[Int] = List(2, 4, 6, 8, 10, 12)

This gives us an idea of what the for comprehensions does. A general for comprehension:

for {

x <- a

y <- b

z <- c

} yield e

translates to:

a.flatMap(x => b.flatMap(y => c.map(z => e)))

The intuiঞve understanding of the code is to iterate through all of the sequences in the generators, mapping
the yield expression over every element therein, and accumulaঞng a result of the same type as sequence fed
into the first generator.

Note that if we omit the yield keyword before the final expression, the overall type of the for comprehension
becomes Unit. This version of the for comprehension is executed purely for its side-effects, and any result is
ignored. Revisiঞng the doubling example from earlier, we can print the results instead of returning them:

for {

seq <- Seq(Seq(1), Seq(2, 3))

elt <- seq

} println(elt * 2) // Note: no 'yield' keyword

// 2

// 4

// 6

The equivalent method calls use flatMap as usual and foreach in place of the final map:

a.flatMap(x => b.flatMap(y => c.foreach(z => e)))

We can use parentheses instead of braces to delimit the generators in a for loop. However, we must use
semicolons to separate the generators if we do. Thus:

for (

x <- a;

y <- b;

z <- c;

) yield e

is equivalent to:

6.4. OPTIONS 123

for {

x <- a

y <- b

z <- c

} yield e

Some developers prefer to use parentheses when there is only one generator and braces otherwise:

for(x <- Seq(1, 2, 3)) yield {

x * 2

}

We can also use braces to wrap the yield expression and convert it to a block as usual:

for {

// ...

} yield {

// ...

}

6.3.1 Exercises

(More) Heroes of the Silver Screen

Repeat the following exercises from the previous secঞon without using map or flatMap:

Nolan Films

List the names of the films directed by Christopher Nolan.

See the soluঞon

Cinephile

List the names of all films by all directors.

See the soluঞon

High Score Table

Find all films sorted by descending IMDB raঞng:

See the soluঞon

Tonight’s Lisࢼngs

Print the following for every film: "Tonight only! FILM NAME by DIRECTOR!"

See the soluঞon

6.4 Opঞons

We have seen Options in passing a number of ঞmes already—they represent values that may or may not be
present in our code. Opঞons are an alternaঞve to using null that provide us with a means of chaining compu-
taঞons together without risking NullPointerExceptions. We have previously produced code in the spirit of
Option with our DivisionResult and Maybe types in previous chapters.

Let’s look into Scala’s built-in Option type in more detail.

124 CHAPTER 6. COLLECTIONS

6.4.1 Opঞon, Some, and None

Option is a generic sealed trait with two subtypes—Some and None. Here is an abbreviated version of the
code—we will fill in more methods as we go on:

sealed trait Option[+A] {

def getOrElse(default: A): A

def isEmpty: Boolean

def isDefined: Boolean = !isEmpty

// other methods...

}

final case class Some[A](x: A) extends Option[A] {

def getOrElse(default: A) = x

def isEmpty: Boolean = false

// other methods...

}

final case object None extends Option[Nothing] {

def getOrElse(default: A) = default

def isEmpty: Boolean = true

// other methods...

}

Here is a typical example of code for generaঞng an opঞon—reading an integer from the user:

def readInt(str: String): Option[Int] =

if(str matches "\\d+") Some(str.toInt) else None

The toInt method of String throws a NumberFormatException if the string isn’t a valid series of digits, so
we guard its use with a regular expression. If the number is correctly forma�ed we return Some of the Int
result. Otherwise we return None. Example usage:

readInt("123")

// res: Option[Int] = Some(123)

readInt("abc")

// res: Option[Int] = None

6.4.2 Extracঞng Values from Opঞons

There are several ways to safely extract the value in an opঞon without the risk of throwing any excepঞons.

Alternaঞve 1: the getOrElsemethod—useful if we want to fall back to a default value:

readInt("abc").getOrElse(0)

// res: Int = 0

Alternaঞve 2: pa�ern matching—Some and None both have associated pa�erns that we can use in a match
expression:

6.4. OPTIONS 125

readInt("123") match {

case Some(number) => number + 1

case None => 0

}

// res: Int = 124

Alternaঞve 3: map and flatMap—Option supports both of these methods, enabling us to chain off of the value
within producing a new Option. This bears a more explanaঞon—let’s look at it in a li�le more detail.

6.4.3 Opঞons as Sequences

One way of thinking about an Option is as a sequence of 0 or 1 elements. In fact, Option supports many of
the sequence operaঞons we have seen so far:

sealed trait Option[+A] {

def getOrElse(default: A): A

def isEmpty: Boolean

def isDefined: Boolean = !isEmpty

def filter(func: A => Boolean): Option[A]

def find(func: A => Boolean): Option[A]

def map[B](func: A => B): Option[B]

def flatMap(func: A => Option[B]): Option[B]

def foreach(func: A => Unit): Unit

def foldLeft[B](initial: B)(func: (B, A) => B): B

def foldRight[B](initial: B)(func: (A, B) => B): B

}

Because of the limited size of 0 or 1, there is a bit of redundancy here: filter and find effecঞvely do the
same thing, and foldLeft and foldRight only differ in the order of their arguments. However, these methods
give us a lot flexibility for manipulaঞng opঞonal values. For example, we can use map and flatMap to define
opঞonal versions of common operaঞons:

def sum(optionA: Option[Int], optionB: Option[Int]): Option[Int] =

optionA.flatMap(a => optionB.map(b => a + b))

sum(readInt("1"), readInt("2"))

// res: Option[Int] = Some(3)

sum(readInt("1"), readInt("b"))

// res: Option[Int] = None

sum(readInt("a"), readInt("2"))

// res: Option[Int] = None

The implementaঞon of sum looks complicated at first, so let’s break it down:

• If optionA is None, the result of optionA.flatMap(foo) is also None. The return value of sum is there-
fore None.

• If optionA is Some, the result of optionA.flatMap(foo) is whatever value foo returns. This value is
determined by the outcome of optionB.map:

126 CHAPTER 6. COLLECTIONS

– If optionB is None, the result of optionB.map(bar) is also None. The return value of sum is
therefore None.

– If optionB is Some, the result of optionB.map(bar) is Some of the result of bar. In our case, the
return value of sum is a + b.

Although map and flatMap don’t allow us to extract values from our Options, they allow us to compose com-
putaࢼons together in a safe manner. If all arguments to the computaঞon are Some, the result is a Some. If any of
the arguments are None, the result is None.

We can use map and flatMap in combinaঞonwith pa�ern matching or getOrElse to combine several Options
and yield a single non-opঞonal result:

sum(readInt("1"), readInt("b")).getOrElse(0)

// res: Int = 0

It’s worth noঞng that Option and Seq are also compaঞble in some sense. We can turn a Seq[Option[A]] into
a Seq[A] using flatMap:

Seq(readInt("1"), readInt("b"), readInt("3")).flatMap(x => x)

// res: Seq[Int] = List(1, 3)

6.5 Opঞons as Flow Control

Because Option supports map and flatMap, it also works with for comprehensions. This gives us a nice syntax
for combining values without resorঞng to building custom methods like sum to keep our code clean:

val optionA = readInt("123")

val optionB = readInt("234")

for {

a <- optionA

b <- optionB

} yield a + b

In this code snippet a and b are both Ints—we can add them together directly using + in the yield block.

Let’s stop to think about this block of code for a moment. There are three ways of looking at it:

1. We can expand the block into calls to map and flatMap. You will be unsurprised to see that the resulঞng
code is idenঞcal to our implementaঞon of sum above:

optionA.flatMap(a => optionB.map(b => a + b))

2. We can think of optionA and optionB as sequences of zero or one elements, in which case the result
is going to be a fla�ened sequence of length optionA.size * optionB.size. If either optionA or
optionB is None then the result is of length 0.

3. We can think of each clause in the for comprehension as an expression that says: if this clause results in
a Some, extract the value and conࢼnue… if it results in a None, exit the for comprehension and return None.

Once we get past the iniঞal foreignness of using for comprehensions to “iterate through” opঞons, we find a
useful control structure that frees us from excessive use of map and flatMap.

6.5. OPTIONS AS FLOW CONTROL 127

6.5.1 Exercises

6.5.1.1 Adding Things

Write a method addOptions that accepts two parameters of type Option[Int] and adds them together. Use
a for comprehension to structure your code.

See the soluঞon

Write a second version of your code using map and flatMap instead of a for comprehension.

See the soluঞon

6.5.1.2 Adding All of the Things

Overload addOptions with another implementaঞon that accepts three Option[Int] parameters and adds
them all together.

See the soluঞon

Write a second version of your code using map and flatMap instead of a for comprehension.

See the soluঞon

6.5.1.3 A(nother) Short Division Exercise

Write a method divide that accepts two Int parameters and divides one by the other. Use Option to avoid
excepঞons when the denominator is 0.

See the soluঞon

Using your dividemethod and a for comprehension, write a method called divideOptions that accepts two
parameters of type Option[Int] and divides one by the other:

See the soluঞon

6.5.1.4 A Simple Calculator

A final, longer exercise. Write a method called calculator that accepts three string parameters:

def calculator(operand1: String, operator: String, operand2: String): Unit

and behaves as follows:

1. Convert the operands to Ints;

2. Perform the desired mathemaঞcal operator on the two operands:

• provide support for at least four operaঞons: +, -, * and /;
• use Option to guard against errors (invalid inputs or division by zero).

3. Finally print the result or a generic error message.

Tip: Start by supporঞng just one operator before extending your method to other cases.

See the soluঞon

For the enthusiasঞc only, write a second version of your code using flatMap and map.

See the soluঞon

128 CHAPTER 6. COLLECTIONS

6.6 Monads

We’ve seen that by implemenঞng a few methods (map, flatMap, and opঞonally filter and foreach), we can
use any class with a for comprehension. In the previous chapter we learned this such a class is called a monad.
Here we are going to look in a bit more depth at monads.

6.6.1 What’s in a Monad?

The concept of a monad is notoriously difficult to explain because it is so general. We can get a good intuiঞve
understanding by comparing some of the types of monad that we will deal with on a regular basis.

Broadly speaking, a monad is a generic type that allows us to sequence computaঞons while abstracঞng away
some technicality. We do the sequencing using for comprehensions, worrying only about the programming logic
we care about. The code hidden in the monad’s map and flatMapmethods does all of the plumbing for us. For
example:

• Option is a monad that allows us to sequence computaঞons on opঞonal values without worrying about
the fact that they may or may not be present;

• Seq is a monad that allows us to sequence computaঞons that return mulঞple possible answers without
worrying about the fact that there are lots of possible combinaঞons involved;

• Future is another popular monad that allows us to sequence asynchronous computaঞons without wor-
rying about the fact that they are asynchronous.

To demonstrate the generality of this principle, here are some examples. This first example calculates the sum
of two numbers that may or may not be there:

for {

a <- getFirstNumber // getFirstNumber returns Option[Int]

b <- getSecondNumber // getSecondNumber returns Option[Int]

} yield a + b

// The final result is an Option[Int]---the result of

// applying `+` to `a` and `b` if both values are present

This second example calculate the sums of all possible pairs of numbers from two sequences:

for {

a <- getFirstNumbers // getFirstNumbers returns Seq[Int]

b <- getSecondNumbers // getSecondNumbers returns Seq[Int]

} yield a + b

// The final result is a Seq[Int]---the results of

// applying `+` to all combinations of `a` and `b`

This third example asynchronously calculates the sumof two numbers that can only be obtained asynchronously
(all without blocking):

for {

a <- getFirstNumber // getFirstNumber returns Future[Int]

b <- getSecondNumber // getSecondNumber returns Future[Int]

} yield a + b

// The final result is a Future[Int]---a data structure

// that will eventually allow us to access the result of

6.7. FOR COMPREHENSIONS REDUX 129

// applying `+` to `a` and `b`

The important point here is that, if we ignore the comments, these three examples look idenࢼcal. Monads allow us
to forget about one part of the problem at hand—opঞonal values, mulঞple values, or asynchronously available
values—and focus on just the part we care about—adding two numbers together.

There are many other monads that can be used to simplify problems in different circumstances. You may come
across some of them in your future use of Scala. In this course we will concentrate enঞrely on Seq and Option.

6.6.2 Exercises

6.6.2.1 Adding All the Things ++

We’ve already seen how we can use a for comprehension to neatly add together three opঞonal values. Let’s
extend this to other monads. Use the following definiঞons:

import scala.util.Try

val opt1 = Some(1)

val opt2 = Some(2)

val opt3 = Some(3)

val seq1 = Seq(1)

val seq2 = Seq(2)

val seq3 = Seq(3)

val try1 = Try(1)

val try2 = Try(2)

val try3 = Try(3)

Add together all the opঞons to create a new opঞon. Add together all the sequences to create a new sequence.
Add together all the trys to create a new try. Use a for comprehension for each. It shouldn’t take you long!

See the soluঞon

6.7 For Comprehensions Redux

Earlier we looked at the fundamentals of for comprehensions. In this secঞon we’re going to looking at some
handy addiঞonal features they offer, and at idiomaঞc soluঞons to common problems.

6.7.1 Filtering

It’s quite common to only process selected elements. We can do this with comprehensions by adding an if
clause a[er the generator expression. So to process only the posiঞve elements of sequence we could write

for(x <- Seq(-2, -1, 0, 1, 2) if x > 0) yield x

// res: Seq[Int] = List(1, 2)

The code is converted to a withFilter call, or if that doesn’t exist to filter.

Note that, unlike the normal if expression, an if clause in a generator does not have parentheses around the
condiঞon. So we write if x > 0 not if(x > 0) in a for comprehension.

130 CHAPTER 6. COLLECTIONS

6.7.2 Parallel Iteraঞon

Another common problem is to iterate over two or more collecঞons in parallel. For example, say we have the
sequences Seq(1, 2, 3) and Seq(4, 5, 6) and we want to add together elements with the same index
yielding Seq(5, 7 , 9). If we write

for {

x <- Seq(1, 2, 3)

y <- Seq(4, 5, 6)

} yield x + y

// res: Seq[Int] = List(5, 6, 7, 6, 7, 8, 7, 8, 9)

we see that iteraঞons are nested. We traverse the first element from the first sequence and then all the elements
of the second sequence, then the second element from the first sequence and so on.

The soluঞon is to zip together the two sequences, giving a sequence containing pairs of corresponding ele-
ments

Seq(1, 2, 3).zip(Seq(4, 5, 6))

// res: Seq[(Int, Int)] = List((1,4), (2,5), (3,6))

With this we can easily compute the result we wanted

for(x <- Seq(1, 2, 3).zip(Seq(4, 5, 6))) yield { val (a, b) = x; a + b }

// res: Seq[Int] = List(5, 7, 9)

Someঞmes you want to iterate over the values in a sequence and their indices. For this case the zipWithIndex
method is provided.

for(x <- Seq(1, 2, 3).zipWithIndex) yield x

// res: Seq[(Int, Int)] = List((1,0), (2,1), (3,2))

Finally note that zip and zipWithIndex are available on all collecঞon classes, including Map and Set.

6.7.3 Pa�ern Matching

The pa�ern on the le[hand side of a generator is not named accidentally. We can include any pa�ern there
and only process results matching the pa�ern. This provides another way of filtering results. So instead of:

for(x <- Seq(1, 2, 3).zip(Seq(4, 5, 6))) yield { val (a, b) = x; a + b }

// res: Seq[Int] = List(5, 7, 9)

we can write:

for((a, b) <- Seq(1, 2, 3).zip(Seq(4, 5, 6))) yield a + b

// res: Seq[Int] = List(5, 7, 9)

6.7.4 Intermediate Results

It is o[en useful to create an intermediate result within a sequence of generators. We can do this by inserঞng
an assignment expression like so:

6.8. MAPS AND SETS 131

for {

x <- Seq(1, 2, 3)

square = x * x

y <- Seq(4, 5, 6)

} yield square * y

// res: Seq[Int] = List(4, 5, 6, 16, 20, 24, 36, 45, 54)

6.8 Maps and Sets

Up to now we’ve spent all of our ঞme working with sequences. In this secঞon we’ll go through the two other
most common collecঞon types: Maps and Sets.

6.8.1 Maps

A Map is very much like its counterpart in Java - it is a collecঞon that maps keys to values. The keys must form
a set and in most cases are unordered. Here is how to create a basic map:

val example = Map("a" -> 1, "b" -> 2, "c" -> 3)

// res: scala.collection.immutable.Map[java.lang.String,Int] =

Map(a -> 1, b -> 2, c -> 3)

The type of the resulঞng map is Map[String,Int], meaning all the keys are type String and all the values
are of type Int.

A quick aside on ->. The constructor funcঞon for Map actually accepts an arbitrary number of Tuple2 argu-
ments. -> is actually a funcঞon that generates a Tuple2.

"a" -> 1

// res: (java.lang.String, Int) = (a,1)

Let’s look at the most common operaঞons on a map.

6.8.1.1 Accessing values using keys

The raison d’etre of a map is to convert keys to values. There are two main methods for doing this: apply and
get.

example("a") // The same as example.apply("a")

// res: Int = 1

example.get("a")

// res: Option[Int] = Some(1)

apply a�empts to look up a key and throws an excepঞon if it is not found. By contrast, get returns an Option,
forcing you to handle the not found case in your code.

example("d")

java.util.NoSuchElementException: key not found: d

example.get("d")

// res: Option[Int] = None

132 CHAPTER 6. COLLECTIONS

Finally, the getOrElse method accepts a default value to return if the key is not found.

example.getOrElse("d", -1)

// res: Int = -1

6.8.1.2 Determining membership

The contains method determines whether a map contains a key.

example.contains("a")

// res: Boolean = true

6.8.1.3 Determining size

Finding the size of a map is just as easy as finding the size of a sequence.

example.size

// res: Int = 3

6.8.1.4 Adding and removing elements

As with Seq, the default implementaঞon of Map is immutable. We add and remove elements by creaঞng new
maps as opposed to mutaঞng exisঞng ones.

We can add new elements using the + method. Note that, as with Java’s HashMap, keys are overwri�en and
order is non-determinisঞc.

example.+("c" -> 10, "d" -> 11, "e" -> 12)

// res: scala.collection.immutable.Map[java.lang.String,Int] =

Map(e -> 12, a -> 1, b -> 2, c -> 10, d -> 11)

We can remove keys using the - method:

example.-("b", "c")

// res: scala.collection.immutable.Map[java.lang.String,Int] =

Map(a -> 1)

If we are only specifying a single argument, we can write + and - as infix operators.

example + ("d" -> 4) - "c"

// res: scala.collection.immutable.Map[java.lang.String,Int] =

Map(a -> 1, b -> 2, d -> 4)

Note that we sঞll have to write the pair "d" -> 4 in parentheses because + and -> have the same precedence.

There are many other methods for manipulaঞng immutable maps. For example, the ++ and -- methods return
the union and intersecঞon of their arguments. See the Scaladoc for Map for more informaঞon.

6.8.1.5 Mutable maps

The scala.collection.mutable package contains several mutable implementaঞons of Map:

http://www.scala-lang.org/api/current/scala/collection/Map.html

6.8. MAPS AND SETS 133

val example2 = scala.collection.mutable.Map("x" -> 10, "y" -> 11, "z" -> 12)

// example2: scala.collection.mutable.Map[java.lang.String,Int] =

Map(x -> 10, z -> 12, y -> 11)

The in-place mutaঞon equivalents of + and - are += and -= respecঞvely.

example2 += ("x" -> 20)

// res: example2.type = Map(x -> 20, z -> 12, y -> 11)

example2 -= ("y", "z")

// res: example2.type = Map(x -> 20)

Note that, like their immutable cousins, += and -= both return a result of type Map. In this case, however, the
return value is the same object that we called the method on. The return value is useful for chaining method
calls together, but we can discard it if we see fit.

We can also use the update method, or its assignment-style syntacঞc-sugar, to update elements in the map:

example2("w") = 30

example2

// res: scala.collection.mutable.Map[java.lang.String,Int] = Map(x -> 20, w -> 30)

Note that, as with mutable sequences, a(b) = c is shorthand for a.update(b, c). The updatemethod does
not return a value, but the map is mutated as a side-effect.

There aremany othermethods formanipulaঞngmutablemaps. See the Scaladoc for scala.collection.mutable.Map
for more informaঞon.

6.8.1.6 Sorted maps

The maps we have seen so far do not guarantee an ordering over their keys. For example, note that in this
example, the order of keys in the resulঞng map is different from the order of addiঞon operaঞons.

Map("a" -> 1) + ("b" -> 2) + ("c" -> 3) +

("d" -> 4) + ("e" -> 5)

// res: scala.collection.immutable.Map[java.lang.String,Int] =

Map(e -> 5, a -> 1, b -> 2, c -> 3, d -> 4)

Scala also provides ordered immutable and mutable versions of a ListMap class that preserves the order in
which keys are added:

scala.collection.immutable.ListMap("a" -> 1) + ("b" -> 2) + ("c" -> 3) +

("d" -> 4) + ("e" -> 5)

// res: scala.collection.immutable.ListMap[java.lang.String,Int] =

Map(a -> 1, b -> 2, c -> 3, d -> 4, e -> 5)

Scala’s separaঞon of interface and implementaঞon means that the methods on ordered and unordered maps
are almost idenঞcal, although their performance may vary. See this useful page for more informaঞon on the
performance characterisঞcs of the various types of collecঞon.

http://www.scala-lang.org/api/current#scala.collection.mutable.Map
http://docs.scala-lang.org/overviews/collections/performance-characteristics.html

134 CHAPTER 6. COLLECTIONS

6.8.1.7 map and flatMap

Maps, like sequences, extend the Traversable trait, which means they inherit the standard map and flatMap
methods. In fact, a Map[A,B] is a Traversable[Tuple2[A,B]], which means that map and flatMap operate
on instances of Tuple2.

Here is an example of map:

example.map(pair => pair._1 -> pair._2 * 2)

// res: scala.collection.immutable.Map[java.lang.String,Int] =

Map(a -> 2, b -> 4, c -> 6)

Note that the resulঞng object is also a Map as you might expect. However, what happens when the funcঞon
we supply doesn’t return a pair? What does map return then? Is it a compile error? Let’s try it.

example.map(pair => pair._1 + " = " + pair._2)

// res: scala.collection.immutable.Iterable[java.lang.String] =

List(a = 1, b = 2, c = 3)

It turns out the code does work, but we get back an Iterable result (look at the type, not the value)—a far
more general data type.

Scala’s collecঞons framework is built in a clever (and complicated) way that always ensures you get something
sensible back out of one of the standard operaঞons like map and flatMap. We won’t go into the details here
(it’s pracঞcally a training course in its own right). Suffice to say that you can normally guess using common
sense (and judicious use of the REPL) the type of collecঞon you will get back from any operaঞon.

Here is a more complicated example using flatMap:

example.flatMap {

case (str, num) =>

(1 to 3).map(x => (str + x) -> (num * x))

}

// res: scala.collection.immutable.Map[String,Int] =

Map(c3 -> 9, b2 -> 4, b3 -> 6, c2 -> 6, b1 -> 2,

c1 -> 3, a3 -> 3, a1 -> 1, a2 -> 2)

and the same example wri�en using for syntax:

for{

(str, num) <- example

x <- 1 to 3

} yield (str + x) -> (num * x)

// res: scala.collection.immutable.Map[String,Int] =

Map(c3 -> 9, b2 -> 4, b3 -> 6, c2 -> 6, b1 -> 2,

c1 -> 3, a3 -> 3, a1 -> 1, a2 -> 2)

Note that the result is a Map again. The argument to flatMap returns a sequence of pairs, so in the end we
are able to make a new Map from them. If our funcঞon returns a sequence of non-pairs, we get back a more
generic data type.

for{

(str, num) <- example

x <- 1 to 3

} yield (x + str) + "=" + (x * num)

// res: scala.collection.immutable.Iterable[java.lang.String] =

List(1a=1, 2a=2, 3a=3, 1b=2, 2b=4, 3b=6, 1c=3, 2c=6, 3c=9)

6.8. MAPS AND SETS 135

6.8.1.8 In summary

Here is a type table of all the methods we have seen so far:

Method We have We provide We get

Map(...) Tuple2[A,B], … Map[A,B]

apply Map[A,B] A B

get Map[A,B] A Option[B]

+ Map[A,B] Tuple2[A,B], … Map[A,B]

- Map[A,B] Tuple2[A,B], … Map[A,B]

++ Map[A,B] Map[A,B] Map[A,B]

-- Map[A,B] Map[A,B] Map[A,B]

contains Map[A,B] A Boolean

size Map[A,B] Int

map Map[A,B] Tuple2[A,B] => Tuple2[C,D] Map[C,D]

map Map[A,B] Tuple2[A,B] => E Iterable[E]

flatMap Map[A,B] Tuple2[A,B] =>

Traversable[Tuple2[C,D]]

Map[C,D]

flatMap Map[A,B] Tuple2[A,B] => Traversable[E] Iterable[E]

Here are the extras for mutable Sets:

Method We have We provide We get

+= Map[A,B] A Map[A,B]

-= Map[A,B] A Map[A,B]

update Map[A,B] A, B Unit

6.8.2 Sets

Sets are unordered collecঞons that contain no duplicate elements. You can think of them as sequences without
an order, or maps with keys and no values. Here is a type table of the most important methods:

Method We have We provide We get

+ Set[A] A Set[A]

- Set[A] A Set[A]

++ Set[A] Set[A] Set[A]

-- Set[A] Set[A] Set[A]

contains Set[A] A Boolean

apply Set[A] A Boolean

size Set[A] Int

map Set[A] A => B Set[B]

flatMap Set[A] A => Traversable[B] Set[B]

and the extras for mutable Sets:

136 CHAPTER 6. COLLECTIONS

Method We have We provide We get

+= Set[A] A Set[A]

-= Set[A] A Set[A]

6.8.3 Exercises

6.8.3.1 Favorites

Copy and paste the following code into an editor:

val people = Set(

"Alice",

"Bob",

"Charlie",

"Derek",

"Edith",

"Fred")

val ages = Map(

"Alice" -> 20,

"Bob" -> 30,

"Charlie" -> 50,

"Derek" -> 40,

"Edith" -> 10,

"Fred" -> 60)

val favoriteColors = Map(

"Bob" -> "green",

"Derek" -> "magenta",

"Fred" -> "yellow")

val favoriteLolcats = Map(

"Alice" -> "Long Cat",

"Charlie" -> "Ceiling Cat",

"Edith" -> "Cloud Cat")

Use the code as test data for the following exercises:

Write a method favoriteColor that accepts a person’s name as a parameter and returns their favorite colour.

See the soluঞon

Update favoriteColor to return a person’s favorite color or beige as a default.

See the soluঞon

Write a method printColors that prints everyone’s favorite color!

See the soluঞon

Write a method lookup that accepts a name and one of the maps and returns the relevant value from the map.
Ensure that the return type of the method matches the value type of the map.

See the soluঞon

Calculate the color of the oldest person:

See the soluঞon

6.9. RANGES 137

6.8.4 Do-It-Yourself Part 2

Now we have some pracঞce with maps and sets let’s see if we can implement some useful library funcঞons for
ourselves.

6.8.4.1 Union of Sets

Write a method that takes two sets and returns a set containing the union of the elements. Use iteraঞon, like
map or foldLeft, not the built-in union method to do so!

See the soluঞon

6.8.4.2 Union of Maps

Now let’s write union for maps. Assume we have two Map[A, Int] and add corresponding elements in the
two maps. So the union of Map('a' -> 1, 'b' -> 2) and Map('a' -> 2, 'b' -> 4) should be Map('a'
-> 3, 'b' -> 6).

See the soluঞon

6.8.4.3 Generic Union

There are many things that can be added, such as strings (string concatenaঞon), sets (union), and of course
numbers. It would be nice if we could generalise our union method on maps to handle anything for which a
sensible add operaঞon can be defined. How can we go about doing this?

See the soluঞon

6.9 Ranges

So far we’ve seen lots of ways to iterate over sequences but not much in the way of iteraঞng over numbers. In
Java and other languages it is common to write code like

for(i = 0; i < array.length; i++) {

doSomething(array[i])

}

We’ve seen that for comprehensions provide a succinct way of implemenঞng these programs. But what about
classics like this?

for(i = 99; i > 0; i--) {

System.out.println(i + "bottles of beer on the wall!")

// Full text omitted for the sake of brevity

}

Scala provides the Range class for these occasions. A Range represents a sequence of integers from some
starঞng value to less than the end value with a non-zero step. We can construct a Range using the until
method on Int.

138 CHAPTER 6. COLLECTIONS

1 until 10

// res: scala.collection.immutable.Range = Range(1, 2, 3, 4, 5, 6, 7, 8, 9)

By default the step size is 1, so trying to go from high to low gives us an empty Range.

10 until 1

// res: scala.collection.immutable.Range = Range()

We can recঞfy this by specifying a different step, using the by method on Range.

10 until 1 by -1

// res: scala.collection.immutable.Range = Range(10, 9, 8, 7, 6, 5, 4, 3, 2)

Now we can write the Scala equivalent of our Java program.

for(i <- 99 until 0 by -1) println(i + " bottles of beer on the wall!")

// 99 bottles of beer on the wall!

// 98 bottles of beer on the wall!

// 97 bottles of beer on the wall!

// etc ...

This gives us a hint of the power of ranges. Since they are sequences we can combine them with other se-
quences in interesঞng ways. For example, to create a range with a gap in the middle we can concatenate two
ranges:

(1 until 10) ++ (20 until 30)

// res: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 21, 22,

23, Ď

24, 25, 26, 27, 28,

29)

Note that the result is a Vector not a Range but this doesn’t ma�er. As they are both sequences we can use
both them in a for comprehension without any code change!

6.10 Generaঞng Random Data

In this secঞon we have an extended case study generaঞng random data. The ideas here have many applicaঞons.
For example, in generaঞng data for tesঞng, as used in property based tesࢼng, in probabilisࢼc programming, a new
area of machine learning, and, if you’re going through the extended case study, in generaࢼve art.

6.10.1 RandomWords

We’ll start by generaঞng text. Imagine we wanted to generate (somewhat) realisঞc text, perhaps to use as a
placeholder to fill in parts of a website design. If we took a large amount of real text we could analyse to work
out for each word what the most common words following it are. Such a model is known as aMarkov chain.

To keep this example to a reasonable size we’re going to deal with a really simplified version of the problem,
where all sentences have the form subject-verb-object. For example, “Noel wrote code”.

Write a program to generate all possible sentences given the following model:

• subjects are List("Noel", "The cat", "The dog");

6.10. GENERATING RANDOM DATA 139

• verbs are List("wrote", "chased", "slept on"); and
• objects are List("the book", "the ball", "the bed").

See the soluঞon

This model creates some clearly nonsensical sentences. We can do be�er by making the choice of verb depen-
dend on the subject, and the object depend on the verb.

Let’s use the following model:

• The subjects are as before.
• For the verbs:
• If the subject is “Noel” the possible verbs are “wrote”, “chased”, and “slept on”.
• If the subject is “The cat” the possible verbs are “meowed at”, “chased”, and “slept on”.
• If the subject is “The dog” the possible verbs are “barked at”, “chased”, and “slept on”.
• For the objects:
• If the verb is “wrote” the possible objects are “the book”, “the le�er”, and “the code”.
• If the verb is “chased” the possible objects are “the ball”, “the dog”, and “the cat”.
• If the verb is “slept on” the possible objects are “the bed”, “the mat”, and “the train”.
• If the verb is “meowed at” the possible objects are “Noel”, “the door”, “the food cupboard”.
• If the verb is “barked at” the possible objects are “the postman”, “the car”, and “the cat”.

Implement this.

See the soluঞon

This model has all the features we need for our full random generaঞon model. In parঞcular we have condiࢼonal
distribuࢼons, meaning the choice of, say, verb is dependent or condiঞonal on what has come before.

6.10.2 Probabiliঞes

We now have a model that we can imagine making arbitrarily complex to generate more and more realisঞc data,
but we’re missing the element of probability that would allow us to weight the data generaঞon towards more
common outcomes.

Let’s extend our model to work on List[(A, Double)], where A is the type of data we are generaঞng and
the Double is a probability. We’re sঞll enumeraঞng all possibiliঞes but we’re now associaঞng a probability with
each possible outcome.

Start by defining a class Distribution that will wrap a List[(A, Double)]. (Why?)

See the soluঞon

We should create some convenience constructors for Distribution. A useful one is uniform which will
accept a List[A] and create a Distribution[A] where each element has equal probability. Make it so.

See the soluঞon

What are the other methods we must add to implement the models we’ve seen so far? What are their signa-
tures?

See the soluঞon

Now implement these methods. Start with map, which is simpler. We might end up with elements appearing
mulঞple ঞmes in the list of events a[er calling map. That’s absolutely ok.

See the soluঞon

140 CHAPTER 6. COLLECTIONS

Now implement flatMap. To do so you’ll need to combine the probability of an event with the probability
of the event it depends on. The correct way to do so is to mulঞply the probabiliঞes together. The may lead
to unnormalised probabiliঞes—probabiliঞes that do not sum up to 1. You might find the following two uঞliঞes
useful, though you don’t need to normalise probabiliঞes or ensure that elements are unique for the model to
work.

def normalize: Distribution[A] = {

val totalWeight = (events map { case (a, p) => p }).sum

Distribution(events map { case (a,p) => a -> (p / totalWeight) })

}

def compact: Distribution[A] = {

val distinct = (events map { case (a, p) => a }).distinct

def prob(a: A): Double =

(events filter { case (x, p) => x == a } map { case (a, p) => p }).sum

Distribution(distinct map { a => a -> prob(a) })

}

See the soluঞon

6.10.3 Examples

With Distribution we can now define some interesঞng model. We could do some classic problems, such as
working out the probability that a coin flip gives three heads in a row.

sealed trait Coin

final case object Heads extends Coin

final case object Tails extends Coin

val fairCoin: Distribution[Coin] = Distribution.uniform(List(Heads, Tails))

val threeFlips =

for {

c1 <- fairCoin

c2 <- fairCoin

c3 <- fairCoin

} yield (c1, c2, c3)

// threeFlips: Distribution[(Coin, Coin, Coin)] =

// Distribution(List(

// ((Heads,Heads,Heads),0.125),

// ((Heads,Heads,Tails),0.125),

// ((Heads,Tails,Heads),0.125),

// ((Heads,Tails,Tails),0.125),

// ((Tails,Heads,Heads),0.125),

// ((Tails,Heads,Tails),0.125),

// ((Tails,Tails,Heads),0.125),

// ((Tails,Tails,Tails),0.125)

//))

From this we can read of the probability of three heads being 0.125, as we’d expect.

Let’s create a more complex model. Imagine the following situaঞon:

I put my food into the oven and a[er some ঞme it ready to eat and produces delicious smell with probability
0.3 and otherwise it is sঞll raw and produces no smell with probability 0.7. If there are delicious smells the cat
comes to harass me with probability 0.8, and otherwise it stays asleep. If there is no smell the cat harasses me
for the hell of it with probability 0.4 and otherwise stays asleep.

6.10. GENERATING RANDOM DATA 141

Implement this model and answer the quesঞon: if the cat comes to harass me what is the probability my food
is producing delicious smells (and therefore is ready to eat.)

I found it useful to add this constructor to the companion object of Distribution:

def discrete[A](events: List[(A,Double)]): Distribution[A] =

Distribution(events).compact.normalize

See the soluঞon

6.10.4 Next Steps

The current library is limited to working with discrete events. If we wanted to work with conঞnuous domains,
such as coordinates in the plane, we need a different representaঞon as we clearly can’t represent all possible
outcomes. We can even run into issues with complex discrete models, as the number of events increases
exponenঞally with each flatMap.

Instead of represenঞng all events we can sample from the distribuঞons of interest andmaintain a set of samples.
Varying the size of the set allows us to tradeoff accuracy with computaঞonal resources.

We could use the same style of implementaঞon with a sampling representaঞon, but this requires we fix the
number of samples in advance. It’s more useful to be able to repeatedly sample from the same model, so the
user can ask for more samples if they decide they need higher accuracy. To do so requires we separate defining
the structure of the model from the process of sampling from it, and reify the model. We’re not going to go
further into this implementaঞon here, but if you’re going through the case study you’ll pick up the techniques
need to implement it.

142 CHAPTER 6. COLLECTIONS

Chapter 7

Type Classes

Type classes are a powerful feature of Scala that allow us to extend exisঞng libraries with new funcঞonality,
without using inheritance and without having access to the original library source code. In this chapter we will
learn how to use and implement type classes, using a Scala feature called implicits.

In the secঞon on traits we compared object oriented and funcঞonal style in terms of extensibility, using this
table.

Add new method Add new data

OO Change exisঞng code Exisঞng code unchanged
FP Exisঞng code unchanged Change exisঞng code

Type classes give us a third implementaঞon technique which is more flexible than either. A type class is like a
trait, defining an interface. However, with type classes we can:

• plug in different implementaঞons of an interface for a given class; and
• implement an interface without modifying exisঞng code.

This means we can add new methods or new data without changing any exisঞng code.

It’s difficult to understand these concepts without an example. We’ll start this secঞon by exploring how we
can use type classes. We’ll then turn to implemenঞng them ourselves. We’ll finish with a discussion of best
pracঞces.

7.1 Type Class Instances

Type classes in Scala involve the interacঞon of a number of components. To simplify the presentaঞon we are
going to start by looking at using type classes before we look at how to build them ourselves.

7.1.1 Ordering

A simple example of a type class is the Ordering trait. For a type A, an Ordering[A] defines a comparison
method compare that compares two instances of A by some ordering. To construct an Ordering we can use
the convenience method fromLessThan defined the companion object.

143

http://www.scala-lang.org/api/current/#scala.math.Ordering

144 CHAPTER 7. TYPE CLASSES

Imagine we want to sort a List of Ints. There are many different ways to sort such a list. For example, we
could sort from highest to lowest, or we could sort from lowest to highest. There is a method sorted on List
that will sort a list, but to use it we must pass in an Ordering to give the parঞcular ordering we want.

Let’s define some Orderings and see them in acঞon.

import scala.math.Ordering

val minOrdering = Ordering.fromLessThan[Int](_ < _)

// minOrdering: scala.math.Ordering[Int] = scala.math.Ordering$$anon$9@787f32b7

val maxOrdering = Ordering.fromLessThan[Int](_ > _)

// maxOrdering: scala.math.Ordering[Int] = scala.math.Ordering$$anon$9@4bf324f9

List(3, 4, 2).sorted(minOrdering)

// res: List[Int] = List(2, 3, 4)

List(3, 4, 2).sorted(maxOrdering)

// res: List[Int] = List(4, 3, 2)

Here we define two orderings: minOrdering, which sorts from lowest to highest, and maxOrdering, which
sorts from highest to lowest. When we call sorted we pass the Ordering we want to use. These implemen-
taঞons of a type class are called type class instances.

The type class pa�ern separates the implementaঞon of funcঞonality (the type class instance, an Ordering[A]
in our example) from the type the funcঞonality is provided for (the A in an Ordering[A]). This is the basic pa�ern
for type classes. Everything else we will see just provides extra convenience.

7.1.2 Implicit Values

It can be inconvenient to conঞnually pass the type class instance to a method when we want to repeatedly use
the same instance. Scala provides a convenience, called an implicit value, that allows us to get the compiler to
pass the type class instance for us. Here’s an example of use:

implicit val ordering = Ordering.fromLessThan[Int](_ < _)

scala> List(2, 4, 3).sorted

// res: List[Int] = List(2, 3, 4)

List(1, 7 ,5).sorted

// res: List[Int] = List(1, 5, 7)

Note we didn’t supply an ordering to sorted. Instead, the compiler provides it for us.

We have to tell the compiler which values it is allowed pass to methods for us. We do this by annotaঞng a value
with implicit, as in the declaraঞon implicit val ordering = The method must also indicate that
it accepts implicit values. If you look at the documentaঞon for the sorted method on List you see that the
single parameter is declared implicit. We’ll talk more about implicit parameter lists in a bit. For now we just
need to know that we can get the compiler to supply implicit values to parameters that are themselves marked
implicit.

7.1.3 Declaring Implicit Values

We can tag any val, var, object or zero-argument def with the implicit keyword, making it a potenঞal
candidate for an implicit parameter.

http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.List

7.1. TYPE CLASS INSTANCES 145

implicit val exampleOne = ...

implicit var exampleTwo = ...

implicit object exampleThree = ...

implicit def exampleFour = ...

An implicit value must be declared within a surrounding object, class, or trait.

7.1.4 Implicit Value Ambiguity

What happens when mulঞple implicit values are in scope? Let’s ask the console.

implicit val minOrdering = Ordering.fromLessThan[Int](_ < _)

implicit val maxOrdering = Ordering.fromLessThan[Int](_ > _)

List(3,4,5).sorted

// <console>:12: error: ambiguous implicit values:

// both value ordering of type => scala.math.Ordering[Int]

// and value minOrdering of type => scala.math.Ordering[Int]

// match expected type scala.math.Ordering[Int]

// List(3,4,5).sorted

// ^

The rule is simple: the compiler will signal an error if there is any ambiguity in which implicit value should be
used.

7.1.5 Take Home Points

In this secঞon we’ve seen the basics for using type classes. In Scala, a type class is just a trait. To use a type
class we:

• create implementaঞons of that trait, called type class instances; and
• typically we mark the type class instances as implicit values.

Marking values as implicit tells the compiler it can supply them as a parameter to a method call if none is
explicitly given. For the compiler to supply a value:

1. the parameter must be marked implicit in the method declaraঞon;
2. there must be an implicit value available of the same type as the parameter; and
3. there must be only one such implicit value available.

7.1.6 Exercises

7.1.6.1 More Orderings

Define an Ordering that orders Ints from lowest to highest by absolute value. The following test cases should
pass.

146 CHAPTER 7. TYPE CLASSES

assert(List(-4, -1, 0, 2, 3).sorted(absOrdering) == List(0, -1, 2, 3, -4))

assert(List(-4, -3, -2, -1).sorted(absOrdering) == List(-1, -2, -3, -4))

See the soluঞon

Now make your ordering an implicit value, so the following test cases work.

assert(List(-4, -1, 0, 2, 3).sorted == List(0, -1, 2, 3, -4))

assert(List(-4, -3, -2, -1).sorted == List(-1, -2, -3, -4))

See the soluঞon

7.1.6.2 Raঞonal Orderings

Scala doesn’t have a class to represent raঞonal numbers, but we can easily implement one ourselves.

final case class Rational(numerator: Int, denominator: Int)

Implement an Ordering for Rational to order raঞonals from smallest to largest. The following test case should
pass.

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

See the soluঞon

7.2 Organising Type Class Instances

In secঞon we’ll learn about the places the compiler searches for type class instances (implicit values), known as
the implicit scope, and we’ll discuss how to organise type class instances to make their use more convenient.

7.2.1 Implicit Scope

The compiler searches the implicit scope when it tries to find an implicit value to supply as an implicit parameter.
The implicit scope is composed of several parts, and there are rules that prioriঞse some parts over others.

The first part of the implicit scope is the normal scopewhere other idenঞfiers are found. This includes idenঞfiers
declared in the local scope, within any enclosing class, object, or trait, or imported from elsewhere. An eligible
implicit value must be a single idenঞfier (i.e. a, not a.b). This is referred to as the local scope.

The implicit scope also includes the companion objects of types involved in the method call with the implicit
parameter. Let’s look at sorted for example. The signature for sorted, defined on List[A], is

sorted[B >: A](implicit ord: math.Ordering[B]): List[A]

The compiler will look in the following places for Ordering instances:

• the companion object of List;
• the companion object of Ordering; and
• the companion object of the type B, which is the type of elements in the list or any superclass.

7.2. ORGANISING TYPE CLASS INSTANCES 147

The pracঞcal upshot is we can define type class instances in the companion object of our types (the type A in
this example) and they will be found by the compiler without the user having to import them explicitly.

In the previous secঞon we defined an Ordering for a Rational type we created. Let’s see how we can use
the companion object to make this Ordering easier to use.

First let’s define the ordering in the local scope.

final case class Rational(numerator: Int, denominator: Int)

object Example {

def example = {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

}

}

This works as we expect.

Now let’s shi[the type class instance out of the local scope and see that it doesn’t compile.

final case class Rational(numerator: Int, denominator: Int)

object Instance {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

object Example {

def example =

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

}

Here I get an error at compilaঞon ঞme

No implicit Ordering defined for Rational.

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

^

Finally let’s move the type class instance into the companion object of Rational and see that the code compiles
again.

final case class Rational(numerator: Int, denominator: Int)

object Rational {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

object Example {

def example =

148 CHAPTER 7. TYPE CLASSES

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

List(Rational(1, 3), Rational(1, 2), Rational(3, 4)))

}

This leads us to our first pa�ern for packaging type class instances.

Type Class Instance Packaging: Companion Objects

When defining a type class instance, if

1. there is a single instance for the type; and
2. you can edit the code for the type that you are defining the instance for

then define the type class instance in the companion object of the type.

7.2.2 Implicit Priority

If we look in the companion object for Ordering we see some type class instances are already defined. In
parঞcular there is an instance for Int, yet we could define our own instances for Ordering[Int] (which we
did in the previous secঞon) and not have an issue with ambiguity.

To understand this we need to learn about the priority rules for selecঞng implicits. An ambiguity error is only
raised if there are mulঞple type class instances with the same priority. Otherwise the highest priority implicit
is selected.

The full priority rules are rather complex, but that complexity has li�le impact in most cases. The pracঞcal
implicaঞon is that the local scope takes precedence over instances found in companion objects. This means
that implicits that the programmer explicitly pulls into scope, by imporঞng or defining them in the local scope,
will be used in preference.

Let’s see this in pracঞce, by defining an Ordering for Rational within the local scope.

final case class Rational(numerator: Int, denominator: Int)

object Rational {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

object Example {

implicit val higherPriorityImplicit = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) >

(y.numerator.toDouble / y.denominator.toDouble)

)

def example =

assert(List(Rational(1, 2), Rational(3, 4), Rational(1, 3)).sorted ==

List(Rational(3, 4), Rational(1, 2), Rational(1, 3)))

}

Noঞce that higherPriorityImplicit defines a different ordering to the one defined in the companion object
for Rational. We’ve also changed the expected ordering in example to match this new ordering. This code
both compiles and runs correctly, illustraঞng the effect of the priority rules.

http://www.scala-lang.org/api/current/#scala.math.Ordering$
http://eed3si9n.com/implicit-parameter-precedence-again

7.2. ORGANISING TYPE CLASS INSTANCES 149

Type Class Instance Packaging: Companion Objects Part 2

When defining a type class instance, if

1. there is a single good default instance for the type; and
2. you can edit the code for the type that you are defining the instance for

then define the type class instance in the companion object of the type. This allows users to override the
instance by defining one in the local scope whilst sঞll providing sensible default behaviour.

7.2.3 Packaging Implicit Values Without Companion Objects

If there is no good default instance for a type class instance, or if there are several good defaults, we should
not place an type class instances in the companion object but instead require the user to explicitly import an
instance into the local scope.

In this case, one simple way to package instances is to place each in its own object that the user can import into
the local scope. For instance, we might define orderings for Rational as follows:

final case class Rational(numerator: Int, denominator: Int)

object RationalLessThanOrdering {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

}

object RationalGreaterThanOrdering {

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) >

(y.numerator.toDouble / y.denominator.toDouble)

)

}

In use the userwould import RationalLessThanOrdering._ or import RationalGreaterThanOrdering._

as appropriate.

7.2.4 Take Home Points

The compiler looks for type class instances (implicit values) in two places:

1. the local scope; and
2. the companion objects of types involved in the method call.

Implicits found in the local scope take precedence over those found in companion objects.

When packaging type class instances, if there is a single instance or a single good default we should put it in
the companion object if possible. Otherwise, one way to package implicits is to place each one in an object and
require the user to explicitly import them.

150 CHAPTER 7. TYPE CLASSES

7.2.5 Exercises

7.2.5.1 Ordering Orders

Here is a case class to store orders of some arbitrary item.

final case class Order(units: Int, unitPrice: Double) {

val totalPrice: Double = units * unitPrice

}

We have a requirement to order Orders in three different ways:

1. by totalPrice;
2. by number of units; and
3. by unitPrice.

Implement and package implicits to provide these orderings, and jusঞfy your packaging.

See the soluঞon

7.3 Creaঞng Type Classes

In the previous secঞonswe saw how to create and use type class instances. Nowwe’re going to explore creaঞng
our own type classes.

7.3.1 Elements of Type Classes

There are four components of the type class pa�ern:

• the actual type class itself;
• the type class instances;
• interfaces using implicit parameters; and
• interfaces using enrichment and implicit parameters.

We have already seen type class instances and talked briefly about implicit parameters. Here we will look at
defining our own type class, and in the following secঞon we will look at the two styles of interface.

7.3.2 Creaঞng a Type Class

Let’s start with an example—converঞng data to HTML. This is a fundamental operaঞon in any web applicaঞon,
and it would be great to be able to provide a toHtml method across the board in our applicaঞon.

One implementaঞon strategy is to create a trait we extend wherever we want this funcঞonality:

trait HtmlWriteable {

def toHtml: String

}

final case class Person(name: String, email: String) extends HtmlWriteable {

def toHtml = s"$name <$email>"

}

7.3. CREATING TYPE CLASSES 151

Person("John", "john@example.com").toHtml

// res: String = John <john@example.com>

This soluঞon has a number of drawbacks. First, we are restricted to having just one way of rendering a Person.
If we want to list people on our company homepage, for example, it is unlikely we will want to list everybody’s
email addresses without obfuscaঞon. For logged in users, however, we probably want the convenience of direct
email links. Second, this pa�ern can only be applied to classes that we have wri�en ourselves. If we want to
render a java.util.Date to HTML, for example, we will have to write some other form of library funcঞon.

Polymorphism has failed us, so perhaps we should try pa�ern matching instead? We could write something
like

object HtmlWriter {

def write(in: Any): String =

in match {

case Person(name, email) => ...

case Date => ...

case _ => throw new Exception(s"Can't render ${in} to HTML")

}

}

This implementaঞon has its own issues. We have lost type safety because there is no useful supertype that
covers just the elements we want to render and no more. We can’t have more than one implemnetaঞon of
rendering for a given type. We also have to modify this code whenever we want to render a new type.

We can overcome all of these problems by moving our HTML rendering to an adapter class:

trait HtmlWriter[A] {

def write(in: A): String

}

object PersonWriter extends HtmlWriter[Person] {

def write(person: Person) = s"${person.name} <${person.email}>"

}

PersonWriter.write(Person("John", "john@example.com"))

// res: String = John <john@example.com>

This is be�er. We can nowdefine HtmlWriter funcঞonality for other types, including typeswe have notwri�en
ourselves:

import java.util.Date

object DateWriter extends HtmlWriter[Date] {

def write(in: Date) = s"${in.toString}"

}

DateWriter.write(new Date)

// res: String = Sat Apr 05 16:01:58 BST 2014

We can also write another HtmlWriter for wriঞng People on our homepage:

object ObfuscatedPersonWriter extends HtmlWriter[Person] {

def write(person: Person) =

s"${person.name} (${person.email.replaceAll("@", " at ")})"

}

152 CHAPTER 7. TYPE CLASSES

ObfuscatedPersonWriter.write(Person("John", "john@example.com"))

// res: String = John (john at example.com)

Much safer—it’ll take a spam bot more than a few microseconds to decypher that!

You might recognise PersonWriter, DateWriter, and ObfuscatedPersonWriter as following the type class
instance pa�ern (though we haven’t made them implicit values at this point). The HtmlWriter trait, which the
instances implement, is the type class itself.

Type Class Pa�ern

A type class is a trait with at least one type variable. The type variables specify the concrete types the
type class instances are defined for. Methods in the trait usually use the type variables.

trait ExampleTypeClass[A] {

def doSomething(in: A): Foo

}

The next step is to introduce implicit parameters, so we can use type classes with less boilerplate.

7.3.3 Take Home Points

We have seen the basic pa�ern for implemenঞng type classes.

• We declare some interface for the funcঞonality we want

trait HtmlWriter[A] {

def toHtml(in: A): String

}

• We write type class instances for each concrete class we want to use and for each different situaঞon we
want to use it in

object PersonWriter extends HtmlWriter[Person] {

def write(person: Person) =

s"${person.name} (${person.email})"

}

object ObfuscatedPersonWriter extends HtmlWriter[Person] {

def write(person: Person) =

s"${person.name} (${person.email.replaceAll("@", " at ")})"

}

• This allows us to implement the funcঞonality for any type, and to provide different implementaঞons for
the same type.

7.4. IMPLICIT PARAMETER AND INTERFACES 153

7.3.4 Exercises

7.3.4.1 Equality

Scala provides two equality predicates: by value (==) and by reference (eq). Nonetheless, we someঞmes need
addiঞonal predicates. For instance, we could compare people by just email address if we were validaঞng new
user accounts in some web applicaঞon.

Implement a trait Equal of some type A, with a method equal that compares two values of type A and returns
a Boolean. Equal is a type class.

See the soluঞon

Our Person class is

case class Person(name: String, email: String)

Implement instances of Equal that compare for equality by email address only, and by name and email.

See the soluঞon

7.4 Implicit Parameter and Interfaces

We’ve seen the basics of the type class pa�ern. Now let’s look at how we can make it easier to use. Recall our
starঞng point is a trait HtmlWriterwhich allows us to implement HTML rendering for classes without requiring
access to their source code, and allows us to render the same class in different ways.

trait HtmlWriter[A] {

def write(in: A): String

}

object PersonWriter extends HtmlWriter[Person] {

def write(person: Person) = s"${person.name} <${person.email}>"

}

This issue with this code is that we need manage a lot of HtmlWriter instances when we render any complex
data. We have already seen that we can manage this complexity using implicit values and have menঞoned
implicit parameters in passing. In this secঞon we go in depth on implicit parameters.

7.4.1 Implicit Parameter Lists

Here is an example of an implicit parameter list:

object HtmlUtil {

def htmlify[A](data: A)(implicit writer: HtmlWriter[A]): String = {

writer.write(data)

}

}

The htmlifymethod accepts two arguments: some data to convert to HTML and a writer to do the conver-
sion. The writer is an implicit parameter.

The implicit keyword applies to the whole parameter list, not just an individual parameter. This makes the
parameter list opঞonal—when we call HtmlUtil.htmlify we can either specify the list as normal

154 CHAPTER 7. TYPE CLASSES

HtmlUtil.htmlify(Person("John", "john@example.com"))(PersonWriter)

// res: String = John <john@example.com>

or we can omit the implicit parameters. If we omit the implicit parameters, the compiler searches for implicit
values of the correct type it can use to fill in the missing arguments. We have already learned about implicit
values, but let’s see a quick example to refresh our memory. First we define an implicit value.

implicit object ApproximationWriter extends HtmlWriter[Int] {

def write(in: Int): String =

s"It's definitely less than ${((in / 10) + 1) * 10}"

}

When we use HtmlUtil we don’t have to specify the implicit parameter if an implicit value can be found.

HtmlUtil.htmlify(2)

// res: String = It's definitely less than 10

7.4.2 Interfaces Using Implicit Parameters

A complete use of the type class pa�ern requires an interface using implicit parameters, along with implicit type
class instances. We’ve seen two examples already: the sorted method using Ordering, and the htmlify
method above. The best interface depends on the problem being solved, but there is a pa�ern that occurs
frequently enough that it is worth explaining here.

In many case the interface defined by the type class is the same interface we want to use. This is the case for
HtmlWriter – the only method of interest is write. We could write something like

object HtmlWriter {

def write[A](in: A)(implicit writer: HtmlWriter[A]): String =

writer.write(in)

}

We can avoid this indirecঞon (which becomes more painful to write as our interfaces become larger) with the
following construcঞon:

object HtmlWriter {

def apply[A](implicit writer: HtmlWriter[A]): HtmlWriter[A] =

writer

}

In use it looks like

HtmlWriter[Person].write(Person("Noel", "noel@example.org"))

The idea is to simply select a type class instance by type (done by the no-argument apply method) and then
directly call the methods defined on that instance.

Type Class Interface Pa�ern

If the desired interface to a type class TypeClass is exactly the methods defined on the type class trait,
define an interface on the companion object using a no-argument apply method like

7.4. IMPLICIT PARAMETER AND INTERFACES 155

object TypeClass {

def apply[A](implicit instance: TypeClass[A]): TypeClass[A] =

instance

}

7.4.3 Take Home Points

Implicit parameters make type classes more convenient to use. We can make an enঞre parameter list with the
implicit keyword to make it an implicit parameter list.

def method[A](normalParam1: NormalType, ...)(implicit implicitParam1: ImplicitType[A], ...)

If we call a method and do not explicitly supply an explicit parameter, the compiler will search for an implicit
value of the correct type and insert it as the parameter.

Using implicit parameters we can make more convenient interfaces using type class instances. If the desired
interface to a type class is exactly the methods defined on the type class we can create a convenient interface
using the pa�ern

object TypeClass {

def apply[A](implicit instance: TypeClass[A]): TypeClass[A] =

instance

}

7.4.4 Exercises

7.4.4.1 Equality Again

In the previous secঞon we defined a trait Equal along with some implementaঞons for Person.

case class Person(name: String, email: String)

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

object EmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email

}

object NameEmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email && v1.name == v2.name

}

Implement an object called Eq with an apply method. This method should accept two explicit parameters
of type A and an implicit Equal[A]. It should perform the equality checking using the provided Equal. With
appropriate implicits in scope, the following code should work

Eq(Person("Noel", "noel@example.com"), Person("Noel", "noel@example.com"))

156 CHAPTER 7. TYPE CLASSES

See the soluঞon

Package up the different Equal implementaঞons as implicit values in their own objects, and show you can
control the implicit selecঞon by changing which object is imported.

See the soluঞon

Now implement an interface on the companion object for Equal using the no-argument apply method pa�ern.
The following code should work.

import NameAndEmailImplicit._

Equal[Person].equal(Person("Noel", "noel@example.com"), Person("Noel", "noel@example.com"))

Which interface style do you prefer?

See the soluঞon

7.5 Enriched Interfaces

A second type of type class interface, called type enrichment¹ allow us to create interfaces that act as if theywere
methods defined on the classes of interest. For example, suppose we have a method called numberOfVowels:

def numberOfVowels(str: String) =

str.filter(Seq('a', 'e', 'i', 'o', 'u').contains(_)).length

numberOfVowels("the quick brown fox")

// res: Int = 5

This is a method that we use all the ঞme. It would be great if numberOfVowelswas a built-in method of String
so we could write "a string".numberOfVowels, but of course we can’t change the source code for String.
Scala has a feature called called implicit classes that allow us to add new funcঞonality to an exisঞng class without
ediঞng its source code. This is a similar concept to categories in Objecঞve C or extension methods in C#, but the
implementaঞon is different in each case.

7.5.1 Implicit Classes

Let’s build up implicit classes piece by piece. We can wrap String in a class that adds our numberOfVowels:

class ExtraStringMethods(str: String) {

val vowels = Seq('a', 'e', 'i', 'o', 'u')

def numberOfVowels =

str.toList.filter(vowels contains _).length

}

We can use this to wrap up our String and gain access to our new method:

new ExtraStringMethods("the quick brown fox").numberOfVowels

Wriঞng new ExtraStringMethods every ঞme we want to use numberOfVowels is unwieldy. However, if we
tag our class with the implicit keyword, we give Scala the ability to insert the constructor call automaঞcally
into our code:

¹Type enrichment is someঞmes referred to as pimping in older literature. We will not use that term.

7.6. COMBINING TYPE CLASSES AND TYPE ENRICHMENT 157

implicit class ExtraStringMethods(str: String) { /* ... */ }

"the quick brown fox".numberOfVowels

// res: Int = 5

When the compiler processes our call to numberOfVowels, it interprets it as a type error because there is no
such method in String. Rather than give up, the compiler a�empts to fix the error by searching for an implicit
class that provides the method and can be constructed from a String. It finds ExtraStringMethods. The
compiler then inserts an invisible constructor call, and our code type checks correctly.

Implicit classes follow the same scoping rules as implicit values. Like implicit values, theymust be definedwithin
an enclosing object, class, or trait (except when wriঞng Scala at the console).

There is one addiঞonal restricঞon for implicit classes: only a single implicit class will be used to resolve a type
error. The compiler will not look to construct a chain of implicit classes to access the desired method.

7.6 Combining Type Classes and Type Enrichment

Implicit classes can be used on their own but we most o[en combine them with type classes to create a more
natural style of interface. We keep the type class (HtmlWriter) and adapters (PersonWriter, DateWriter
and so on) from our type class example, and add an implicit class with methods that themselves take implicit
parameters. For example:

implicit class HtmlOps[T](data: T) {

def toHtml(implicit writer: HtmlWriter[T]) =

writer.write(data)

}

This allows us to invoke our type-class pa�ern on any type for which we have an adapter as if it were a built-in
feature of the class:

Person("John", "john@example.com").toHtml

// res: String = John <john@example.com>

This gives us many benefits. We can extend exisঞng types to give them new funcঞonality, use simple syntax
to invoke the funcঞonality, and choose our preferred implementaঞon by controlling which implicits we have in
scope.

7.6.1 Take Home Points

Implicit classes are a Scala language feature that allows us to define extra funcঞonality on exisঞng data types
without using convenঞonal inheritance. This is a programming pa�ern called type enrichment.

The Scala compiler uses implicit classes to fix type errors in our code. When it encounters us accessing a method
or field that doesn’t exist, it looks through the available implicits to find some code it can insert to fix the error.

The rules for implicit classes are the same as for implicit values, with the addiঞonal restricঞon that only a single
implicit class will be used to fix a type error.

158 CHAPTER 7. TYPE CLASSES

7.6.2 Exercises

7.6.2.1 Drinking the Kool Aid

Use your newfound powers to add a method yeah to Int, which prints Oh yeah! as many ঞmes as the Int
on which it is called if the Int is posiঞve, and is silent otherwise. Here’s an example of usage:

2.yeah

// Oh yeah!

// Oh yeah!

3.yeah

// Oh yeah!

// Oh yeah!

// Oh yeah!

-1.yeah

When you have wri�en your implicit class, package it in an IntImplicits object.

See the soluঞon

7.6.2.2 Times

Extend your previous example to give Int an extra method called times that accepts a funcঞon of type Int
=> Unit as an argument and executes it n ঞmes. Example usage:

3.times(i => println(s"Look - it's the number $i!"))

// Look - it's the number 0!

// Look - it's the number 1!

// Look - it's the number 2!

For bonus points, re-implement yeah in terms of times.

See the soluঞon

7.6.3 Easy Equality

Recall our Equal type class from a previous secঞon.

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

Implement an enrichment so we can use this type class via a triple equal (===) method. For example, if the
correct implicits are in scope the following should work.

"abcd".===("ABCD") // Assumes case-insensitive equality implicit

See the soluঞon

7.7. USING TYPE CLASSES 159

7.7 Using Type Classes

We have seen how to define type classes. In this secঞon we’ll see some conveniences for using them: context
bounds and the implicitly method.

7.7.1 Context Bounds

When we use type classes we o[en end up requiring implicit parameters that we pass onward to a type class
interface. For example, using our HtmlWriter example we might want to define some kind of page template
that accepts content rendered by a writer.

def pageTemplate[A](body: A)(implicit writer: HtmlWriter[A]): String = {

val renderedBody = body.toHtml

s"<html><head>...</head><body>${renderedBody}</body></html>"

}

We don’t explicitly use the implicit writer in our code, but we need it in scope so the compiler can insert it for
the toHtml enrichment.

Context bounds allow us to write this more compactly, with a notaঞon that is reminiscent of a type bound.

def pageTemplate[A : HtmlWriter](body: A): String = {

val renderedBody = body.toHtml

s"<html><head>...</head><body>${renderedBody}</body></html>"

}

The context bound is the notaঞon [A : HtmlWriter] and it expands into the equivalent implicit parameter
list in the prior example.

Context Bound Syntax

A context bound is an annotaঞon on a generic type variable like so:

[A : Context]

It expands into a generic type parameter [A] along with an implicit parameter for a Context[A].

7.7.2 Implicitly

Context bounds give us a short-hand syntax for declaring implicit parameters, but sincewe don’t have an explicit
name for the parameter we cannot use it in our methods. Normally we use context bounds when we don’t need
explicit access to the implicit parameter, but rather just implicitly pass it on to some other method. However if
we do need access for some reason we can use the implicitly method.

case class Example(name: String)

implicit val implicitExample = Example("implicit")

implicitly[Example]

// res: Example = Example(implicit)

160 CHAPTER 7. TYPE CLASSES

implicitly[Example] == implicitExample

// res: Boolean = true

The implicitlymethod takes no parameters but has a generic type parameters. It returns the implicit match-
ing the given type, assuming there is no ambiguity.

7.8 Implicit Conversions

So far we have seen two programming pa�erns using implicits: type enrichment, which we implement using
implicit classes, and type classes, which we implement using implicit values and parameter lists.

Scala has a third implicit mechanism called implicit conversions that we will cover here for completeness. Implicit
conversions can be seen as amore general form of implicit classes, and can be used in awider variety of contexts.

The Dangers of Implicit Conversions

As we shall see later in this secঞon, undisciplined use of implicit conversions can cause as many problems
as it fixes for the beginning programmer. Scala even requires us to write a special import statement to
silence compiler warnings resulঞng from the use of implicit conversions:

import scala.language.implicitConversions

We recommend using implicit classes and implicit values/parameters over implicit conversions wherever
possible. By sঞcking to the type enrichment and type class design pa�erns you should find very li�le
cause to use implicit conversions in your code.

You have been warned!

7.8.1 Implicit conversions

Implicit conversions are a more general form of implicit classes. We can tag any single-argument method with
the implicit keyword to allow the compiler to implicitly use the method to perform automated conversions
from one type to another:

class B {

def bar = "This is the best method ever!"

}

class A

implicit def aToB(in: A): B = new B()

new A().bar

// res: String = This is the best method ever!

Implicit classes are actually just syntacঞc sugar for the combinaঞon of a regular class and an implicit conversion.
With an implicit class we have to define a new type as a target for the conversion; with an implicit method we
can convert from any type to any other type as long as an implicit is available in scope.

7.9. JSON SERIALISATION 161

7.8.2 Designing with Implicit Conversions

The power of implicit conversions tends to cause problems for newer Scala developers. We can easily define
very general type conversions that play strange games with the semanঞcs of our programs:

implicit def intToBoolean(int: Int) = int == 0

if(1) "yes" else "no"

// res: String = no

if(0) "yes" else "no"

// res: String = yes

This example is ridiculous, but it demonstrates the potenঞal problems implicits can cause. intToBoolean

could be defined in a library in a completely different part of our codebase, so how would we debug the bizarre
behaviour of the if expressions above?

Here are some ঞps for designing using implicits that will prevent situaঞons like the one above:

• Wherever possible, sঞck to the type enrichment and type class programming pa�erns.

• Wherever possible, use implicit classes, values, and parameter lists over implicit conversions.

• Package implicits clearly, and bring them into scope only where you need them. We recommend using
the packaging guidelines introduced earlier this chapter.

• Avoid creaঞng implicit conversions that convert from one general type to another general type—themore
specific your types are, the less likely the implicit is to be applied incorrectly.

7.8.3 Exercises

7.8.3.1 Implicit Class Conversion

Any implicit class can be reimplemented as a class paired with an implicit method. Re-implement the IntOps
class from the type enrichment secঞon in this way. Verify that the class sঞll works the same way as it did before.

See the soluঞon

7.9 JSON Serialisaঞon

In this secঞon we have an extended example involving serializing Scala data to JSON, which is one of the classic
use cases for type classes. The typical process for converঞng data to JSON in Scala involves two steps. First
we convert our data types to an intermediate case class representaঞon, then we serialize the intermediate
representaঞon to a string.

Here is a suitable case class representaঞon of a subset of the JSON language. We have a sealed trait

JsValue that defines a stringifymethod, and a set of subtypes for two of themain JSONdata types—objects
and strings:

sealed trait JsValue {

def stringify: String

}

final case class JsObject(values: Map[String, JsValue]) extends JsValue {

def stringify = values

162 CHAPTER 7. TYPE CLASSES

.map { case (name, value) => "\"" + name + "\":" + value.stringify }

.mkString("{", ",", "}")

}

final case class JsString(value: String) extends JsValue {

def stringify = "\"" + value.replaceAll("\\|\"", "\\\\$1") + "\""

}

You should recognise this as the algebraic data type pa�ern.

We can construct JSON objects and serialize them as follows:

JsObject(Map("foo" -> JsString("a"), "bar" -> JsString("b"), "baz" -> JsString("c")))

// res: JsObject = JsObject(Map(foo -> JsString(a), bar -> JsString(b), baz -> JsString(c)))

res4.stringify

// res: String = {"foo":"a","bar":"b","baz":"c"}

7.9.1 Convert X to JSON

Let’s create a type class for converঞng Scala data to JSON. Implement a JsWriter trait containing a single
abstract method write that converts a value to a JsValue.

See the soluঞon

Now let’s create the dispatch part of our type class. Write a JsUtil object containing a single method toJson.
The method should accept a value of an arbitrary type A and convert it to JSON.

Tip: your method will have to accept an implicit JsWriter to do the actual conversion.

See the soluঞon

Now, let’s revisit our data types from the web site visitors example in the Sealed traits secঞon:

import java.util.Date

sealed trait Visitor {

def id: String

def createdAt: Date

def age: Long = new Date().getTime() - createdAt.getTime()

}

final case class Anonymous(

val id: String,

val createdAt: Date = new Date()

) extends Visitor

final case class User(

val id: String,

val email: String,

val createdAt: Date = new Date()

) extends Visitor

Write JsWriter instances for Anonymous and User.

See the soluঞon

Given these two definiঞons we can implement a JsWriter for Visitor as follows. This uses a new type of
pa�ern – a: B – which matches any value of type B and binds it to a variable a:

/traits/sealed-traits.html

7.9. JSON SERIALISATION 163

implicit object VisitorWriter extends JsWriter[Visitor] {

def write(value: Visitor) = value match {

case anon: Anonymous => JsUtil.toJson(anon)

case user: User => JsUtil.toJson(user)

}

}

Finally, verify that your code works by converঞng the following list of users to JSON:

val visitors: Seq[Visitor] = Seq(Anonymous("001", new Date), User("003", "dave@xample.com", new Date

))

See the soluঞon

7.9.2 Preমer Conversion Syntax

Let’s improve our JSON syntax by combining type classes and type enrichment. Convert JsUtil to an
implicit class with a toJson method. Sample usage:

Anonymous("001", new Date).toJson

See the soluঞon

164 CHAPTER 7. TYPE CLASSES

Chapter 8

Conclusions

This completes Essenঞal Scala. To recap our journey, we have learned Scala via the major pa�erns of usage:

• algebraic data types and structural recursion;
• sequencing computaঞons using map, flatMap, and fold; and
• type classes.

These are the pa�erns we use daily in our Scala coding, which we have found work well across many Scala
projects, and they make up by the far the majority of our Scala code. They will serve you well.

Wehave tried to emphasise that if you canmodel the problem correctly the code follows in an almostmechanical
way. Learning how to think in the Scala way (or, more broadly, in a funcঞonal way) is by far the most important
lesson of this book.

We have introduced language features as they support the pa�erns. In the appendices you will find addiঞonal
material covering some inessenঞal funcঞonality we have skipped over in the main text. Scala has a few other
features, such as self types, that we have found so li�le use for in our years of programming Scala that we have
omi�ed them enঞrely in this introductory text.

8.1 What Now?

The journey to mastering Scala has not finished with this book. You will benefit greatly from acঞve parঞcipaঞon
in the Scala community. We have setup an online chat room for discussion of all Scala related ma�ers. Any
and all Scala related quesঞons are welcome there. There are many other forums, conferences, and user groups
where you can find an enthusiasঞc and welcoming community of fellow programmers.

If you have enjoyed Essenঞal Scala we hope you’ll consider our followup book Advanced Scala. As the name
suggests, it covers more advanced concepts with an emphasis on pa�erns for larger programs.

Finally, we would love hear your thoughts on Essenঞal Scala. Any feedback—good or bad—helps to improve
the book. We can be reached at hello@underscore.io. Any improvements we make to Essenঞal Scala will of
course be made available to every reader as part of our policy of free li[ime updates.

Thank you for reading Essenঞal Scala, and we hope you future coding in Scala is producঞve and fun.

165

http://gitter.im/underscoreio/scala
http://underscore.io/training/courses/advanced-scala
mailto:hello@underscore.io

166 CHAPTER 8. CONCLUSIONS

Appendix A

Pa�ern Matching

We have seen the duality between algebraic data types and pa�ern matching. Armed with this informaঞon, we
are in a good posiঞon to return to pa�ern matching and see some of its more powerful features.

As we discussed earlier, pa�erns are wri�en in their own DSL that only superficially resembles regular Scala
code. Pa�erns serve as tests that match a specific set of Scala values. The match expression compares a value to
each pa�ern in turn, finds the first pa�ern that matches, and executes the corresponding block of Scala code.

Some pa�erns bind values to variables that can be used on the right hand side of the corresponding => symbol,
and some pa�erns contain other pa�erns, allowing us to build complex tests that simultaneously examine many
parts of a value. Finally, we can create our own custom pa�erns, implemented in Scala code, to match any cross-
secঞon of values we see fit.

We have already seen case class pa�erns and certain types of sequence pa�erns. Each of the remaining types
of pa�ern is described below together with an example of its use.

A.1 Standard pa�erns

A.1.1 Literal pa�erns

Literal pa�erns match a parঞcular value. Any Scala literals work except funcঞon literals: primiঞve values,
Strings, nulls, and ():

(1 + 1) match {

case 1 => "It's one!"

case 2 => "It's two!"

case 3 => "It's three!"

}

// res: String = It's two!

Person("Dave", "Gurnell") match {

case Person("Noel", "Welsh") => "It's Noel!"

case Person("Dave", "Gurnell") => "It's Dave!"

}

// res: String = It's Dave!

println("Hi!") match {

case () => "It's unit!"

}

167

168 APPENDIX A. PATTERN MATCHING

// Hi!

// res: String = It's unit!

A.1.2 Constant pa�erns

Idenঞfiers starঞng with an uppercase le�er are constants that match a single predefined constant value:

val X = "Foo"

// X: String = Foo

val Y = "Bar"

// Y: String = Bar

val Z = "Baz"

// Z: String = Baz

"Bar" match {

case X => "It's foo!"

case Y => "It's bar!"

case Z => "It's baz!"

}

// res: String = It's bar!

A.1.3 Alternaঞve pa�erns

Verঞcal bars can be used to specify alternaঞves:

"Bar" match {

case X | Y => "It's foo or bar!"

case Z => "It's baz!"

}

// res: String = It's baz!

A.1.4 Variable capture

Idenঞfiers starঞng with lowercase le�ers bind values to variables. The variables can be used in the code to the
right of the =>:

Person("Dave", "Gurnell") match {

case Person(f, n) => f + " " + n

}

// res: String = "Dave Gurnell"

The @ operator, wri�en x @ y, allows us to capture a value in a variable xwhile alsomatching it against a pa�ern
y. x must be a variable pa�ern and y can be any type of pa�ern. For example:

Person("Dave", "Gurnell") match {

case p @ Person(_, s) => s"The person $p has the surname $s"

}

// res: String = "The person Person(Dave,Gurnell) is called Dave Gurnell"

A.1. STANDARD PATTERNS 169

A.1.5 Wildcard pa�erns

The _ symbol is a pa�ern that matches any value and simply ignores it. This is useful in two situaঞons: when
nested inside other pa�erns, and when used on its own to provide an “else” clause at the end of a match
expression:

Person("Dave", "Gurnell") match {

case Person("Noel", _) => "It's Noel!"

case Person("Dave", _) => "It's Dave!"

}

// res: String = It's Dave!

Person("Dave", "Gurnell") match {

case Person(name, _) => s"It's $name!"

}

// res: String = It's Dave!

Person("John", "Doe") match {

case Person("Noel", _) => "It's Noel!"

case Person("Dave", _) => "It's Dave!"

case _ => "It's someone else!"

}

// res: String = It's someone else!

A.1.6 Type pa�erns

A type pa�ern takes the form x: Y where Y is a type and x is a wildcard pa�ern or a variable pa�ern. The
pa�ern matches any value of type Y and binds it to x:

val shape: Shape = Rectangle(1, 2)

// shape: Shape = Rectangle(1.0,2.0)

shape match {

case c : Circle => s"It's a circle: $c!"

case r : Rectangle => s"It's a rectangle: $r!"

case s : Square => s"It's a square: $s!"

}

// res: String = It's a rectangle: Rectangle(1.0,2.0)!

A.1.7 Tuple pa�erns

Tuples of any arity can be matched with parenthesised expressions as follows:

(1, 2) match {

case (a, b) => a + b

}

// res: Int = 3

A.1.8 Guard expressions

This isn’t so much a pa�ern as a feature of the overall match syntax. We can add an extra condiঞon to any
case clause by suffixing the pa�ern with the keyword if and a regular Scala expression. For example:

170 APPENDIX A. PATTERN MATCHING

123 match {

case a if a % 2 == 0 => "even"

case _ => "odd"

}

// res: String = odd

To reiterate, the code between the if and => keywords is a regular Scala expression, not a pa�ern.

A.2 Custom Pa�erns

In the last secঞon we took an in-depth look at all of the types of pa�ern that are embedded into the pa�ern
matching language. However, in that list we didn’t see some of the pa�erns that we’ve been using in the course
so far—case class and sequence pa�erns were nowhere to be seen!

There is a final aspect of pa�ern matching that we haven’t covered that truly makes it a universal tool—we can
define our own custom extractor pa�erns using regular Scala code and use them along-side the built-in pa�erns
in our match expressions.

A.2.1 Extractors

An extractor pa�ern looks like a funcঞon call of zero or more arguments: foo(a, b, c), where each argument
is itself an arbitrary pa�ern.

Extractor pa�erns are defined by creaঞng objects with a method called unapply or unapplySeq. We’ll dive
into the guts of these methods in a minute. For now let’s look at some of the predefined extractor pa�erns
from the Scala library.

A.2.1.1 Case class extractors

The companion object of every case class is equipped with an extractor that creates a pa�ern of the same
arity as the constructor. This makes it easy to capture fields in variables:

Person("Dave", "Gurnell") match {

case Person(f, l) => List(f, l)

}

// res: List[String] = List(Dave, Gurnell)

A.2.1.2 Regular expressions

Scala’s regular expression objects are outfi�ed with a pa�ern that binds each of the captured groups:

import scala.util.matching.Regex

val r = new Regex("""(\d+)\.(\d+)\.(\d+)\.(\d+)""")

// r: scala.util.matching.Regex = (\d+)\.(\d+)\.(\d+)\.(\d+)

"192.168.0.1" match {

case r(a, b, c, d) => List(a, b, c, d)

}

// res: List[String] = List(192, 168, 0, 1)

A.2. CUSTOM PATTERNS 171

A.2.1.3 Lists and Sequences

Lists and sequences can be captured in several ways:

The List and Seq companion objects act as pa�erns that match fixed-length sequences.

List(1, 2, 3) match {

case List(a, b, c) => a + b + c

}

// res: Int = 6

• Nil matches the empty list:

Nil match {

case List(a) => "length 1"

case Nil => "length 0"

}

// res: String = length 0

There is also a singleton object :: that matches the head and tail of a list.

List(1, 2, 3) match {

case ::(head, tail) => s"head $head tail $tail"

case Nil => "empty"

}

// res: String = head 1 tail List(2, 3)

This perhaps makes more sense when you realise that binary extractor pa�erns can also be wri�en infix.

List(1, 2, 3) match {

case head :: tail => s"head $head tail $tail"

case Nil => "empty"

}

// res: String = head 1 tail List(2, 3)

Combined use of ::, Nil, and _ allow us to match the first elements of any length of list.

List(1, 2, 3) match {

case Nil => "length 0"

case a :: Nil => s"length 1 starting $a"

case a :: b :: Nil => s"length 2 starting $a $b"

case a :: b :: c :: _ => s"length 3+ starting $a $b $c"

}

// res: String = length 3+ starting 1 2 3

A.2.1.4 Creaঞng custom fixed-length extractors

You can use any object as a fixed-length extractor pa�ern by giving it a method called unapplywith a parঞcular
type signature:

def unapply(value: A): Boolean // pattern with 0 parameters

def unapply(value: A): Option[B] // 1 parameter

def unapply(value: A): Option[(B1, B2)] // 2 parameters

// etc...

172 APPENDIX A. PATTERN MATCHING

Each pa�ern matches values of type A and captures arguments of type B, B1, and so on. Case class pa�erns
and :: are examples of fixed-length extractors.

For example, the extractor below matches email addresses and splits them into their user and domain parts:

object Email {

def unapply(str: String): Option[(String, String)] = {

val parts = str.split("@")

if (parts.length == 2) Some((parts(0), parts(1))) else None

}

}

"dave@underscore.io" match {

case Email(user, domain) => List(user, domain)

}

// res: List[String] = List(dave, underscore.io)

"dave" match {

case Email(user, domain) => List(user, domain)

case _ => Nil

}

// res: List[String] = List()

This simpler pa�ern matches any string and uppercases it:

object Uppercase {

def unapply(str: String): Option[String] =

Some(str.toUpperCase)

}

Person("Dave", "Gurnell") match {

case Person(f, Uppercase(l)) => s"$f $l"

}

// res: String = Dave GURNELL

A.2.1.5 Creaঞng custom variable-length extractors

We can also create extractors that match arbitrary numbers of arguments by defining an unapplySeq method
of the following form:

def unapplySeq(value: A): Option[Seq[B]]

Variable-length extractors match a value only if the pa�ern in the case clause is the same length as the Seq
returned by unapplySeq. Regex and List are examples of variable-length extractors.

The extractor below splits a string into its component words:

object Words {

def unapplySeq(str: String) = Some(str.split(" ").toSeq)

}

"the quick brown fox" match {

case Words(a, b, c) => s"3 words: $a $b $c"

case Words(a, b, c, d) => s"4 words: $a $b $c $d"

}

// res: String = 4 words: the quick brown fox

A.2. CUSTOM PATTERNS 173

A.2.1.6 Wildcard sequence pa�erns

There is one final type of pa�ern that can only be used with variable-length extractors. The wildcard sequence
pa�ern, wri�en _*, matches zero or more arguments from a variable-length pa�ern and discards their values.
For example:

List(1, 2, 3, 4, 5) match {

case List(a, b, _*) => a + b

}

// res: Int = 3

"the quick brown fox" match {

case Words(a, b, _*) => a + b

}

// res: String = "thequick"

We can combine wildcard pa�erns with the @ operator to capture the remaining elements in the sequence.

"the quick brown fox" match {

case Words(a, b, rest @ _*) => rest

}

// res: Seq[String] = WrappedArray("brown", "fox")

A.2.2 Exercises

A.2.2.1 Posiঞve Matches

Custom extractors allow us to abstract away complicated condiঞonals. In this example we will build a very
simple extractor, which we probably wouldn’t use in real code, but which is representaঞve of this idea.

Create an extractor Positive that matches any posiঞve integer. Some test cases:

assert(

"No" ==

(0 match {

case Positive(_) => "Yes"

case _ => "No"

})

)

assert(

"Yes" ==

(42 match {

case Positive(_) => "Yes"

case _ => "No"

})

)

See the soluঞon

A.2.2.2 Titlecase extractor

Extractors can also transform their input. In this exercise we’ll write an extractor that converts any string to
ঞtlecase by uppercasing the first le�er of every word. A test case:

174 APPENDIX A. PATTERN MATCHING

assert(

"Sir Lord Doctor David Gurnell" ==

("sir lord doctor david gurnell" match {

case Titlecase(str) => str

})

)

Tips:

• Java Strings have the methods split(String), toUpperCase and substring(Int, Int).

• The method split(String) returns a Java Array[String]. You can convert this to a List[String]
using array.toList so you can map over it and manipulate each word.

• A List[String] can be converted back to a String with the code list.mkString(" ").

This extractor isn’t parঞcularly useful, and in general defining your own extractors is not common in Scala.
However it can be a useful tool in certain circumstances.

See the soluঞon

Appendix B

Collecঞons Redux

This opঞonal secঞon covers some more details of the collecঞons framework that typically aren’t used in day-
to-day programming. This includes the different sequence implementaঞons available, details of collecঞons
operaঞons on arrays and strings, some of the core traits in the framework, and details of Java interoperaঞon.

B.1 Sequence Implementaঞons

We’ve seen that the Scala collecঞons seperate interface from implementaঞon. This means we can work with
all collecঞons in a generic manner. However different concrete implementaঞons have different performance
characterisঞcs, so wemust be aware of the available implementaঞons sowe can choose appropriately. Here we
look at the mostly frequently used implementaঞons of Seq. For full details on all the available implementaঞon
see the docs.

B.1.1 Peformance Characterisঞcs

The collecঞons framework disঞnguishes at the type level two general classes of sequences. Sequences imple-
menঞng IndexedSeq have efficient apply, length, and (if mutable) update operaঞons, while LinearSeqs
have efficient head and tail operaঞons. Neither have any addiঞonal operaঞons over Seq.

B.1.2 Immutable Implementaঞons

The main immutable Seq implementaঞons are List, and Stream, and Vector.

B.1.2.1 List

A List is a singly linked list. It has constant ঞme access to the first element and remainder of the list (head,
and tail) and is thus a LinearSeq. It also has constant ঞme prepending to the front of the list, but linear ঞme
appending to the end. List is the default Seq implementaঞon.

B.1.2.2 Stream

A Stream is like a list except its elements are computed on demand, and thus it can have infinite size. Like other
collecঞons we can create streams by calling the apply method on the companion object.

175

http://docs.scala-lang.org/overviews/collections/introduction.html

176 APPENDIX B. COLLECTIONS REDUX

Stream(1, 2, 3)

// res: scala.collection.immutable.Stream[Int] = Stream(1, ?)

Note that only the first element is printed. The others will be computed when we try to access them.

We can also use the #:: method to construct a stream from individual elements, starঞng from Stream.empty.

Stream.empty.#::(3).#::(2).#::(1)

// res: scala.collection.immutable.Stream[Int] = Stream(1, ?)

We can also use the more natural operator syntax.

1 #:: 2 #:: 3 #:: Stream.empty

// res: scala.collection.immutable.Stream[Int] = Stream(1, ?)

This method allows us to create a infinite stream. Here’s an infinite stream of 1s:

def streamOnes: Stream[Int] = 1 #:: streamOnes

streamOnes

// res: Stream[Int] = Stream(1, ?)

Because elements are only evaluated as requested, calling streamOnes doesn’t lead to infinte recursion. When
we take the first five elements (and convert them to a List, so they’ll all print out) we see we have what we
want.

streamOnes.take(5).toList

// res: List[Int] = List(1, 1, 1, 1, 1)

B.1.2.3 Vector

Vector is the final immutable sequence we’ll consider. Unlike Stream and List it is an IndexedSeq, and thus
offers fast random access and updates. It is the default immutable IndexedSeq, which we can see if we create
one.

scala.collection.immutable.IndexedSeq(1, 2, 3)

// res: scala.collection.immutable.IndexedSeq[Int] = Vector(1, 2, 3)

Vectors are a good choice if you want both random access and immutability.

B.1.3 Mutable Implementaঞons

The mutable collecঞons are probably more familiar. In addiঞon to linked lists and arrays (which we discuss in
more detail later) there are buffers, which allow for efficient construcঞon of certain data structures.

B.1.3.1 Buffers

Buffers are used when you want to efficiently create a data structure an item at a ঞme. An ArrayBuffer is an
IndexedSeq which also has constant ঞme appends. A ListBuffer is like a List with constant ঞme prepend
and append (though note it is mutable, unlike List).

Buffers’ add methods to support destrucঞve prepends and appends. For example, the += is destrucঞve append.

B.2. ARRAYS AND STRINGS 177

val buffer = new scala.collection.mutable.ArrayBuffer[Int]()

// buffer: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer()

buffer += 1

// res: buffer.type = ArrayBuffer(1)

buffer

// res: scala.collection.mutable.ArrayBuffer[Int] = ArrayBuffer(1)

B.1.3.2 StringBuilder

A StringBuilder is essenঞally a buffer for building strings. It is mostly the same as Java’s StringBuilder
except that it implements standard Scala collecঞons method where there is a conflict. So, for example, the
reverse method creates a new StringBuilder unlike in Java.

B.1.3.3 LinkedLists

Mutable singly LinkedLists and DoubleLinkedListswork for themost part just likeList. A DoubleLikeList
maintains both a prev and next pointer and so allows for efficient removal of an element.

B.2 Arrays and Strings

Arrays and strings in Scala correspond to Java’s arrays and strings.

"this is not a string"

// res: java.lang.String = this is not a string

Yet all the familiar collecঞon methods are available on them.

"is it true?".map(elt => true)

// res: scala.collection.immutable.IndexedSeq[Boolean] = Vector(true, true, true, true, true, true,

Ď

true, true, true, true,

true)

Array(1, 2, 3).map(_ * 2)

// res: Array[Int] = Array(2, 4, 6)

This conversion is done automaঞcally using implicit conversions. There are two conversions. The Wrapped
conversions (WrappedArray and WrappedString) wrap the original array or string in an object supporঞng the
Seq methods. Operaঞons on such a wrapped object return another wrapped object.

val sequence = new scala.collection.immutable.WrappedString("foo")

// sequence: scala.collection.immutable.WrappedString = foo

sequence.reverse

// res: scala.collection.immutable.WrappedString = oof

The Ops conversions (ArrayOps and StringOps) add methods that return an object of the original type. Thus
these objects are short-lived.

178 APPENDIX B. COLLECTIONS REDUX

val sequence = new scala.collection.immutable.StringOps("foo")

// sequence: scala.collection.immutable.StringOps = foo

sequence.reverse

// res: String = oof

The choice of conversion is based on the required type. If we use a string, say, where a Seq is expected the
string will be wrapped. If we just want to use a Seq method on a string then an Op conversion will be used.

val sequence: Seq[Char] = "foo"

// sequence: Seq[Char] = foo

sequence.getClass

// res: java.lang.Class[_ <: Seq[Char]] = class scala.collection.immutable.WrappedString

B.2.1 Performance

You might be worried about the performance of implicit conversions. The Ops conversions are normally opঞ-
mised away. The Wrapped conversions can give a small performance hit which may be an issue in parঞcularly
performance sensiঞve code.

B.3 Iterators and Views

Iterators and views are two parts of the collecঞon library that don’t find much use outside of a few special
cases.

B.3.1 Iterators

Scala’s iterators are like Java’s iterators. You can use them to walk through the elements of a collecঞon, but
only once. Iterators have hasNext and nextmethods, with the obvious semanঞcs. Otherwise they behave like
sequences, though they don’t inherit from Seq.

Iterators don’t find a great deal of use in Scala. Two primary use cases are operaঞng on collecঞons that are too
large to fit in memory or in parঞcularly high performance code.

B.3.2 Views

When performing a sequence of transformaঞons on a collecঞon, a number of intermediate collecঞons will be
constructed. For example, in the below example two intermediate collecঞons will be created by the first and
second call to map.

Seq(1, 2, 3).map(_ * 2).map(_ + 4).map(_.toString)

// res: Seq[java.lang.String] = List(6, 8, 10)

It is as if we’d wri�en

val intermediate1 = Seq(1, 2, 3).map(_ * 2)

val intermediate2 = intermediate1.map(_ + 4)

val result = intermediate2.map(_.toString)

B.4. TRAVERSABLE AND ITERABLE 179

These intermediate collecঞons are not strictly necessary. We could instead do the full sequence of transforma-
ঞons on an element-by-element basis. Views allows this. We create a view by calling the view method on any
collecঞon. Any traversals of a view are only applied when the force method is called.

val view = Seq(1, 2, 3).view.map(_ * 2).map(_ + 4).map(_.toString)

// view: scala.collection.SeqView[java.lang.String,Seq[_]] = SeqViewMMM(...)

view.force

// res: Seq[java.lang.String] = List(6, 8, 10)

Note that when a view is forced the original type is retained.

For very large collecঞons of items with many stages of transformaঞons a view can be worthwhile. For modest
sizes views are usually slower than creaঞng the intermediate data structures.

B.4 Traversable and Iterable

So far we’ve avoided discussing the finer details of the collecঞon class hierarchy. As we near the end of this
secঞon it is ঞme to quickly go over some of the intricacies.

B.4.1 Traversable

The trait Traversable sits at the top of the collecঞon hierarchy and represents a collecঞon that allows traversal
of its contents. The only abstract operaঞon is foreach. Most of the collecঞon methods are implemented in
Traversable, though classes extending it may reimplement methods for performance.

B.4.1.1 TraversableOnce

TraversableOnce represents a collecঞon that can be traversed one or more ঞmes. It is primarily used to
reduce code duplicaঞon between Iterators and Traversable.

B.4.2 Iterable

Iterable is the next trait below Traversable. It has a single abstract method iterator that should return
an Iterator over the collecঞon’s contents. The foreach method is implemented in terms of this. It adds a
few methods to Traversable that can only be efficiently implemented when an iterator is available.

B.5 Java Interoperaঞon

The prefered way to convert between Scala and Java collecঞons is use the JavaConverters implicit con-
versions. We use it by imporঞng scala.collection.JavaConverters._ and then methods asJava and
asScala become available on many of the collecঞons.

import scala.collection.JavaConverters._

Seq(1, 2, 3).asJava

// res: java.util.List[Int] = [1, 2, 3]

Java does not disঞnguish mutable and immutable collecঞons at the type level but the conversions do preserve
this property by throwing UnsupportOperationException as appropriate.

180 APPENDIX B. COLLECTIONS REDUX

val java = Seq(1, 2, 3).asJava

// java: java.util.List[Int] = [1, 2, 3]

java.set(0, 5)

// java.lang.UnsupportedOperationException

// at java.util.AbstractList.set(AbstractList.java:115)

// ...

The conversions go the other way as well.

val list: java.util.List[Int] = new java.util.ArrayList[Int]()

// list: java.util.List[Int] = []

list.asScala

// res: scala.collection.mutable.Buffer[Int] = Buffer()

Note that the Scala equivalent is a mutable collecঞon. If we mutate an element we see that the underlying Java
collecঞon is also changed. This holds for all conversions; they always share data and are not copied.

list.asScala += 5

// res: scala.collection.mutable.Buffer[Int] = Buffer(5)

list

// res: java.util.List[Int] = [5]

B.5.1 JavaConversions

There is another set of conversions in scala.collection.JavaConversions, which perform conversions
without needing the calls to asJava or asScala. Many people find this confusing in large systems and thus it
is not recommended.

B.6 Mutable Sequences

Most of the interfaces we’ve have covered so far do not have any side-effects—like the copymethod on a case
class, they return a new copy of the sequence. Someঞmes, however, we need mutable collecঞons. Fortunately,
Scala provides two parallel collecঞons hierarchies, one in the scala.collection.mutable package and one
in the scala.collection.immutable package.

The default Seq is defined to be scala.collection.immutable.Seq. If we want a mutable sequence we can
use scala.collection.mutable.Seq.

val mutable = scala.collection.mutable.Seq(1, 2, 3)

// mutable: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2, 3)

Note that the concrete implementaঞon class is now an ArrayBuffer and not a List.

B.6.1 Destrucঞve update

In addiঞon to all the methods of an immutable sequence, a mutable sequence can be updated using the update
method. Note that update returns Unit, so no value is printed in the REPL a[er this call. When we print the
original sequence we see it is changed:

B.6. MUTABLE SEQUENCES 181

mutable.update(0, 5)

mutable

// res: scala.collection.mutable.Seq[Int] = ArrayBuffer(5, 2, 3)

A more idiomaঞc way of calling update is to use assignment operator syntax, which is another special syntax
built in to Scala, similar to infix operator syntax and funcঞon applicaঞon syntax:

mutable(1) = 7

mutable

// res: scala.collection.mutable.Seq[Int] = ArrayBuffer(5, 7, 3)

B.6.2 Immutable methods on mutable sequences

Methods defined on both mutable and immutable sequences will never perform destrucঞve updates. For ex-
ample, :+ always returns a new copy of the sequence without updaঞng the original:

val mutable = scala.collection.mutable.Seq[Int](1, 2, 3)

// mutable: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2, 3)

mutable :+ 4

// res: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2, 3, 4)

mutable

// res: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2, 3)

B.6.2.1 Using Mutable Collecঞons Safely

Scala programmers tend to favour immutable collecঞons and only bring in mutable ones in specific cir-
cumastances. Using import scala.collection.mutable._ at the top of a file tends to create a whole
series of naming collisions that we have to work around.

To work around this, I suggest imporঞng the mutable package iteself rather than its contents. We can
then explicitly refer to any mutable collecঞon using the package name as a prefix, leaving the unprefixed
names referring to the immutable versions:

import scala.collection.mutable

import scala.collection.mutable

mutable.Seq(1, 2, 3)

// res: scala.collection.mutable.Seq[Int] = ArrayBuffer(1, 2, 3)

Seq(1, 2, 3)

// res: Seq[Int] = List(1, 2, 3)

B.6.3 In summary

Scala’s collecঞons library includes mutable sequences in the scala.collection.mutable package. The main
extra operaঞon is update:

182 APPENDIX B. COLLECTIONS REDUX

Method We have We provide We get

update Seq[A] Int, A Unit

B.6.4 Exercises

B.6.4.1 Animals

Create a Seq containing the Strings "cat", "dog", and "penguin". Bind it to the name animals.

See the soluঞon

Append the element "tyrannosaurus" to animals and prepend the element "mouse".

See the soluঞon

What happens if you prepend the Int 2 to animals? Why? Try it out… were you correct?

See the soluঞon

Now create a mutable sequence containing "cat", "dog", and "penguin" and update an element to be an
Int. What happens?

See the soluঞon

Appendix C

Soluঞons to Exercises

C.1 Expressions, Types, and Values

C.1.1 Soluঞon to: Type and Value

Type is Int and value is 3.

Return to the exercise

C.1.2 Soluঞon to: Type and Value Part 2

Type is Int and value is 3.

Return to the exercise

C.1.3 Soluঞon to: Type and Value Part 3

Type is Int, but this one doesn’t evaluate to a value—it raises an excepঞon instead, and a raised excepঞon is not
a value. How can we tell this? We can’t conঞnuing compuঞng with the result of the expression. For example,
we can’t print it. Compare

println("foo")

foo

and

println("foo".toInt)

java.lang.NumberFormatException: For input string: "foo"

In the la�er no prinঞng occurs indicaঞng the println is never evaluated.

Return to the exercise

C.1.4 Soluঞon to: Operator Style

"foo" take 1

Return to the exercise

183

184 APPENDIX C. SOLUTIONS TO EXERCISES

C.1.5 Soluঞon to: Operator Style Part 2

1.+(2).+(3)

Return to the exercise

C.1.6 Soluঞon to: Subsঞtuঞon

The expressions have the same result type and return value. However, they arrive at their results in different
ways. The first computes its result through a series of addiঞons, while the later is simply a literal.

As neither expression has any side-effects, they are interchangeable from a user’s point of view. Anywhere you
can write 1 + 2 + 3 you can also write 6, and vice versa, without changing the meaning of any program. This
is known as subsࢼtuࢼon and you may remember the principle from simplifying algebraic formulae at school.

As programmers we must develop a mental model of how our code operates. The subsࢼtuࢼon model of evalua-
onࢼ is a parঞcuarly simple model that says anywhere we see an expression we may subsঞtute its result. In the
absence of side-effects, the subsঞtuঞon model always works¹. If we know the types and values of each com-
ponent of an expression, we know the type and value of the expression as a whole. In funcঞonal programming
we aim to avoid side-effects for this reason: it makes our programs easier to understand.

Return to the exercise

C.1.7 Soluঞon to: Literally Just Literals

42 is an Int. true is a Boolean. 123L is a Long. 42.0 is a Double.

This exercise just gives you some experience using the Scala console or Worksheet.

Return to the exercise

C.1.8 Soluঞon to: Quotes and Misquotes

The first is a literal Char and the second is a literal String.

Return to the exercise

C.1.9 Soluঞon to: An Aside on Side-Effects

The literal expression "Hello world!" evaluates to a String value. The expression println("Hello

world!") evaluates to Unit and, as a side-effect, prints "Hello world!" on the console.

This an important disঞncঞon between a program that evaluates to a value and a program that prints a value as
a side-effect. The former can be used in a larger expression but the la�er cannot.

Return to the exercise

¹What exactly is a side-effect? One workable definiঞon is anything that causes subsঞtuঞon to yield an incorrect result. Does
subsঞtuঞon alwayswork, in the absence of side-effects? To truly have a correct model of Scala we must define the order in which we
apply subsঞtuঞons. There are a number of possible orders. (For example, we perform subsঞtuঞon le[-to-right, or right-to-le[? Do
we subsঞtute as soon as possible or delay unঞl we need a value?) Most of the ঞme order of subsঞtuঞon doesn’t ma�er, but there
are cases where it does. Scala always applies subsঞtuঞon from le[-to-right and at the earliest possible ঞme.

C.1. EXPRESSIONS, TYPES, AND VALUES 185

C.1.10 Soluঞon to: Learning By Mistakes

You should see an error message. Take the ঞme to read and get used to the error messages in your development
environment—you’ll see plenty more of them soon!

Return to the exercise

C.1.11 Soluঞon to: Cat-o-maঞque

This is just a finger exercise to get you used to the syntax of defining objects. You should have a soluঞon similar
to the code below.

object Oswald {

val colour: String = "Black"

val food: String = "Milk"

}

object Henderson {

val colour: String = "Ginger"

val food: String = "Chips"

}

object Quentin {

val colour: String = "Tabby and white"

val food: String = "Curry"

}

Return to the exercise

C.1.12 Soluঞon to: Square Dance!

Here is the soluঞon. cube(x) calls square(x) and mulঞplies its value by x one more ঞme. The return type of
each method is inferred by the compiler as Double.

object calc {

def square(x: Double) = x * x

def cube(x: Double) = x * square(x)

}

Return to the exercise

C.1.13 Soluঞon to: Precise Square Dance!

Like Java, Scala can’t generalize parঞcularlywell across Ints and Doubles. However, it will allow us to “overload”
the square and cube methods by defining them for each type of parameter.

object calc2 {

def square(value: Double) = value * value

def cube(value: Double) = value * square(value)

def square(value: Int) = value * value

def cube(value: Int) = value * square(value)

}

186 APPENDIX C. SOLUTIONS TO EXERCISES

“Overloaded” methods are ones we have defined several ঞmes for different argument types. Whenever we call
an overloaded method type, Scala automaঞcally determines which variant we need by looking at the type of
the argument.

calc2.square(1.0) // calls the `Double` version of `square`

calc2.square(1) // calls the `Int` version `square`

The Scala compiler is able to insert automaঞc conversions between numeric types wherever you have a lower
precision and require a higher precision. For example, if you write calc.square(2), the compiler deter-
mines that the only version of calc.square takes a Double and automaঞcally infers that you really mean
calc.square(2.toDouble).

Conversions in the opposite direcঞon, from high precision to low precision, are not handled automaঞcally be-
cause they can lead to rounding errors. For example, the code below will not compile because x is an Int and
its body expression is a Double (try it and see)!

val x: Int = calc.square(2) // compile error

You can manually use the toInt method of Double to work around this:

val x: Int = calc.square(2).toInt // toInt rounds down

The Dangers of String Concatenaঞon

To maintain similar behaviour to Java, Scala also automaঞcally converts any object to a String where re-
quired. This is to make it easy to write things like println("a" + 1), which Scala automaঞcally rewrites
as println("a" + 1.toString).

The fact that string concatenaঞon and numeric addiঞon share the same + method can someঞmes cause
unexpected bugs, so watch out!

Return to the exercise

C.1.14 Soluঞon to: Order of evaluaঞon

Here is the soluঞon:

b

a

c

a

a

// res: String = 3c31

The full sequence of evaluaঞon is as follows:

- We calculate the main sum at the end of the program, which...

- Loads `argh`, which...

- Calculates all the fields in `argh`, which...

C.1. EXPRESSIONS, TYPES, AND VALUES 187

- Calculates `b`, which...

- Prints `"b"`

- Evaluates `a + 2`, which...

- Calls `a`, which...

- Prints `"a"`

- Returns `1`

- Returns `1 + 2`

- Stores the value `3` in `b`

- Calls `argh.c`, which...

- Prints `"c"`

- Evaluates `a`

- Prints `"a"`

- Returns `1` - Which we discard

- Evaluates `b + "c"`, which...

- Retrieves the value `3` from `b`

- Retrieves the value `"c"`

- Evaluates the `+`, determining that it actually refers to string

concatenation and converting `3` to `"3"`

- Returns the `String` `"3c"`

- Calls `argh.b`, which...

- Retrieves the value `3` from `b`

- Evaluates the first `+`, determining that it actually refers to string

concatentation, and yielding `"3c3"`

- Calls `argh.a`, which...

- Prints `"a"`

- Returns `1`

- Evaluates the first `+`, determining that it actually refers to string

concatentation, and yielding `"3c31"`

Whew! That’s a lot for such a simple piece of code.

Return to the exercise

C.1.15 Soluঞon to: Greeঞngs, human

object person {

val firstName = "Dave"

val lastName = "Gurnell"

}

object alien {

def greet(p: person.type) =

"Greetings, " + p.firstName + " " + p.lastName

}

alien.greet(person)

Noঞce the type on the p parameter of greet: person.type. This is one of the singleton typeswewere referring
to earlier. In this case it is specific to the object person, which prevents us using greet on any other object.
This is very different from a type such as Int that is shared by all Scala integers.

This imposes a significant limitaঞon on our ability to write programs in Scala. We can only write methods that
work with built-in types or single objects of our own creaঞon. In order to build useful programs we need the

188 APPENDIX C. SOLUTIONS TO EXERCISES

ability to define our own types and create mulঞple values of each. We can do this using classes, which we will
cover in the next secঞon.

Return to the exercise

C.1.16 Soluঞon to: The Value of Methods

First let’s deal with the equivalence between methods and expressions. As we know, expressions are program
fragments that produce values. A simple test of whether something is an expression is to see if we can assign
it to a field.

object calculator {

def square(x: Int) = x * x

}

val someField = calculator.square

// error: missing arguments for method square in object calculator;

// follow this method with `_' if you want to treat it as a partially applied function

// val someField = calculator.square

// ^

Although we don’t understand this error message fully yet (we shall learn about “parঞally applied funcঞons”
later), it does show us that square is not an expression. However, a call to square does yield a value:

val someField = calculator.square(2)

// someField: Int = 4

A method with no arguments looks like it behaves differently. However, this is a trick of the syntax.

object clock {

def time = System.currentTimeMillis

}

val now = clock.time

// now: Long = 1395402828639

Although it looks like now is being assigned clock.time as a value, it is actually being assigned the value returned
by calling clock.time. We can demonstrate this by calling the method again:

val aBitLaterThanNow = clock.time

// aBitLaterThanNow: Long = 1395403220551

As we saw above, references to fields and calls to argumentless methods look idenঞcal in Scala. This is by
design, to allow us to swap the implementaঞon of a field for a method (and vice versa) without affecঞng other
code. It is a programming language feature called the uniform access principle.

So, in summary, calls to methods are expressions but methods themselves are not expressions. In addiঞon to meth-
ods, Scala also has a concept called funcࢼons, which are objects that can be invoked like methods. As we know
objects are values, so funcঞons are also values and can be treated as data. As you may have guessed, func-
ঞons are a criঞcal part of funcࢼonal programming, which is one of Scala’s major strengths. We will learn about
funcঞons and funcঞonal programming in a bit.

Return to the exercise

http://en.wikipedia.org/wiki/Uniform_access_principle

C.2. OBJECTS AND CLASSES 189

C.1.17 Soluঞon to: A Classic Rivalry

It’s a String with value "predator". Predators are clearly best.

The type is determined by the upper bound of the types in the then and else expressions. In this case both
expressions are Strings so the result is also a String.

The value is determined at runঞme. 2 is greater than 1 so the condiঞonal evaluates to the value of the else
expression.

Return to the exercise

C.1.18 Soluঞon to: A Less Well Known Rivalry

It’s a value of type Any with value 2001.

This is similar to the previous exercise—the difference is the type of the result. We saw earlier that the type
is the upper bound of the posiঞve and negaঞve arms of the expression. "alien" and 2001 are completely
different types - their closest common ancestor is Any, which is the grand supertype of all Scala types.

This is an important observaঞon: types are determined at compile ঞme, before the program is run. The compiler
doesn’t know which of 1 and 2 is greater before running the program, so it can only make a best guess at the
type of the result of the condiঞonal. Any is as close as it can get in this program, whereas in the previous
exercise it can get all the way down to String.

We’ll learn more about Any in the following secঞons. Java programmers shouldn’t confuse it with Object

because it subsumes value types like Int and Boolean as well.

Return to the exercise

C.1.19 Soluঞon to: An if Without an else

The result type and value are Any and () respecঞvely.

All code being equal, condiঞonals without else expressions only evaluate to a value half of the ঞme. Scala
works around this by returning the Unit value if the else branch should be evaluated. We would usually only
use these expressions for their side-effects.

Return to the exercise

C.2 Objects and Classes

C.2.1 Soluঞon to: Cats, Again

This is a finger exercise to get you used to the syntax of defining classes.

class Cat(val colour: String, val food: String)

val oswald = new Cat("Black", "Milk")

val henderson = new Cat("Ginger", "Chips")

val quentin = new Cat("Tabby and white", "Curry")

Return to the exercise

190 APPENDIX C. SOLUTIONS TO EXERCISES

C.2.2 Soluঞon to: Cats on the Prowl
object ChipShop {

def willServe(cat: Cat): Boolean =

if(cat.food == "Chips")

true

else

false

}

Return to the exercise

C.2.3 Soluঞon to: Directorial Debut

This exercise provides some hands on experience wriঞng Scala classes, fields and methods. The model soluঞon
is as follows:

class Director(

val firstName: String,

val lastName: String,

val yearOfBirth: Int) {

def name: String =

s"$firstName $lastName"

def copy(

firstName: String = this.firstName,

lastName: String = this.lastName,

yearOfBirth: Int = this.yearOfBirth): Director =

new Director(firstName, lastName, yearOfBirth)

}

class Film(

val name: String,

val yearOfRelease: Int,

val imdbRating: Double,

val director: Director) {

def directorsAge =

yearOfRelease - director.yearOfBirth

def isDirectedBy(director: Director) =

this.director == director

def copy(

name: String = this.name,

yearOfRelease: Int = this.yearOfRelease,

imdbRating: Double = this.imdbRating,

director: Director = this.director): Film =

new Film(name, yearOfRelease, imdbRating, director)

}

Return to the exercise

C.2.4 Soluঞon to: A Simple Counter

C.2. OBJECTS AND CLASSES 191

class Counter(val count: Int) {

def dec = new Counter(count - 1)

def inc = new Counter(count + 1)

}

Aside from pracঞcing with classes and objects, this exercise has a second goal—to think about why inc and
dec return a new Counter, rather than updaঞng the same counter directly.

Because val fields are immutable, we need to come up with some other way of propagaঞng the new value of
count. Methods that return new Counter objects give us a way of returning new state without the side-effects
of assignment. They also permit method chaining, allowing us to write whole sequences of updates in a single
expression

The use-case new Counter(10).inc.dec.inc.inc.count actually creates 5 instances of Counter before
returning its final Int value. You may be concerned about the extra memory and CPU overhead for such a
simple calculaঞon, but don’t be. Modern execuঞon environments like the JVM render the extra overhead of
this style of programming negligable in all but the most performance criঞcal code.

Return to the exercise

C.2.5 Soluঞon to: Counঞng Faster

The simplest soluঞon is this:

class Counter(val count: Int) {

def dec(amount: Int = 1) = new Counter(count - amount)

def inc(amount: Int = 1) = new Counter(count + amount)

}

However, this adds parentheses to inc and dec. If we omit the parameter we now have to provide an empty
pair of parentheses:

new Counter(10).inc

// error: missing arguments for method inc in class Counter;

// follow this method with `_' if you want to treat it as a partially applied function

// new Counter(10).inc

// ^

We can work around this usingmethod overloading to recreate our original parenthesis-free methods. Note that
overloading methods requires us to specify the return types:

class Counter(val count: Int) {

def dec: Counter = dec()

def inc: Counter = inc()

def dec(amount: Int = 1): Counter = new Counter(count - amount)

def inc(amount: Int = 1): Counter = new Counter(count + amount)

}

new Counter(10).inc.inc(10).count

// res: Int = 21

Return to the exercise

C.2.6 Soluঞon to: Addiঞonal Counঞng

192 APPENDIX C. SOLUTIONS TO EXERCISES

class Counter(val count: Int) {

def dec = new Counter(count - 1)

def inc = new Counter(count + 1)

def adjust(adder: Adder) =

new Counter(adder.add(count))

}

This is an interesঞng pa�ern that will become more powerful as we learn more features of Scala. We are using
Adders to capture computaࢼons and pass them to Counter. Remember from our earlier discussion thatmethods
are not expressions—they cannot be stored in fields or passed around as data. However, Adders are both objects
and computaࢼons.

Using objects as computaঞons is a common paradigm in object oriented programming languages. Consider, for
example, the classic ActionListener from Java’s Swing:

public class MyActionListener implements ActionListener {

public void actionPerformed(ActionEvent evt) {

// Do some computation

}

}

The disadvantage of objects like Adders and ActionListeners is that they are limited to use in one parঞcular
circumstance. Scala includes a much more general concept called funcࢼons that allow us to represent any kind
of computaঞon as an object. We will be introduced to some of the concepts behind funcঞons in this chapter.

Return to the exercise

C.2.7 Soluঞon to: When is a Funcঞon not a Funcঞon?

The main thing we’re missing is types, which are the way we properly abstract across values.

At the moment we can define a class called Adder to capture the idea of adding to a number, but that code isn’t
properly portable across codebases—other developers need to know about our specific class to use it.

We could define a library of common funcঞon types with names like Handler, Callback, Adder, BinaryAdder,
and so on, but this quickly becomes impracঞcal.

Later on we will see how Scala copes with this problem by defining a generic set of funcঞon types that we can
use in a wide variety of situaঞons.

Return to the exercise

C.2.8 Soluঞon to: Friendly Person Factory

Here is the code:

object Person {

def apply(name: String): Person = {

val parts = name.split(" ")

new Person(parts(0), parts(1))

}

}

And here it is in use:

C.2. OBJECTS AND CLASSES 193

Person.apply("John Doe").firstName // full method call

// res: String = John

Person("John Doe").firstName // sugared apply syntax

// res: String = John

Return to the exercise

C.2.9 Soluঞon to: Extended Body of Work

This exercise is inteded to providemore pracঞcewriঞng code. Themodel soluঞon, including the class definiঞons
from the previous secঞon, is now:

class Director(

val firstName: String,

val lastName: String,

val yearOfBirth: Int) {

def name: String =

s"$firstName $lastName"

def copy(

firstName: String = this.firstName,

lastName: String = this.lastName,

yearOfBirth: Int = this.yearOfBirth) =

new Director(firstName, lastName, yearOfBirth)

}

object Director {

def apply(firstName: String, lastName: String, yearOfBirth: Int): Director =

new Director(firstName, lastName, yearOfBirth)

def older(director1: Director, director2: Director): Director =

if (director1.yearOfBirth < director2.yearOfBirth) director1 else director2

}

class Film(

val name: String,

val yearOfRelease: Int,

val imdbRating: Double,

val director: Director) {

def directorsAge =

director.yearOfBirth - yearOfRelease

def isDirectedBy(director: Director) =

this.director == director

def copy(

name: String = this.name,

yearOfRelease: Int = this.yearOfRelease,

imdbRating: Double = this.imdbRating,

director: Director = this.director) =

new Film(name, yearOfRelease, imdbRating, director)

}

object Film {

def apply(

194 APPENDIX C. SOLUTIONS TO EXERCISES

name: String,

yearOfRelease: Int,

imdbRating: Double,

director: Director): Film =

new Film(name, yearOfRelease, imdbRating, director)

def newer(film1: Film, film2: Film): Film =

if (film1.yearOfRelease < film2.yearOfRelease) film1 else film2

def highestRating(film1: Film, film2: Film): Double = {

val rating1 = film1.imdbRating

val rating2 = film2.imdbRating

if (rating1 > rating2) rating1 else rating2

}

def oldestDirectorAtTheTime(film1: Film, film2: Film): Director =

if (film1.directorsAge > film2.directorsAge) film1.director else film2.director

}

Return to the exercise

C.2.10 Soluঞon to: Type or Value?

Type!—this code is defining a value prestige of type Film.

Return to the exercise

C.2.11 Soluঞon to: Type or Value? Part 2

Type!—this is a reference to the constructor of Film. The constructor is part of the class Film, which is a type.

Return to the exercise

C.2.12 Soluঞon to: Type or Value? Part 3

Value!—this is shorthand for:

Film.apply("Last Action Hero", 1993, mcTiernan)

apply is a method defined on the singleton object (or value) Film.

Return to the exercise

C.2.13 Soluঞon to: Type or Value? Part 4

Value!—newer is another method defined on the singleton object Film.

Return to the exercise

C.2. OBJECTS AND CLASSES 195

C.2.14 Soluঞon to: Type or Value? Part 5

Value!—This is tricky! You’d be forgiven for geমng this one wrong.

Film.type refers to the type of the singleton object Film, so in this case Film is a reference to a value. How-
ever, the whole fragment of code is a type.

Return to the exercise

C.2.15 Soluঞon to: Case Cats

Another simple finger exercise.

case class Cat(colour: String, food: String)

Return to the exercise

C.2.16 Soluঞon to: Roger Ebert Said it Best…

Case classes provide our copymethods and our applymethods and remove the need to write val‘ before each
constructor argument. The final codebase looks like this:

case class Director(firstName: String, lastName: String, yearOfBirth: Int) {

def name: String =

s"$firstName $lastName"

}

object Director {

def older(director1: Director, director2: Director): Director =

if (director1.yearOfBirth < director2.yearOfBirth) director1 else director2

}

case class Film(

name: String,

yearOfRelease: Int,

imdbRating: Double,

director: Director) {

def directorsAge =

yearOfRelease - director.yearOfBirth

def isDirectedBy(director: Director) =

this.director == director

}

object Film {

def newer(film1: Film, film2: Film): Film =

if (film1.yearOfRelease < film2.yearOfRelease) film1 else film2

def highestRating(film1: Film, film2: Film): Double = {

val rating1 = film1.imdbRating

val rating2 = film2.imdbRating

if (rating1 > rating2) rating1 else rating2

}

def oldestDirectorAtTheTime(film1: Film, film2: Film): Director =

if (film1.directorsAge > film2.directorsAge) film1.director else film2.director

196 APPENDIX C. SOLUTIONS TO EXERCISES

}

Not only is this code significantly shorter, it also provides us with equals methods, toString methods, and
pa�ern matching funcঞonality that will set us up for later exercises.

Return to the exercise

C.2.17 Soluঞon to: Case Class Counter
case class Counter(count: Int = 0) {

def dec = copy(count = count - 1)

def inc = copy(count = count + 1)

def adjust(adder: Adder) = copy(count = adder(count))

}

This is almost a trick exercise—there are very few differenceswith the previous implementaঞonHowever, noঞce
the extra funcঞonality we got for free:

Counter(0) // construct objects without `new`

// res: Counter = Counter(0)

Counter().inc // printout shows the value of `count`

// res: Counter = Counter(1)

Counter().inc.dec == Counter().dec.inc // semantic equality check

// res: Boolean = true

Return to the exercise

C.2.18 Soluঞon to: Applicaঞon, Applicaঞon, Applicaঞon

Here’s the code:

case class Person(firstName: String, lastName: String) {

def name = firstName + " " + lastName

}

object Person {

def apply(name: String): Person = {

val parts = name.split(" ")

apply(parts(0), parts(1))

}

}

Even though we are defining a companion object for Person, Scala’s case class code generator is sঞll working
as expected—it adds the auto-generated companion methods to the object we have defined, which is why we
need to place the class and companion in a single compilaঞon unit.

This means we end up with a companion object with an overloaded apply method with two possible type
signatures:

def apply(name: String): Person // and ...

def apply(firstName: String, lastName: String): Person

Return to the exercise

C.3. MODELLING DATAWITH TRAITS 197

C.2.19 Soluঞon to: Feed the Cats

We can start by wriঞng the skeleton suggested by the problem text.

object ChipShop {

def willServe(cat: Cat): Boolean =

cat match {

case Cat(???, ???, ???) => ???

}

}

As the return type is Boolean we know we need at least two cases, one for true and one for false. The text of
the exercise tells us what they should be: cats that prefer chips, and all other cats. We can implement this with
a literal pa�ern and an _ pa�ern.

object ChipShop {

def willServe(cat: Cat): Boolean =

cat match {

case Cat(_, "Chips") => true

case Cat(_, _) => false

}

}

Return to the exercise

C.2.20 Soluঞon to: Get Off My Lawn!

object Dad {

def rate(film: Film): Double =

film match {

case Film(_, _, _, Director("Clint", "Eastwood", _)) => 10.0

case Film(_, _, _, Director("John", "McTiernan", _)) => 7.0

case _ => 3.0

}

}

Pa�ern matching is a bit annoying in this case. Later on we’ll learn how we can use pa�ern matching to match
a parঞcular value, called a constant pa�ern.

Return to the exercise

C.3 Modelling Data with Traits

C.3.1 Soluঞon to: Cats, and More Cats

This is mostly a finger exercise to get you used to trait syntax but there are a few interesঞng things in the
soluঞon.

trait Feline {

def colour: String

def sound: String

}

case class Lion(colour: String, maneSize: Int) extends Feline {

val sound = "roar"

}

198 APPENDIX C. SOLUTIONS TO EXERCISES

case class Tiger(colour: String) extends Feline {

val sound = "roar"

}

case class Panther(colour: String) extends Feline {

val sound = "roar"

}

case class Cat(colour: String, food: String) extends Feline {

val sound = "meow"

}

Noঞce that sound is not defined as a constructor argument. Since it is a constant, it doesn’t make sense to give
users a chance to modify it. There is a lot of duplicaঞon in the definiঞon of sound. We could define a default
value in Feline like so

trait Feline {

def colour: String

def sound: String = "roar"

}

This is generally a bad pracঞce. If we define a default implementaঞon it should be an implementaঞon that is
suitable for all subtypes.

Another alternaঞve to define an intermediate type, perhaps called BigCat that defines sound as "roar". This
is a be�er soluঞon.

trait BigCat extends Feline {

val sound = "roar"

}

case class Tiger(...) extends BigCat

case class Lion(...) extends BigCat

case class Panther(...) extends BigCat

Return to the exercise

C.3.2 Soluঞon to: Shaping UpWith Traits

trait Shape {

def sides: Int

def perimeter: Double

def area: Double

}

case class Circle(radius: Double) extends Shape {

val sides = 1

val perimeter = 2 * math.Pi * radius

val area = math.Pi * radius * radius

}

case class Rectangle(width: Double, height: Double) extends Shape {

val sides = 4

val perimeter = 2 * width + 2 * height

val area = width * height

}

case class Square(size: Double) extends Shape {

val sides = 4

val perimeter = 4 * size

val area = size * size

C.3. MODELLING DATAWITH TRAITS 199

}

Return to the exercise

C.3.3 Soluঞon to: Shaping Up 2 (Da Streets)

The new code looks like this:

// trait Shape ...

// case class Circle ...

trait Rectangular extends Shape {

def width: Int

def height: Int

val sides = 4

val perimeter = 2*width + 2*height

val area = width*height

}

case class Square(val size: Int) extends Rectangular {

val width = size

val height = size

}

case class Rectangle(val width: Int, val height: Int) extends Rectangular

Return to the exercise

C.3.4 Soluঞon to: Prinঞng Shapes

object Draw {

def apply(shape: Shape): String = shape match {

case Rectangle(width, height) =>

s"A rectangle of width ${width}cm and height ${height}cm"

case Square(size) =>

s"A square of size ${size}cm"

case Circle(radius) =>

s"A circle of radius ${radius}cm"

}

}

Return to the exercise

C.3.5 Soluঞon to: The Color and the Shape

One soluঞon to this exercise is presented below. Remember that a lot of the implementaঞon details are
unimportant—the crucial aspects of a correct soluঞon are:

• There must be a sealed trait Color:

– The trait should contain three def methods for the RGB values.

200 APPENDIX C. SOLUTIONS TO EXERCISES

– The trait should contains the isLight method, defined in terms of the RGB values.

• There must be three objects represenঞng the predefined colours:

– Each object must extend Color.
– Each object should override the RGB values as vals.
– Marking the objects as final is opঞonal.
– Making the objects case objects is also opঞonal.

• There must be a class represenঞng custom colours:

– The class must extend Color.
– Marking the class final is opঞonal.
– Making the class a case class is opঞonal (although highly recommended).

• There should ideally be two methods in Draw:

– One method should accept a Color as a parameter and one a Shape.
– The method names are unimportant.
– Each method should perform a match on the supplied value and provide enough cases to cover
all possible subtypes.

• The whole codebase should compile and produce sensible values when tested!

// Shape uses Color so we define Color first:

sealed trait Color {

// We decided to store RGB values as doubles between 0.0 and 1.0.

//

// It is always good practice to define abstract members as `defs`

// so we can implement them with `defs`, `vals` or `vars`.

def red: Double

def green: Double

def blue: Double

// We decided to define a "light" colour as one with

// an average RGB of more than 0.5:

def isLight = (red + green + blue) / 3.0 > 0.5

def isDark = !isLight

}

final case object Red extends Color {

// Here we have implemented the RGB values as `vals`

// because the values cannot change:

val red = 1.0

val green = 0.0

val blue = 0.0

}

final case object Yellow extends Color {

// Here we have implemented the RGB values as `vals`

// because the values cannot change:

val red = 1.0

val green = 1.0

val blue = 0.0

}

final case object Pink extends Color {

// Here we have implemented the RGB values as `vals`

// because the values cannot change:

val red = 1.0

C.3. MODELLING DATAWITH TRAITS 201

val green = 0.0

val blue = 1.0

}

// The arguments to the case class here generate `val` declarations

// that implement the RGB methods from `Color`:

final case class CustomColor(

red: Double,

green: Double,

blue: Double) extends Color

// The code from the previous exercise comes across almost verbatim,

// except that we add a `color` field to `Shape` and its subtypes:

sealed trait Shape {

def sides: Int

def perimeter: Double

def area: Double

def color: Color

}

final case class Circle(radius: Double, color: Color) extends Shape {

val sides = 1

val perimeter = 2 * math.Pi * radius

val area = math.Pi * radius * radius

}

sealed trait Rectangular extends Shape {

def width: Double

def height: Double

val sides = 4

val perimeter = 2 * width + 2 * height

val area = width * height

}

final case class Square(size: Double, color: Color) extends Rectangular {

val width = size

val height = size

}

final case class Rectangle(

width: Double,

height: Double,

color: Color) extends Rectangular

// We decided to overload the `Draw.apply` method for `Shape` and

// `Color` on the basis that we may want to reuse the `Color` code

// directly elsewhere:

object Draw {

def apply(shape: Shape): String = shape match {

case Circle(radius, color) =>

s"A ${Draw(color)} circle of radius ${radius}cm"

case Square(size, color) =>

s"A ${Draw(color)} square of size ${size}cm"

case Rectangle(width, height, color) =>

s"A ${Draw(color)} rectangle of width ${width}cm and height ${height}cm"

}

def apply(color: Color): String = color match {

202 APPENDIX C. SOLUTIONS TO EXERCISES

// We deal with each of the predefined Colors with special cases:

case Red => "red"

case Yellow => "yellow"

case Pink => "pink"

case color => if(color.isLight) "light" else "dark"

}

}

// Test code:

Draw(Circle(10, Pink))

// returns "A pink circle of radius 10.0cm"

Draw(Rectangle(3, 4, CustomColor(0.4, 0.4, 0.6)))

// returns "A dark rectangle of width 3.0cm and height 4.0cm"

Return to the exercise

C.3.6 Soluঞon to: A Short Division Exercise

Here’s the code:

sealed trait DivisionResult

final case class Finite(value: Int) extends DivisionResult

final case object Infinite extends DivisionResult

object divide {

def apply(num: Int, den: Int): DivisionResult =

if(den == 0) Infinite else Finite(num / den)

}

divide(1, 0) match {

case Finite(value) => s"It's finite: ${value}"

case Infinite => s"It's infinite"

}

The result of divide.apply is a DivisionResult, which is a sealed traitwith two subtypes. The subtype
Finite is a case class encapsulঞng the result, but the subtype Infinite can simply be an object. We’ve
used a case object for parity with Finite.

The implementaঞon of divide.apply is simple - we perform a test and return a result. Note that we haven’t
annotated the method with a result type—Scala is capable of inferring the type DivisionResult as the least
upper bound of Infinite and Finite.

Finally, the match illustrates a case class pa�ern with the parentheses, and a case object pa�ern without.

Return to the exercise

C.3.7 Soluঞon to: Stop on a Dime

This is a direct applicaঞon of the sum type pa�ern.

sealed trait TrafficLight

final case object Red extends TrafficLight

final case object Green extends TrafficLight

C.3. MODELLING DATAWITH TRAITS 203

final case object Yellow extends TrafficLight

As there are fields or methods on the three cases, and thus there is no need to create than one instance of them,
I used case objects instead of case classes.

Return to the exercise

C.3.8 Soluঞon to: Calculator
sealed trait Calculation

final case class Success(result: Int) extends Calculation

final case class Failure(reason: String) extends Calculation

Return to the exercise

C.3.9 Soluঞon to: Water, Water, Everywhere

Crank the handle on the product and sum type pa�erns.

final case class BottledWater(size: Int, source: Source, carbonated: Boolean)

sealed trait Source

final case object Well extends Source

final case object Spring extends Source

final case object Tap extends Source

Return to the exercise

C.3.10 Soluঞon to: Traffic Lights

First with polymorphism:

sealed trait TrafficLight {

def next: TrafficLight

}

final case object Red extends TrafficLight {

def next: TrafficLight =

Green

}

final case object Green extends TrafficLight {

def next: TrafficLight =

Yellow

}

final case object Yellow extends TrafficLight {

def next: TrafficLight =

Red

}

Now with pa�ern matching:

sealed trait TrafficLight {

def next: TrafficLight =

this match {

case Red => Green

case Green => Yellow

case Yellow => Red

}

204 APPENDIX C. SOLUTIONS TO EXERCISES

}

final case object Red extends TrafficLight

final case object Green extends TrafficLight

final case object Yellow extends TrafficLight

In this case I think implemenঞng inside the class using pa�ern matching is best. Next doesn’t depend on any
external data and we probably only want one implementaঞon of it. Pa�ern matching makes the structure of
the state machine clearer than polymorphism.

Ulঞmately there are no hard-and-fast rules, and we must consider our design decisions in the context of the
larger program we are wriঞng.

Return to the exercise

C.3.11 Soluঞon to: Calculaঞon

Start by implemenঞng the framework the exercise calls for:

object Calculator {

def +(calc: Calculation, operand: Int): Calculation = ???

def -(calc: Calculation, operand: Int): Calculation = ???

}

Now apply the structural recursion pa�ern:

object Calculator {

def +(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => ???

case Failure(reason) => ???

}

def -(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => ???

case Failure(reason) => ???

}

}

To write the remaining bodies of the methods we can no longer rely on the pa�erns. However, a bit of thought
quickly leads us to the correct answer. We know that + and - are binary operaঞons; we need two integers to
use them. We also know we need to return a Calculation. Looking at the Failure cases, we don’t have two
Ints available. The only result that makes sense to return is Failure. On the Success side, we do have two
Ints and thus we should return Success. This gives us:

object Calculator {

def +(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => Success(result + operand)

case Failure(reason) => Failure(reason)

}

def -(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) => Success(result - operand)

case Failure(reason) => Failure(reason)

}

}

C.3. MODELLING DATAWITH TRAITS 205

Return to the exercise

C.3.12 Soluঞon to: Calculaঞon Part 2

The important points here are:

1. We have the same general pa�ern as before, matching on the Calculation first to implement our fail
fast behavior.

2. A[er matching on our Calculation we then check for division by zero.

def /(calc: Calculation, operand: Int): Calculation =

calc match {

case Success(result) =>

operand match {

case 0 => Failure("Division by zero")

case _ => Success(result / operand)

}

case Failure(reason) => Failure(reason)

}

Return to the exercise

C.3.13 Soluঞon to: Email

I would implement themethod in an EmailService object. There are a lot of details to dowith sending an email
that have nothing to do with our Visitor class. I would rather keep these details in a separate abstracঞon.

Return to the exercise

C.3.14 Soluঞon to: A List of Methods
sealed trait IntList {

def length: Int =

this match {

case End => 0

case Pair(hd, tl) => 1 + tl.length

}

}

final case object End extends IntList

final case class Pair(head: Int, tail: IntLIst) extends IntList

Return to the exercise

C.3.15 Soluঞon to: A List of Methods Part 2
sealed trait IntList {

def product: Int =

this match {

case End => 1

case Pair(hd, tl) => hd * tl.product

}

}

206 APPENDIX C. SOLUTIONS TO EXERCISES

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.3.16 Soluঞon to: A List of Methods Part 3
sealed trait IntList {

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

}

}

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.3.17 Soluঞon to: The Forest of Trees
sealed trait Tree

final case class Node(val l: Tree, val r: Tree) extends Tree

final case class Leaf(val elt: Int) extends Tree

Return to the exercise

C.3.18 Soluঞon to: The Forest of Trees Part 2
object TreeOps {

def sum(tree: Tree): Int =

tree match {

case Leaf(elt) => elt

case Node(l, r) => sum(l) + sum(r)

}

def double(tree: Tree): Tree =

tree match {

case Leaf(elt) => Leaf(elt * 2)

case Node(l, r) => Node(double(l), double(r))

}

}

sealed trait Tree {

def sum: Int

def double: Tree

}

final case class Node(val l: Tree, val r: Tree) extends Tree {

def sum: Int =

l.sum + r.sum

def double: Tree =

Node(l.double, r.double)

}

final case class Leaf(val elt: Int) extends Tree {

def sum: Int =

C.3. MODELLING DATAWITH TRAITS 207

elt

def double: Tree =

Leaf(elt * 2)

}

Return to the exercise

C.3.19 Soluঞon to: A Calculator

This is a straigh�orward algebraic data type.

sealed trait Expression

final case class Addition(left: Expression, right: Expression) extends Expression

final case class Subtraction(left: Expression, right: Expression) extends Expression

final case class Number(value: Double) extends Expression

Return to the exercise

C.3.20 Soluঞon to: A Calculator Part 2

I used pa�ern matching as it’s more compact and I feel this makes the code easier to read.

sealed trait Expression {

def eval: Double =

this match {

case Addition(l, r) => l.eval + r.eval

case Subtraction(l, r) => l.eval - r.eval

case Number(v) => v

}

}

final case class Addition(left: Expression, right: Expression) extends Expression

final case class Subtraction(left: Expression, right: Expression) extends Expression

final case class Number(value: Int) extends Expression

Return to the exercise

C.3.21 Soluঞon to: A Calculator Part 3
sealed trait Expression

final case class Addition(left: Expression, right: Expression) extends Expression

final case class Subtraction(left: Expression, right: Expression) extends Expression

final case class Division(left: Expression, right: Expression) extends Expression

final case class SquareRoot(value: Expression) extends Expression

final case class Number(value: Double) extends Expression

Return to the exercise

C.3.22 Soluঞon to: A Calculator Part 4

We did this in the previous secঞon.

208 APPENDIX C. SOLUTIONS TO EXERCISES

sealed trait Calculation

final case class Success(result: Double) extends Calculation

final case class Failure(reason: String) extends Calculation

Return to the exercise

C.3.23 Soluঞon to: A Calculator Part 5

All this repeated pa�ern matching gets very tedious, doesn’t it! We’re going to see how we can abstract this in
the next secঞon.

sealed trait Expression {

def eval: Calculation =

this match {

case Addition(l, r) =>

l.eval match {

case Failure(reason) => Failure(reason)

case Success(r1) =>

r.eval match {

case Failure(reason) => Failure(reason)

case Success(r2) => Success(r1 + r2)

}

}

case Subtraction(l, r) =>

l.eval match {

case Failure(reason) => Failure(reason)

case Success(r1) =>

r.eval match {

case Failure(reason) => Failure(reason)

case Success(r2) => Success(r1 - r2)

}

}

case Division(l, r) =>

l.eval match {

case Failure(reason) => Failure(reason)

case Success(r1) =>

r.eval match {

case Failure(reason) => Failure(reason)

case Success(r2) =>

if(r2 == 0)

Failure("Division by zero")

else

Success(r1 / r2)

}

}

case SquareRoot(v) =>

v.eval match {

case Success(r) =>

if(r < 0)

Failure("Square root of negative number")

else

Success(Math.sqrt(r))

case Failure(reason) => Failure(reason)

}

case Number(v) => Success(v)

}

}

final case class Addition(left: Expression, right: Expression) extends Expression

C.3. MODELLING DATAWITH TRAITS 209

final case class Subtraction(left: Expression, right: Expression) extends Expression

final case class Division(left: Expression, right: Expression) extends Expression

final case class SquareRoot(value: Expression) extends Expression

final case class Number(value: Int) extends Expression

Return to the exercise

C.3.24 Soluঞon to: JSON

There are many possible ways to model JSON. Here’s one, which is a fairly direct translaঞon of the railroad
diagrams in the JSON spec.

Json ::= JsNumber value:Double

| JsString value:String

| JsBoolean value:Boolean

| JsNull

| JsSequence

| JsObject

JsSequence ::= SeqCell head:Json tail:JsSequence

| SeqEnd

JsObject ::= ObjectCell key:String value:Json tail:JsObject

| ObjectEnd

Return to the exercise

C.3.25 Soluঞon to: JSON Part 2

This should be a mechanical process. This is the point of algebraic data types—we do the work in modelling the
data, and the code follows directly from that model.

sealed trait Json

final case class JsNumber(value: Double) extends Json

final case class JsString(value: String) extends Json

final case class JsBoolean(value: Boolean) extends Json

final case object JsNull extends Json

sealed trait JsSequence extends Json

final case class SeqCell(head: Json, tail: JsSequence) extends JsSequence

final case object SeqEnd extends JsSequence

sealed trait JsObject extends Json

final case class ObjectCell(key: String, value: Json, tail: JsObject) extends JsObject

final case object ObjectEnd extends JsObject

Return to the exercise

C.3.26 Soluঞon to: JSON Part 3

This is an applicaঞon of structural recursion, as all transformaঞons on algebraic data types are, with the wrinkle
that we have to treat the sequence types specially. Here is my soluঞon.

210 APPENDIX C. SOLUTIONS TO EXERCISES

sealed trait Json {

def print: String = {

def quote(s: String): String =

'"'.toString ++ s ++ '"'.toString

def seqToJson(seq: SeqCell): String =

seq match {

case SeqCell(h, t @ SeqCell(_, _)) =>

s"${h.print}, ${seqToJson(t)}"

case SeqCell(h, SeqEnd) => h.print

}

def objectToJson(obj: ObjectCell): String =

obj match {

case ObjectCell(k, v, t @ ObjectCell(_, _, _)) =>

s"${quote(k)}: ${v.print}, ${objectToJson(t)}"

case ObjectCell(k, v, ObjectEnd) =>

s"${quote(k)}: ${v.print}"

}

this match {

case JsNumber(v) => v.toString

case JsString(v) => quote(v)

case JsBoolean(v) => v.toString

case JsNull => "null"

case s @ SeqCell(_, _) => "[" ++ seqToJson(s) ++ "]"

case SeqEnd => "[]"

case o @ ObjectCell(_, _, _) => "{" ++ objectToJson(o) ++ "}"

case ObjectEnd => "{}"

}

}

}

final case class JsNumber(value: Double) extends Json

final case class JsString(value: String) extends Json

final case class JsBoolean(value: Boolean) extends Json

final case object JsNull extends Json

sealed trait JsSequence extends Json

final case class SeqCell(head: Json, tail: JsSequence) extends JsSequence

final case object SeqEnd extends JsSequence

sealed trait JsObject extends Json

final case class ObjectCell(key: String, value: Json, tail: JsObject) extends JsObject

final case object ObjectEnd extends JsObject

Return to the exercise

C.3.27 Soluঞon to: Music

My soluঞon models a very simplified version of Western music. My fundamental “atom” is the note, which
consists of a pitch and a duraঞon.

Note ::= pitch:Pitch duration:Duration

I’m assuming I have a data for Pitch represenঞng tones on the standard musical scale from C0 (about 16Hz) to
C8. Something like

Pitch ::= C0 | CSharp0 | D0 | DSharp0 | F0 | FSharp0 | ... | C8 | Rest

C.3. MODELLING DATAWITH TRAITS 211

Note that I included Rest as a pitch, so I can model silence.

We already seem some limitaঞons. I’m not modelling notes that fall outside the scale (microtones) or music
systems that use other scales. Furthermore, in most tuning systems flats and their enharmonic sharps (e.g. C-
sharp and D-flat) are not the same note, but I’m ignoring that disঞncঞon here.

We could break this representaঞon down further into a tone

Tone ::= C | CSharp | D | DSharp | F | FSharp | ... | B

and an octave

Octave ::= 0 | 1 | 2 | ... | 8

and then

Pitch ::= tone:Tone octave:Octave

Duraঞons are a mess in standard musical notaঞon. There are a bunch of named duraঞons (semitone, quaver,
etc.) along with dots and ঞed notes to represent other duraঞons. We can do be�er by simply saying our music
has an atomic unit of ঞme, which we’ll call a beat, and each duraঞon is zero or more beats.

Duration ::= 0 | 1 | 2 | ...

In other words, Duration is a natural number. In Scala we might model this with an Int, or create a type to
represent the addiঞonal constraint we put over Int.

Again, this representaঞon comes with limitaঞons. Namely we can’t represent music that doesn’t fit cleanly into
some division of ঞme—so called free ঞme music.

Finally we should get to means of composiঞon of notes. There are two main ways: we can play notes in
sequence or at the same ঞme.

Phrase ::= Sequence | Parallek

Sequence ::= SeqCell phrase:Phrase tail:Sequence

| SeqEnd

Parallel ::= ParCell phrase:Phrase tail:Parallel

| ParEnd

This representaঞon allows us to arbitrarily nest parallel and sequenঞal units of notes. We might prefer a nor-
malised representaঞon, such as

Sequence ::= SeqCell note:Note tail:Sequence

| SeqEnd

Parallel ::= ParCell sequence:Sequence tail:Parallel

| ParEnd

There are many things missing from this model. Some of them include:

212 APPENDIX C. SOLUTIONS TO EXERCISES

• We don’t model musical dynamics in any way. Notes can be louder or so[er, and volume can change
while a note is being played. Notes do not always have constant pitch, either. Pitch bends or slurs are
examples of changing pitches in a single note

• We haven’t modelled different instruments at all.

• We haven’t modelled effects, like echo and distorঞon, that make up an important part of modern music.

Return to the exercise

C.4 Sequencing Computaঞons

C.4.1 Soluঞon to: Generic List

This is an applicaঞon of the generic sum type pa�ern.

sealed trait LinkedList[A]

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.2 Soluঞon to: Working With Generic Types

This code is largely unchanged from the implementaঞon of length on IntList.

sealed trait LinkedList[A] {

def length: Int =

this match {

case Pair(hd, tl) => 1 + tl.length

case End() => 0

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.3 Soluঞon to: Working With Generic Types Part 2

This is another example of the standard structural recursion pa�ern. The important point is contains takes a
parameter of type A.

sealed trait LinkedList[A] {

def contains(item: A): Boolean =

this match {

case Pair(hd, tl) =>

if(hd == item)

true

else

tl.contains(item)

case End() => false

}

C.4. SEQUENCING COMPUTATIONS 213

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.4 Soluঞon to: Working With Generic Types Part 3

There are a few interesঞng things in this exercise. Possibly the easiest part is the use of the generic type as the
return type of the apply method.

Next up is the End case, which the hint suggested you through an Exception for. Strictly speaking we should
throw Java’s IndexOutOfBoundsException in this instance, but wewill shortly see a way to remove excepঞon
handling from our code altogether.

Finally we get to the actual structural recursion, which is perhaps the trickiest part. The key insight is that if the
index is zero, we’re selecঞng the current element, otherwise we subtract one from the index and recurse. We
can recursively define the integers in terms of addiঞon by one. For example, 3 = 2 + 1 = 1 + 1 + 1. Here we are
performing structural recursion on the list and on the integers.

sealed trait LinkedList[A] {

def apply(index: Int): A =

this match {

case Pair(hd, tl) =>

if(index == 0)

hd

else

tl(index - 1)

case End() =>

throw new Exception("Attempted to get element from an Empty list")

}

}

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.5 Soluঞon to: Working With Generic Types Part 4

sealed trait Result[A]

case class Success[A](result: A) extends Result[A]

case class Failure[A](reason: String) extends Result[A]

sealed trait LinkedList[A] {

def apply(index: Int): Result[A] =

this match {

case Pair(hd, tl) =>

if(index == 0)

Success(hd)

else

tl(index - 1)

case End() =>

Failure("Index out of bounds")

}

}

214 APPENDIX C. SOLUTIONS TO EXERCISES

final case class Pair[A](head: A, tail: LinkedList[A]) extends LinkedList[A]

final case class End[A]() extends LinkedList[A]

Return to the exercise

C.4.6 Soluঞon to: A Be�er Abstracঞon
def fold(end: Int, f: (Int, Int) => Int): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(f, end))

}

Return to the exercise

C.4.7 Soluঞon to: A Be�er Abstracঞon Part 2
sealed trait IntList {

def fold(end: Int, f: (Int, Int) => Int): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

def length: Int =

fold(0, (_, tl) => 1 + tl)

def product: Int =

fold(1, (hd, tl) => hd * tl)

def sum: Int =

fold(0, (hd, tl) => hd + tl)

}

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.4.8 Soluঞon to: A Be�er Abstracঞon Part 3

When using fold in polymorphic implementaঞons we have a lot of duplicaঞon; the polymorphic implementa-
ঞons without fold were simpler to write. The pa�ern matching implementaঞons benefited from fold as we
remove the duplicaঞon in the pa�ern matching.

In general fold makes a good interface for users outside the class, but not necessarily for use inside the class.

Return to the exercise

C.4.9 Soluঞon to: A Be�er Abstracঞon Part 4

The types tell us it won’t work. fold returns an Int and double returns an IntList. However the general
structure of double is captured by fold. This is apparent if we look at them side-by-side:

def double: IntList =

this match {

case End => End

case Pair(hd, tl) => Pair(hd * 2, tl.double)

C.4. SEQUENCING COMPUTATIONS 215

}

def fold(end: Int, f: (Int, Int) => Int): Int =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

If we could generalise the types of fold from Int to some general type then we could write double. And that,
dear reader, is what we turn to next.

Return to the exercise

C.4.10 Soluঞon to: A Be�er Abstracঞon Part 5

We want to generalise the return type of fold. Our starঞng point is

def fold(end: Int, f: (Int, Int) => Int): Int

Replacing the return type and tracing it back we arrive at

def fold[A](list: IntList, f: (Int, A) => A, end: A): A

where we’ve used a generic type on the method to capture the changing return type. With this we can imple-
ment double. When we try to do so we’ll see that type inference fails, so we have to give it a bit of help.

sealed trait IntList {

def fold[A](end: A, f: (Int, A) => A): A =

this match {

case End => end

case Pair(hd, tl) => f(hd, tl.fold(end, f))

}

def length: Int =

fold[Int](0, (_, tl) => 1 + tl)

def product: Int =

fold[Int](1, (hd, tl) => hd * tl)

def sum: Int =

fold[Int](0, (hd, tl) => hd + tl)

def double: IntList =

fold[IntList](End, (hd, tl) => Pair(hd * 2, tl))

}

final case object End extends IntList

final case class Pair(head: Int, tail: IntList) extends IntList

Return to the exercise

C.4.11 Soluঞon to: Tree

This is another recursive data type just like list. Follow the pa�erns and you should be ok.

sealed trait Tree[A] {

def fold[B](node: (B, B) => B, leaf: A => B): B

}

final case class Node[A](left: Tree[A], right: Tree[A]) extends Tree[A] {

def fold[B](node: (B, B) => B, leaf: A => B): B =

node(left.fold(node, leaf), right.fold(node, leaf))

}

216 APPENDIX C. SOLUTIONS TO EXERCISES

final case class Leaf[A](value: A) extends Tree[A] {

def fold[B](node: (B, B) => B, leaf: A => B): B =

leaf(value)

}

Return to the exercise

C.4.12 Soluঞon to: Tree Part 2

Note it is necessary to instanঞate the generic type variable for fold. Type inference fails in this case.

tree.fold[String]((a, b) => a + " " + b, str => str)

Return to the exercise

C.4.13 Soluঞon to: Pairs

If one type parameter is good, two type parameters are be�er:

case class Pair[A, B](one: A, two: B)

This is just the product type pa�ern we have seen before, but we introduce generic types.

Note that we don’t always need to specify the type parameters when we construct Pairs. The compiler will
a�empt to infer the types as usual wherever it can:

val pair = Pair("hi", 2)

// pair: Pair[String,Int] = Pair(hi,2)

Return to the exercise

C.4.14 Soluঞon to: Generic Sum Type

The code is an adaptaঞon of our invariant generic sum type pa�ern, with another type parameter:

sealed trait Sum[A, B]

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

Scala’s standard library has the generic sum type Either for two cases, but it does not have types for more
cases.

Return to the exercise

C.4.15 Soluঞon to: Maybe that Was a Mistake

We can apply our invariant generic sum type pa�ern and get

C.4. SEQUENCING COMPUTATIONS 217

sealed trait Maybe[A]

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

C.4.16 Soluঞon to: Generics versus Traits

Ulঞmately the decision is up to us. Different teams will adopt different programming styles. However, we look
at the properঞes of each approach to inform our choices:

Inheritance-based approaches—traits and classes—allow us to create permanent data structures with specific
types and names. We can name every field and method and implement use-case-specific code in each class.
Inheritance is therefore be�er suited to modelling significant aspects of our programs that are re-used in many
areas of our codebase.

Generic data structures—Tuples, Options, Eithers, and so on—are extremely broad and general purpose.
There are a wide range of predefined classes in the Scala standard library that we can use to quickly model
relaঞonships between data in our code. These classes are therefore be�er suited to quick, one-off pieces of
data manipulaঞon where defining our own types would introduce unnecessary verbosity to our codebase.

Return to the exercise

C.4.17 Soluঞon to: Folding Maybe

The code is very similar to the implementaঞon for LinkedList. I choose pa�ern matching in the base trait for
my soluঞon.

sealed trait Maybe[A] {

def fold[B](full: A => B, empty: B): B =

this match {

case Full(v) => full(v)

case Empty() => empty

}

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

C.4.18 Soluঞon to: Folding Sum

sealed trait Sum[A, B] {

def fold[C](left: A => C, right: B => C): C =

this match {

case Left(a) => left(a)

case Right(b) => right(b)

}

}

final case class Left[A, B](value: A) extends Sum[A, B]

final case class Right[A, B](value: B) extends Sum[A, B]

Return to the exercise

218 APPENDIX C. SOLUTIONS TO EXERCISES

C.4.19 Soluঞon to: Mapping Lists

These exercises just get you used to using map.

list.map(_ * 2)

list.map(_ + 1)

list.map(_ / 3)

Return to the exercise

C.4.20 Soluঞon to: Mapping Maybe

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] =

this match {

case Full(v) => fn(v)

case Empty() => Empty[B]()

}

def map[B](fn: A => B): Maybe[B] =

this match {

case Full(v) => Full(fn(v))

case Empty() => Empty[B]()

}

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

C.4.21 Soluঞon to: Mapping Maybe Part 2

sealed trait Maybe[A] {

def flatMap[B](fn: A => Maybe[B]): Maybe[B] =

this match {

case Full(v) => fn(v)

case Empty() => Empty[B]()

}

def map[B](fn: A => B): Maybe[B] =

flatMap[B](v => Full(fn(v)))

}

final case class Full[A](value: A) extends Maybe[A]

final case class Empty[A]() extends Maybe[A]

Return to the exercise

C.4.22 Soluঞon to: Sequencing Computaঞons

list.flatMap(x => List(x, -x))

Return to the exercise

C.4.23 Soluঞon to: Sequencing Computaঞons Part 2

C.4. SEQUENCING COMPUTATIONS 219

list.map(maybe => maybe flatMap { x => if(x % 2 == 0) Full(x) else Empty })

Return to the exercise

C.4.24 Soluঞon to: Sum
sealed trait Sum[A, B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

}

final case class Failure[A, B](value: A) extends Sum[A, B]

final case class Success[A, B](value: B) extends Sum[A, B]

Return to the exercise

C.4.25 Soluঞon to: Sum Part 2
sealed trait Sum[+A, +B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

def map[C](f: B => C): Sum[A, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => Success(f(v))

}

}

Return to the exercise

C.4.26 Soluঞon to: Sum Part 3
sealed trait Sum[A, B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

def map[C](f: B => C): Sum[A, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => Success(f(v))

}

def flatMap[C](f: B => Sum[A, C]) =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

220 APPENDIX C. SOLUTIONS TO EXERCISES

final case class Failure[A, B](value: A) extends Sum[A, B]

final case class Success[A, B](value: B) extends Sum[A, B]

Return to the exercise

C.4.27 Soluঞon to: Covariant Sum
sealed trait Sum[+A, +B]

final case class Failure[A](value: A) extends Sum[A, Nothing]

final case class Success[B](value: B) extends Sum[Nothing, B]

Return to the exercise

C.4.28 Soluঞon to: Some sort of flatMap

sealed trait Sum[+A, +B] {

def flatMap[C](f: B => Sum[A, C]): Sum[A, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

final case class Failure[A](value: A) extends Sum[A, Nothing]

final case class Success[B](value: B) extends Sum[Nothing, B]

Return to the exercise

C.4.29 Soluঞon to: Covariance and Contravariance

The only funcঞon that will work is the the funcঞon of type Animal => Purr. The Siamese => Purr funcঞon
will not work because theOswald is a not a Siamese cat. The Animal => Sound funcঞonwill not work because
we require the return type is a CatSound.

Return to the exercise

C.4.30 Soluঞon to: Calculator Again

sealed trait Sum[+A, +B] {

def fold[C](error: A => C, success: B => C): C =

this match {

case Failure(v) => error(v)

case Success(v) => success(v)

}

def map[C](f: B => C): Sum[A, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => Success(f(v))

}

def flatMap[AA >: A, C](f: B => Sum[AA, C]): Sum[AA, C] =

this match {

case Failure(v) => Failure(v)

case Success(v) => f(v)

}

}

C.5. COLLECTIONS 221

final case class Failure[A](value: A) extends Sum[A, Nothing]

final case class Success[B](value: B) extends Sum[Nothing, B]

Return to the exercise

C.4.31 Soluঞon to: Calculator Again Part 2

Here’s my soluঞon. I used a helper method lift2 to “li[” a funcঞon into the result of two expressions. I hope
you’ll agree the code is both more compact and easier to read than our previous soluঞon!

sealed trait Expression {

def eval: Sum[String, Double] =

this match {

case Addition(l, r) => lift2(l, r, (left, right) => Success(left + right))

case Subtraction(l, r) => lift2(l, r, (left, right) => Success(left - right))

case Division(l, r) => lift2(l, r, (left, right) =>

if(right == 0)

Failure("Division by zero")

else

Success(left / right)

)

case SquareRoot(v) =>

v.eval flatMap { value =>

if(value < 0)

Failure("Square root of negative number")

else

Success(Math.sqrt(value))

}

case Number(v) => Success(v)

}

def lift2(l: Expression, r: Expression, f: (Double, Double) => Sum[String, Double]) =

l.eval flatMap { left =>

r.eval flatMap { right =>

f(left, right)

}

}

}

final case class Addition(left: Expression, right: Expression) extends Expression

final case class Subtraction(left: Expression, right: Expression) extends Expression

final case class Division(left: Expression, right: Expression) extends Expression

final case class SquareRoot(value: Expression) extends Expression

final case class Number(value: Int) extends Expression

Return to the exercise

C.5 Collecঞons

C.5.1 Soluঞon to: Documentaঞon

The synonym for length is size.

The methods for retrieving the first element in a list are: - head —returns A, throwing an excepঞon if the list is
empty - headOption—returns Option[A], returning None if the list is empty

The mkString method allows us to quickly display a Seq as a String:

222 APPENDIX C. SOLUTIONS TO EXERCISES

Seq(1, 2, 3).mkString(",") // returns "1,2,3"

Seq(1, 2, 3).mkString("[", ", ", "]"") // returns "[1, 2, 3]"

Options contain two methods, isDefined and isEmpty, that we can use as a quick test:

Some(123).isDefined // returns true

Some(123).isEMpty // returns false

None.isDefined // returns false

None.isEMpty // returns true

Return to the exercise

C.5.2 Soluঞon to: Animals
val animals = Seq("cat", "dog", "penguin")

animals: Seq[String] = List(cat, dog, penguin)

Return to the exercise

C.5.3 Soluঞon to: Animals Part 2
"mouse" +: animals :+ "tyrannosaurus"

// res: Seq[String] = List(mouse, cat, dog, penguin, tyrannosaurus)

Return to the exercise

C.5.4 Soluঞon to: Animals Part 3

The returned sequence has type Seq[Any]. It is perfectly valid to return a supertype (in this case Seq[Any])
from a non-destrucঞve operaঞon.

2 +: animals

// res: Seq[Any] = List(2, cat, dog, penguin)

You might expect a type error here, but Scala is capable of determining the least upper bound of String and
Int and seমng the type of the returned sequence accordingly.

In most real code appending an Int to a Seq[String] would be an error. In pracঞce, the type annotaঞons we
place on methods and fields protect against this kind of type error, but be aware of this behaviour just in case.

Return to the exercise

C.5.5 Soluঞon to: Intranet Movie Database

We use `filter` because we are expecting more than one result:

def directorsWithBackCatalogOfSize(numberOfFilms: Int): Seq[Director] =

directors.filter(_.films.length > numberOfFilms)

Return to the exercise

C.5. COLLECTIONS 223

C.5.6 Soluঞon to: Intranet Movie Database Part 2

We use find because we are expecঞng at most one result. This soluঞon will return the first director found who
matches the criteria of the search:

def directorBornBefore(year: Int): Option[Director] =

directors.find(_.yearOfBirth < year)

The Option type is discussed in more detail later this chapter.

Return to the exercise

C.5.7 Soluঞon to: Intranet Movie Database Part 3

This soluঞon performs each part of the query separately and uses filter and contains to calculate the inter-
secঞon of the results:

def directorBornBeforeWithBackCatalogOfSize(year: Int, numberOfFilms: Int): Seq[Director] = {

val byAge = directors.filter(_.yearOfBirth < year)

val byFilms = directors.filter(_.films.length > numberOfFilms)

byAge.filter(byFilms.contains)

}

Return to the exercise

C.5.8 Soluঞon to: Intranet Movie Database Part 4

Here is one soluঞon. Note that sorঞng by ascending age is the same as sorঞng by descending year of birth:

def directorsSortedByAge(ascending: Boolean = true) =

if(ascending) {

directors.sortWith((a, b) => a.yearOfBirth < b.yearOfBirth)

} else {

directors.sortWith((a, b) => a.yearOfBirth > b.yearOfBirth)

}

Because Scala is a funcঞonal language, we can also factor our code as follows:

def directorsSortedByAge(ascending: Boolean = true) = {

val comparator =

if(ascending) {

(a, b) => a.yearOfBirth < b.yearOfBirth

} else {

(a, b) => a.yearOfBirth > b.yearOfBirth

}

directors.sortWith(comparator)

}

Here is a final refactoring that is slightly less efficient because it rechecks the value of ascending mulঞple
ঞmes.

224 APPENDIX C. SOLUTIONS TO EXERCISES

def directorsSortedByAge(ascending: Boolean = true) =

directors.sortWith { (a, b) =>

if(ascending) {

a.yearOfBirth < b.yearOfBirth

} else {

a.yearOfBirth > b.yearOfBirth

}

}

Note the use of braces instead of parentheses on the call to sortWith in the last example. We can use this
syntax on any method call of one argument to give it a control-structure-like look and feel.

Return to the exercise

C.5.9 Soluঞon to: Heroes of the Silver Screen
nolan.films.map(_.name)

Return to the exercise

C.5.10 Soluঞon to: Heroes of the Silver Screen Part 2
directors.flatMap(director => director.films.map(film => film.name))

Return to the exercise

C.5.11 Soluঞon to: Heroes of the Silver Screen Part 3

There are a number of ways to do this. We can sort the list of films and then retrieve the smallest element.

mcTiernan.films.sortWith { (a, b) =>

a.yearOfRelease < b.yearOfRelease

}.headOption

We can also do this by using a fold.

mcTiernan.films.foldLeft(Int.MaxValue) { (current, film) =>

math.min(current, film.yearOfRelease)

}

Return to the exercise

C.5.12 Soluঞon to: Heroes of the Silver Screen Part 4
directors.

flatMap(director => director.films).

sortWith((a, b) => a.imdbRating > b.imdbRating)

Return to the exercise

C.5. COLLECTIONS 225

C.5.13 Soluঞon to: Heroes of the Silver Screen Part 5

We cache the list of films in a variable because we use it twice—once to calculate the sum of the raঞngs and
once to fetch the number of films:

val films = directors.flatMap(director => director.films)

films.foldLeft(0)((a, b) => a.imdbRating + b.imdbRating) / films.length

Return to the exercise

C.5.14 Soluঞon to: Heroes of the Silver Screen Part 6

Println is used for its side-effects so we don’t need to accumulate a result—we use println as a simple iterator:

directors.foreach { director =>

director.films.foreach { film =>

println(s"Tonight! ${film.name} by ${director.name}!")

}

}

Return to the exercise

C.5.15 Soluঞon to: Heroes of the Silver Screen Part 7

Here’s the soluঞon:

directors

.flatMap(director => director.films)

.sortWith((a, b) => a.yearOfRelease < b.yearOfRelease)

.headOption

Return to the exercise

C.5.16 Soluঞon to: Do-It-Yourself

This is another fold. We have a Seq[Int], the minimum operaঞon is (Int, Int) => Int, and we want an
Int. The challenge is to find the zero value.

What is the idenঞty for min so that min(x, identity) = x. It is posiঞve infinity, which in Scala we can write
as Int.MaxValue (see, fixed width numbers do have benefits).

Thus the soluঞon is:

def smallest(seq: Seq[Int]): Int =

seq.foldLeft(Int.MaxValue)(math.min)

Return to the exercise

226 APPENDIX C. SOLUTIONS TO EXERCISES

C.5.17 Soluঞon to: Do-It-Yourself Part 2

Once again we follow the same pa�ern. The types are:

1. We have a Seq[Int]
2. We want a Seq[Int]
3. Construcঞng the operaঞonwewant to use requires a bit more thought. The hint is to use contains. We
can keep a sequence of the unique elements we’ve seen so far, and use contains to test if the sequence
contains the current element. If we have seen the element we don’t add it, otherwise we do. In code

def insert(seq: Seq[Int], elt: Int): Seq[Int] = {

if(seq.contains(elt))

seq

else

elt +: seq

}

We these three pieces we can solve the problem. Looking at the type table we see we want a fold. Once again
we must find the idenঞty element. In this case the empty sequence is what we want. Why so? Think about
what the answer should be if we try to find the unique elements of the empty sequence.

Thus the soluঞon is

def insert(seq: Seq[Int], elt: Int): Seq[Int] = {

if(seq.contains(elt))

seq

else

elt +: seq

}

def unique(seq: Seq[Int]): Seq[Int] = {

seq.foldLeft(Seq.empty[Int]){ insert _ }

}

unique(Seq(1, 1, 2, 4, 3, 4))

Note how I created the empty sequence. I could have wri�en Seq[Int]() but in both cases I need to supply
a type (Int) to help the type inference along.

Return to the exercise

C.5.18 Soluঞon to: Do-It-Yourself Part 3

In this exercise, and the ones that follow, using the types are parঞcularly important. Start by wriঞng down the
type of reverse.

def reverse[A, B](seq: Seq[A], f: A => B): Seq[B] = {

???

}

The hint says to use foldLeft, so let’s go ahead and fill in the body as far as we can.

C.5. COLLECTIONS 227

def reverse[A](seq: Seq[A]): Seq[A] = {

seq.foldLeft(???){ ??? }

}

We need to work out the funcঞon to provide to foldLeft and the zero or idenঞty element. For the funcঞon,
the type of foldLeft requires it is (Seq[A], A) => Seq[A]. If we flip the types around the +: method on
Seq has the right types.

For the zero element we know that it must have the same type as the return type of reverse (because the
result of the fold is the result of reverse). Thus it’s a Seq[A]. Which sequence? There are a few ways to
answer this:

• The only Seq[A] we can create in this method, before we know what A is, is the empty sequence
Seq.empty[A].

• The idenঞty element is one such that x +: zero = Seq(x). Again this must be the empty sequence.

So we now we can fill in the answer.

def reverse[A](seq: Seq[A]): Seq[A] = {

seq.foldLeft(Seq.empty[A]){ (seq, elt) => elt +: seq }

}

Return to the exercise

C.5.19 Soluঞon to: Do-It-Yourself Part 4

Follow the same process as before: write out the type of the method we need to create, and fill in what we
know. We start with map and foldRight.

def map[A, B](seq: Seq[A], f: A => B): Seq[B] = {

seq.foldRight(???){ ??? }

}

As usual we need to fill in the zero element and the funcঞon. The zero element must have type Seq[B], and the
funcঞon has type (A, Seq[B]) => Seq[B]). The zero element is straigh�orward: Seq.empty[B] is the only
sequence we can construct of type Seq[B]. For the funcঞon, we clearly have to convert that A to a B somehow.
There is only one way to do that, which is with the funcঞon supplied to map. We then need to add that B to
our Seq[B], for which we can use the +: method. This gives us our final result.

def map[A, B](seq: Seq[A], f: A => B): Seq[B] = {

seq.foldRight(Seq.empty[B]){ (elt, seq) => f(elt) +: seq }

}

Return to the exercise

C.5.20 Soluঞon to: Do-It-Yourself Part 5

Once again, write out the skeleton and then fill in the details using the types. We start with

228 APPENDIX C. SOLUTIONS TO EXERCISES

def foldLeft[A, B](seq: Seq[A], zero: B, f: (B, A) => B): B = {

seq.foreach { ??? }

}

Let’s look at what we have need to fill in. foreach returns Unit but we need to return a B. foreach takes a
funcঞon of type A => Unit but we only have a (B, A) => B available. The A can come from foreach and by
now we know that the B is the intermediate result. We have the hint to use mutable state and we know that
we need to keep a B around and return it, so let’s fill that in.

def foldLeft[A, B](seq: Seq[A], zero: B, f: (B, A) => B): B = {

var result: B = ???

seq.foreach { (elt: A) => ??? }

result

}

At this point we can just follow the types. result must be iniঞally assigned to the value of zero as that is the
only Bwe have. The body of the funcঞon we pass to foreachmust call fwith result and elt. This returns a B
which we must store somewhere—the only place we have to store it is in result. So the final answer becomes

def foldLeft[A, B](seq: Seq[A], zero: B, f: (B, A) => B): B = {

var result = zero

seq.foreach { elt => result = f(result, elt) }

result

}

Return to the exercise

C.5.21 Soluঞon to: Exercises
for {

film <- nolan.films

} yield film.name

Return to the exercise

C.5.22 Soluঞon to: Exercises Part 2
for {

director <- directors

film <- director.films

} yield film.name

Return to the exercise

C.5.23 Soluঞon to: Exercises Part 3

This one’s a li�le trickier. We have to calculate the complete list of films first before sorঞng themwith sortWith.
Precedence rules require us to wrap the whole for / yield expression in parentheses to achieve this in one
expression:

C.5. COLLECTIONS 229

(for {

director <- directors

film <- director.films

} yield film).sortWith((a, b) => a.imdbRating > b.imdbRating)

Many developers prefer to use a temporary variable to make this code ঞdier:

val films = for {

director <- directors

film <- director.films

} yield film

films sortWith { (a, b) =>

a.imdbRating > b.imdbRating

}

Return to the exercise

C.5.24 Soluঞon to: Exercises Part 4

We can drop the yield keyword from the for expression to achieve foreach-like semanঞcs:

for {

director <- directors

film <- director.films

} println(s"Tonight! ${film.name} by ${director.name}!")

Return to the exercise

C.5.25 Soluঞon to: Adding Things

We can reuse code from the text above for this:

def addOptions(opt1: Option[Int], opt2: Option[Int]) =

for {

a <- opt1

b <- opt2

} yield a + b

Return to the exercise

C.5.26 Soluঞon to: Adding Things Part 2

The pa�ern is to use flatMap for all clauses except the innermost, which becomes a map:

def addOptions2(opt1: Option[Int], opt2: Option[Int]) =

opt1 flatMap { a =>

opt2 map { b =>

a + b

}

}

Return to the exercise

230 APPENDIX C. SOLUTIONS TO EXERCISES

C.5.27 Soluঞon to: Adding All of the Things

For comprehensions can have as many clauses as we want so all we need to do is add an extra line to the
previous soluঞon:

def addOptions(opt1: Option[Int], opt2: Option[Int], opt3: Option[Int]) =

for {

a <- opt1

b <- opt2

c <- opt3

} yield a + b + c

Return to the exercise

C.5.28 Soluঞon to: Adding All of the Things Part 2

Here we can start to see the simplicity of for comprehensions:

def addOptions2(opt1: Option[Int], opt2: Option[Int], opt3: Option[Int]) =

opt1 flatMap { a =>

opt2 flatMap { b =>

opt3 map { c =>

a + b + c

}

}

}

Return to the exercise

C.5.29 Soluঞon to: A(nother) Short Division Exercise

We saw this code in the Traits chapter when wewrote the DivisionResult class. The implementaঞon is much
simpler now we can use Option to do the heavy li[ing:

def divide(numerator: Int, denominator: Int) =

if(denominator < 1) None else Some(numerator / denominator)

Return to the exercise

C.5.30 Soluঞon to: A(nother) Short Division Exercise Part 2

In this example the divide operaঞon returns an Option[Int] instead of an Int. In order to process the result
we need to move the calculaঞon from the yield block to a for-clause:

def divideOptions(numerator: Option[Int], denominator: Option[Int]) =

for {

a <- numerator

b <- denominator

c <- divide(a, b)

} yield c

Return to the exercise

C.5. COLLECTIONS 231

C.5.31 Soluঞon to: A Simple Calculator

The trick to this one is realising that each clause in the for comprehension can contain an enঞre block of Scala
code:

def calculator(operand1: String, operator: String, operand2: String): Unit = {

val result = for {

a <- readInt(operand1)

b <- readInt(operand2)

ans <- operator match {

case "+" => Some(a + b)

case "-" => Some(a - b)

case "*" => Some(a * b)

case "/" => divide(a, b)

case _ => None

}

} yield ans

ans match {

case Some(number) => println(s"The answer is $number!")

case None => println(s"Error calculating $operand1 $operator $operand2")

}

}

Another approach involves factoring the calculaঞon part out into its own private funcঞon:

def calculator(operand1: String, operator: String, operand2: String): Unit = {

def calcInternal(a: Int, b: Int) =

operator match {

case "+" => Some(a + b)

case "-" => Some(a - b)

case "*" => Some(a * b)

case "/" => divide(a, b)

case _ => None

}

val result = for {

a <- readInt(operand1)

b <- readInt(operand2)

ans <- calcInternal(a, b)

} yield ans

ans match {

case Some(number) => println(s"The answer is $number!")

case None => println(s"Error calculating $operand1 $operator $operand2")

}

}

Return to the exercise

C.5.32 Soluঞon to: A Simple Calculator Part 2

This version of the code is much clearer if we factor out the calculaঞon part into its own funcঞon. Without this
it would be very hard to read:

232 APPENDIX C. SOLUTIONS TO EXERCISES

def calculator(operand1: String, operator: String, operand2: String): Unit = {

def calcInternal(a: Int, b: Int) =

operator match {

case "+" => Some(a + b)

case "-" => Some(a - b)

case "*" => Some(a * b)

case "/" => divide(a, b)

case _ => None

}

val result =

readInt(operand1) flatMap { a =>

readInt(operand2) flatMap { b =>

calcInternal(a, b) map { result =>

result

}

}

}

result match {

case Some(number) => println(s"The answer is $number!")

case None => println(s"Error calculating $operand1 $operator $operand2")

}

}

Return to the exercise

C.5.33 Soluঞon to: Adding All the Things ++

for {

x <- opt1

y <- opt2

z <- opt3

} yield x + y + z

for {

x <- seq1

y <- seq2

z <- seq3

} yield x + y + z

for {

x <- try1

y <- try2

z <- try3

} yield x + y + z

How’s that for a cut-and-paste job?

Return to the exercise

C.5.34 Soluঞon to: Favorites

The person may or may not be a key in the favoriteColors map so the funcঞon should return an Option
result:

C.5. COLLECTIONS 233

def favoriteColor(person: String): Option[String] =

favoriteColours.get(person)

Return to the exercise

C.5.35 Soluঞon to: Favorites Part 2

Now we have a default value we can return a String instead of an Option[String]:

def favoriteColor(person: String): String =

favoriteColours.get(person).getOrElse("beige")

Return to the exercise

C.5.36 Soluঞon to: Favorites Part 3

We can write this one using foreach or a for comprehension:

def printColors = for {

person <- people

} println(s"${person}'s favorite color is ${favoriteColor(person)}!")

or:

def printColors = people foreach { person =>

println(s"${person}'s favorite color is ${favoriteColor(person)}!")

}

Return to the exercise

C.5.37 Soluঞon to: Favorites Part 4

Here we write a generic method using a type parameter:

def lookup[A](name: String, values: Map[String, A]) =

values get name

Return to the exercise

C.5.38 Soluঞon to: Favorites Part 5

First we find the oldest person, then we look up the answer:

val oldest: Option[String] =

people.foldLeft(Option.empty[String]) { (older, person) =>

if(ages.getOrElse(person, 0) > older.flatMap(ages.get).getOrElse(0)) {

Some(person)

} else {

older

}

}

val favorite: Option[String] =

for {

234 APPENDIX C. SOLUTIONS TO EXERCISES

oldest <- oldest

color <- favoriteColors.get(oldest)

} yield color

Return to the exercise

C.5.39 Soluঞon to: Union of Sets

As always, start by wriঞng out the types and then follow the types to fill-in the details.

def union[A](set1: Set[A], set2: Set[A]): Set[A] = {

???

}

We need to think of an algorithm for compuঞng the union. We can start with one of the sets and add the
elements from the other set to it. The result will be the union. What types does this result in? Our result
has type Set[A] and we need to add every A from the two sets to our result, which is an operaঞon with type
(Set[A], A) => Set[A]. This means we need a fold. Since order is not important any fold will do.

def union[A](set1: Set[A], set2: Set[A]): Set[A] = {

set1.foldLeft(set2){ (set, elt) => (set + elt) }

}

Return to the exercise

C.5.40 Soluঞon to: Union of Maps

The soluঞon follows the same pa�ern as the union for sets, but here we have to handle adding the values as
well.

def union[A](map1: Map[A, Int], map2: Map[A, Int]): Map[A, Int] = {

map1.foldLeft(map2){ (map, elt) =>

val (k, v) = elt

val newV = map.getOrElse(k, v)

map + (k -> newV)

}

}

Return to the exercise

C.5.41 Soluঞon to: Generic Union

With the tools we’ve seen far, we could add another funcঞon parameter like so:

def union[A, B](map1: Map[A, B], map2: Map[A, B], add: (B, B) => B): Map[A, B] = {

map1.foldLeft(map2){ (map, elt) =>

val (k, v) = elt

val newV = map.get(k).map(v2 => add(v, v2)).getOrElse(v)

map + (k -> newV)

}

}

Later we’ll see a nicer way to do this using type classes.

Return to the exercise

C.5. COLLECTIONS 235

C.5.42 Soluঞon to: RandomWords

The following code will compute all possible sentences. The equivalent with explicit flatMap and map would
also work.

Note that flatMap has more power than we need for this example. We could use the subject to alter how
we choose the verb, for example. We’ll use this ability in the next exercise.

val subjects = List("Noel", "The cat", "The dog")

val verbs = List("wrote", "chased", "slept on")

val objects = List("the book", "the ball", "the bed")

def allSentences: List[(String, String, String)] =

for {

subject <- subjects

verb <- verbs

obj <- objects

} yield (subject, verb, obj)

Return to the exercise

C.5.43 Soluঞon to: RandomWords Part 2

We’re now using the full power of flatMap to make decisions in our code that are dependent on what has
happened before.

def verbsFor(subject: String): List[String] =

subject match {

case "Noel" => List("wrote", "chased", "slept on")

case "The cat" => List("meowed at", "chased", "slept on")

case "The dog" => List("barked at", "chased", "slept on")

}

def objectsFor(verb: String): List[String] =

verb match {

case "wrote" => List("the book", "the letter", "the code")

case "chased" => List("the ball", "the dog", "the cat")

case "slept on" => List("the bed", "the mat", "the train")

case "meowed at" => List("Noel", "the door", "the food cupboard")

case "barked at" => List("the postman", "the car", "the cat")

}

def allSentencesConditional: List[(String, String, String)] =

for {

subject <- subjects

verb <- verbsFor(subject)

obj <- objectsFor(verb)

} yield (subject, verb, obj)

Return to the exercise

C.5.44 Soluঞon to: Probabiliঞes

There are no subtypes involved here, so a simple final case class will do. We wrap the List[(A,

Double)] within a class so we can encapsulate manipulaঞng the probabiliঞes—external code can view the
probabiliঞes but probably shouldn’t be directly working with them.

236 APPENDIX C. SOLUTIONS TO EXERCISES

final case class Distribution[A](events: List[(A, Double)])

Return to the exercise

C.5.45 Soluঞon to: Probabiliঞes Part 2

As per Scala convenঞon, convenience constructors should live on the companion object.

object Distribution {

def uniform[A](atoms: List[A]): Distribution[A] = {

val p = 1.0 / atoms.length

Distribution(atoms.map(a => a -> p))

}

}

Return to the exercise

C.5.46 Soluঞon to: Probabiliঞes Part 3

We need flatMap and map. The signatures follow the pa�erns that flatMap and map always have:

def flatMap[B](f: A => Distribution[B]): Distribution[B]

and

def map[B](f: A => B): Distribution[B]

Return to the exercise

C.5.47 Soluঞon to: Probabiliঞes Part 4

Implemenঞng map merely requires we follow the types.

final case class Distribution[A](events: List[(A, Double)]) {

def map[B](f: A => B): Distribution[B] =

Distribution(events map { case (a, p) => f(a) -> p })

}

Return to the exercise

C.5.48 Soluঞon to: Probabiliঞes Part 5

Once we know how to combine probabiliঞes we just have to follow the types. I’ve decided to normalise the
probabiliঞes a[er flatMap as it helps avoid numeric underflow, which can occur in complex models. An alter-
naঞve is to use log-probabiliঞes, replacing mulঞplicaঞon with addiঞon.

final case class Distribution[A](events: List[(A, Double)]) {

def map[B](f: A => B): Distribution[B] =

Distribution(events map { case (a, p) => f(a) -> p })

def flatMap[B](f: A => Distribution[B]): Distribution[B] =

Distribution(events flatMap { case (a, p1) =>

f(a).events map { case (b, p2) => b -> (p1 * p2) }

}).compact.normalize

C.5. COLLECTIONS 237

def normalize: Distribution[A] = {

val totalWeight = (events map { case (a, p) => p }).sum

Distribution(events map { case (a,p) => a -> (p / totalWeight) })

}

def compact: Distribution[A] = {

val distinct = (events map { case (a, p) => a }).distinct

def prob(a: A): Double =

(events filter { case (x, p) => x == a } map { case (a, p) => p }).sum

Distribution(distinct map { a => a -> prob(a) })

}

}

object Distribution {

def uniform[A](atoms: List[A]): Distribution[A] = {

val p = 1.0 / atoms.length

Distribution(atoms.map(a => a -> p))

}

}

Return to the exercise

C.5.49 Soluঞon to: Examples

First I constructed the model

// We assume cooked food makes delicious smells with probability 1.0, and raw

// food makes no smell with probability 0.0.

sealed trait Food

final case object Raw extends Food

final case object Cooked extends Food

val food: Distribution[Food] =

Distribution.discrete(List(Cooked -> 0.3, Raw -> 0.7))

sealed trait Cat

final case object Asleep extends Cat

final case object Harassing extends Cat

def cat(food: Food): Distribution[Cat] =

food match {

case Cooked => Distribution.discrete(List(Harassing -> 0.8, Asleep -> 0.2))

case Raw => Distribution.discrete(List(Harassing -> 0.4, Asleep -> 0.6))

}

val foodModel: Distribution[(Food, Cat)] =

for {

f <- food

c <- cat(f)

} yield (f, c)

From foodModel we could read off the probabiliঞes of interest, but it’s more fun to write some code to do this
for us. Here’s what I did.

// Probability the cat is harassing me

val pHarassing: Double =

foodModel.events filter {

case ((_, Harassing), _) => true

case ((_, Asleep), _) => false

238 APPENDIX C. SOLUTIONS TO EXERCISES

} map { case (a, p) => p } sum

// Probability the food is cooked given the cat is harassing me

val pCookedGivenHarassing: Option[Double] =

foodModel.events collectFirst[Double] {

case ((Cooked, Harassing), p) => p

} map (_ / pHarassing)

From this we can see the probability my food is cooked given the cat is harassing me is probably 0.46. I should
probably check the oven even though it’s more likely the food isn’t cooked because leaving my food in and it
geমng burned is a far worse outcome than checking my food while it is sঞll raw.

This example also shows us that to use this library for real we’d probably want to define a lot of uঞlity func-
ঞons, such as filter, directly on distribuঞon. We also need to keep probabiliঞes unnormalised a[er certain
operaঞons, such as filtering, so we can compute condiঞonal probabiliঞes correctly.

Return to the exercise

C.6 Type Classes

C.6.1 Soluঞon to: More Orderings

val absOrdering = Ordering.fromLessThan[Int]{ (x, y) =>

Math.abs(x) < Math.abs(y)

}

Return to the exercise

C.6.2 Soluঞon to: More Orderings Part 2

Simply mark the value as implicit (and make sure it is in scope)

implicit val absOrdering = Ordering.fromLessThan[Int]{ (x, y) =>

Math.abs(x) < Math.abs(y)

}

Return to the exercise

C.6.3 Soluঞon to: Raঞonal Orderings

implicit val ordering = Ordering.fromLessThan[Rational]((x, y) =>

(x.numerator.toDouble / x.denominator.toDouble) <

(y.numerator.toDouble / y.denominator.toDouble)

)

Return to the exercise

C.6. TYPE CLASSES 239

C.6.4 Soluঞon to: Ordering Orders

My implementaঞon is below. I decided that ordering by totalPrice is likely to be the most common choice,
and therefore should be the default. Thus I placed it in the companion object forOrder. The other two orderings
I placed in objects so the user could explicitly import them.

final case class Order(units: Int, unitPrice: Double) {

val totalPrice: Double = units * unitPrice

}

object Order {

implicit val lessThanOrdering = Ordering.fromLessThan[Order]{ (x, y) =>

x.totalPrice < y.totalPrice

}

}

object OrderUnitPriceOrdering {

implicit val unitPriceOrdering = Ordering.fromLessThan[Order]{ (x, y) =>

x.unitPrice < y.unitPrice

}

}

object OrderUnitsOrdering {

implicit val unitsOrdering = Ordering.fromLessThan[Order]{ (x, y) =>

x.units < y.units

}

}

Return to the exercise

C.6.5 Soluঞon to: Equality

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

Return to the exercise

C.6.6 Soluঞon to: Equality Part 2

object EmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email

}

object NameEmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email && v1.name == v2.name

}

Return to the exercise

C.6.7 Soluঞon to: Equality Again

240 APPENDIX C. SOLUTIONS TO EXERCISES

object Eq {

def apply[A](v1: A, v2: A)(implicit equal: Equal[A]): Boolean =

equal.equal(v1, v2)

}

Return to the exercise

C.6.8 Soluঞon to: Equality Again Part 2

object NameAndEmailImplicit {

implicit object NameEmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email && v1.name == v2.name

}

}

object EmailImplicit {

implicit object EmailEqual extends Equal[Person] {

def equal(v1: Person, v2: Person): Boolean =

v1.email == v2.email

}

}

object Examples {

def byNameAndEmail = {

import NameAndEmailImplicit._

Eq(Person("Noel", "noel@example.com"), Person("Noel", "noel@example.com"))

}

def byEmail = {

import EmailImplicit._

Eq(Person("Noel", "noel@example.com"), Person("Dave", "noel@example.com"))

}

}

Return to the exercise

C.6.9 Soluঞon to: Equality Again Part 3

The following code is what we’re looking for:

object Equal {

def apply[A](implicit instance: Equal[A]): Equal[A] =

instance

}

In this case the Eq interface is slightly easier to use, as it requires less typing. For most complicated interfaces,
with more than a single method, the companion object pa�ern would be preferred. In the next secঞon we’ll
see how we can make interfaces that appear to be methods defined on the objects of interest.

Return to the exercise

C.6.10 Soluঞon to: Drinking the Kool Aid

C.6. TYPE CLASSES 241

object IntImplicits {

implicit class IntOps(n: Int) {

def yeah = for{ _ <- 0 until n } println("Oh yeah!")

}

}

import IntImplicits._

2.yeah

// Oh yeah!

// Oh yeah!

The soluঞon uses a for comprehension and a range to iterate through the correct number of iteraঞons. Re-
member that the range 0 until n is the same as 0 to n-1—it contains all numbers from 0 inclusive to n

exclusive.

The names IntImplicits and IntOps are quite vague—we would probably name them something more spe-
cific in a producঞon codebase. However, for this exercise they will suffice.

Return to the exercise

C.6.11 Soluঞon to: Times
object IntImplicits {

implicit class IntOps(n: Int) {

def yeah =

times(_ => println("Oh yeah!"))

def times(func: Int => Unit) =

for(i <- 0 until n) func(i)

}

}

Return to the exercise

C.6.12 Soluঞon to: Easy Equality

We just need to define an implicit class, which I have here placed in the companion object of Equal.

trait Equal[A] {

def equal(v1: A, v2: A): Boolean

}

object Equal {

def apply[A](implicit instance: Equal[A]): Equal[A] =

instance

implicit class ToEqual[A](in: A) {

def ===(other: A)(implicit equal: Equal[A]): Boolean =

equal.equal(in, other)

}

}

Here is an example of use.

242 APPENDIX C. SOLUTIONS TO EXERCISES

implicit val caseInsensitiveEquals = new Equal[String] {

def equal(s1: String, s2: String) =

s1.toLowerCase == s2.toLowerCase

}

import Equal._

"foo".===("FOO")

Return to the exercise

C.6.13 Soluঞon to: Implicit Class Conversion

Here is the soluঞon. The methods yeah and times are exactly as we implemented them previously. The only
differences are the removal of the implicit keyword on the class and the addiঞon of the implicit def to
do the job of the implicit constructor:

object IntImplicits {

class IntOps(n: Int) {

def yeah =

times(_ => println("Oh yeah!"))

def times(func: Int => Unit) =

for(i <- 0 until n) func(i)

}

implicit def intToIntOps(value: Int) =

new IntOps(value)

}

The code sঞll works the same way it did previously. The implicit conversion is not available unঞl we bring it
into scope:

5.yeah

// <console>:8: error: value yeah is not a member of Int

// 5.yeah

// ^

Once the conversion has been brought into scope, we can use yeah and times as usual:

import IntImplicits._

5.yeah

// Oh yeah!

// Oh yeah!

// Oh yeah!

// Oh yeah!

// Oh yeah!

Return to the exercise

C.6.14 Soluঞon to: Convert X to JSON

The type class is generic in a type A. The write method converts a value of type A to some kind of JsValue.

C.6. TYPE CLASSES 243

trait JsWriter[A] {

def write(value: A): JsValue

}

Return to the exercise

C.6.15 Soluঞon to: Convert X to JSON Part 2
object JsUtil {

def toJson[A](value: A)(implicit writer: JsWriter[A]) =

writer write value

}

Return to the exercise

C.6.16 Soluঞon to: Convert X to JSON Part 3
implicit object AnonymousWriter extends JsWriter[Anonymous] {

def write(value: Anonymous) = JsObject(Map(

"id" -> JsString(value.id),

"createdAt" -> JsString(value.createdAt.toString)

))

}

implicit object UserWriter extends JsWriter[User] {

def write(value: User) = JsObject(Map(

"id" -> JsString(value.id),

"email" -> JsString(value.email),

"createdAt" -> JsString(value.createdAt.toString)

))

}

Return to the exercise

C.6.17 Soluঞon to: Convert X to JSON Part 4
visitors.map(visitor => JsUtil.toJson(visitor))

Return to the exercise

C.6.18 Soluঞon to: Preমer Conversion Syntax

implicit class JsUtil[A](value: A) {

def toJson(implicit writer: JsWriter[A]) =

writer write value

}

In the previous exercise we only defined JsWriters for our main case classes. With this convenient syntax, it
makes sense for us to have an complete set of JsWriters for all the serializable types in our codebase, including
Strings and Dates:

244 APPENDIX C. SOLUTIONS TO EXERCISES

implicit object StringWriter extends JsWriter[String] {

def write(value: String) = JsString(value)

}

implicit object DateWriter extends JsWriter[Date] {

def write(value: Date) = JsString(value.toString)

}

With these definiঞons we can simplify our exisঞng JsWriters for Anonymous, User, and Visitor:

implicit object AnonymousWriter extends JsWriter[Anonymous] {

def write(value: Anonymous) = JsObject(Map(

"id" -> value.id.toJson,

"createdAt" -> value.createdAt.toJson

))

}

implicit object UserWriter extends JsWriter[User] {

def write(value: User) = JsObject(Map(

"id" -> value.id.toJson,

"email" -> value.email.toJson,

"createdAt" -> value.createdAt.toJson

))

}

implicit object VisitorWriter extends JsWriter[Visitor] {

def write(value: Visitor) = value match {

case anon: Anonymous => anon.toJson

case user: User => user.toJson

}

}

Return to the exercise

C.7 Pa�ern Matching

C.7.1 Soluঞon to: Posiঞve Matches

To implement this extractor we define an unapply method on an object Postiive. ~ scala object Posiঞve {
def unapply(in: Int): Opঞon[Int] = if(in > 0) Some(in) else None } ~

Return to the exercise

C.7.2 Soluঞon to: Titlecase extractor

The model soluঞon splits the string into a list of words and maps over the list, manipulaঞng each word before
re-combining the words into a string.

object Titlecase {

def unapply(str: String) = {

str.split(" ").toList.map {

case "" => ""

case word => word.substring(0, 1).toUpperCase + word.substring(1)

}.mkString(" ")

}

C.8. COLLECTIONS REDUX 245

}

Return to the exercise

C.8 Collecঞons Redux

C.8.1 Soluঞon to: Animals
val animals = Seq("cat", "dog", "penguin")

// animals: Seq[String] = List(cat, dog, penguin)

Return to the exercise

C.8.2 Soluঞon to: Animals Part 2
"mouse" +: animals :+ "tyrannosaurus"

// res: Seq[String] = List(mouse, cat, dog, penguin, tyrannosaurus)

Return to the exercise

C.8.3 Soluঞon to: Animals Part 3

The returned sequence has type Seq[Any]. It is perfectly valid to return a supertype (in this case Seq[Any])
from a non-destrucঞve operaঞon.

2 +: animals

// res: Seq[Any] = List(2, cat, dog, penguin)

You might expect a type error here, but Scala is capable of determining the least upper bound of String and
Int and seমng the type of the returned sequence accordingly.

In most real code appending an Int to a Seq[String] would be an error. In pracঞce, the type annotaঞons we
place on methods and fields protect against this kind of type error, but be aware of this behaviour just in case.

Return to the exercise

C.8.4 Soluঞon to: Animals Part 4

If we try to mutate a sequence we do get a type error:

val mutable = scala.collection.mutable.Seq("cat", "dog", "penguin")

// mutable: scala.collection.mutable.Seq[String] = ArrayBuffer(cat, dog, penguin)

mutable(0) = 2

// <console>:9: error: type mismatch;

// found : Int(2)

// required: String

// mutable(0) = 2

// ^

Return to the exercise

	Foreword
	Conventions Used in This Book
	Thanks

	Getting Started
	Setting up the Scala Console
	Setting up Scala IDE

	Expressions, Types, and Values
	Your First Program
	Interacting with Objects
	Literal Objects
	Object Literals
	Writing Methods
	Compound Expressions
	Conclusion

	Objects and Classes
	Classes
	Objects as Functions
	Companion Objects
	Case Classes
	Pattern Matching
	Conclusions

	Modelling Data with Traits
	Traits
	This or That and Nothing Else: Sealed Traits
	Modelling Data with Traits
	The Sum Type Pattern
	Working With Data
	Recursive Data
	Extended Examples
	Conclusions

	Sequencing Computations
	Generics
	Functions
	Generic Folds for Generic Data
	Modelling Data with Generic Types
	Sequencing Computation
	Variance
	Conclusions

	Collections
	Sequences
	Working with Sequences
	For Comprehensions
	Options
	Options as Flow Control
	Monads
	For Comprehensions Redux
	Maps and Sets
	Ranges
	Generating Random Data

	Type Classes
	Type Class Instances
	Organising Type Class Instances
	Creating Type Classes
	Implicit Parameter and Interfaces
	Enriched Interfaces
	Combining Type Classes and Type Enrichment
	Using Type Classes
	Implicit Conversions
	JSON Serialisation

	Conclusions
	What Now?

	Pattern Matching
	Standard patterns
	Custom Patterns

	Collections Redux
	Sequence Implementations
	Arrays and Strings
	Iterators and Views
	Traversable and Iterable
	Java Interoperation
	Mutable Sequences

	Solutions to Exercises
	Expressions, Types, and Values
	Objects and Classes
	Modelling Data with Traits
	Sequencing Computations
	Collections
	Type Classes
	Pattern Matching
	Collections Redux

