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Foreword

The aims of this book are two-fold: to introduce monads, functors, and
other funcঞonal programming pa�erns as a way to structure program
design, and to explain how these concepts are implemented in Cats.

Monads, and related concepts, are the funcঞonal programming equiva-
lent of object-oriented design pa�erns—architectural building blocks
that turn up over and over again in code. They differ from object-
oriented pa�erns in two main ways:

• they are formally, and thus precisely, defined; and
• they are extremely (extremely) general.

This generalitymeans they can be difficult to understand; everyone find
abstracঞon difficult. However, it is generality that allows concepts like
monads to be applied in such a wide variety of situaঞons.

In this book we aim to show the concepts in a number of different ways,
to help you build a mental model of how they work and where they
are appropriate. We have extended case studies, a simple graphical
notaঞon, many smaller examples, and of course the mathemaঞcal def-
iniঞons. Between them we hope you’ll find something that works for
you.

Ok, let’s get started!

15
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Notes on the Pre-Release Ediঞon

This book is in early access status. This means there are unfinished
aspects as detailed below. There may be typos and errata in the
text and examples.

As an early access customer you will receive a free copy of the
final text when it is released, plus free lifeঞme updates. If you
spot any mistakes or would like to provide feedback on the book,
please let us know!

—Dave Gurnell ( dave@underscore.io ) and Noel Welsh ( noel@
underscore.io ).

Changelog

Starঞng from the March 2016 release, here are the major changes to
the book:

• Moved the theoreঞcal chapters from Scalaz to Cats (currently
version 0.7.2).

• Added secঞons on the Reader, Writer, State, and Eval mon-
ads.

• Added a chapter on monad transformers.
• Added secঞons on Cartesian to the applicaঞves chapter.
• Added secঞons on Foldable and Traverse.
• Added type chart diagrams for Functor and Monad.
• Added a new case study on asynchonous tesঞng.
• New diagrams for the map reduce and validaঞon case studies.

Omissions

Here are the major things missing from the book:

mailto:dave@underscore.io
mailto:noel@underscore.io
mailto:noel@underscore.io
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1. Proof reading, final tweaks.

2. Upgrade to Cats 1.0!

Convenঞons Used in This Book

This book contains a lot of technical informaঞon and program code. We
use the following typographical convenঞons to reduce ambiguity and
highlight important concepts:

Typographical Convenঞons

New terms and phrases are introduced in italics. A[er their iniঞal intro-
ducঞon they are wri�en in normal roman font.

Terms from program code, filenames, and file contents, are wri�en in
monospace font. Note that we do not disঞnguish between singular
and plural forms. For example, might write String or Strings to refer
to java.util.String.

References to external resources are wri�en as [hyperlinks][link-
underscore]. References to API documentaঞon are wri�en using
a combinaঞon of hyperlinks and monospace font, for example:
scala.Option.

Source Code

Source code blocks are wri�en as follows. Syntax is highlighted appro-
priately where applicable:

http://www.scala-lang.org/api/current/scala/Option.html
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object MyApp extends App {

println("Hello world!") // Print a fine message to the user!

}

Most code passes through tut to ensure it compiles. tut uses the Scala
console behind the scenes, so we someঞmes wrap code in an object to
account for differences between the console and regular code:

object example {

sealed trait Foo[A]

final case class Bar[A](a: A) extends Foo[A]

println(Bar("wrapping this code in an object makes sure tut

interprets it correctly"))

}

Callout Boxes

We use three types of callout box to highlight parঞcular content:

Tip callouts indicate handy summaries, recipes, or best pracঞces.

Advanced callouts provide addiঞonal informaঞon on corner cases
or underlying mechanisms. Feel free to skip these on your first
read-through—come back to them later for extra informaঞon.

Warning callouts indicate common pi�alls and gotchas. Make
sure you read these to avoid problems, and come back to them
if you’re having trouble geমng your code to run.

https://github.com/tpolecat/tut
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Chapter 1

Introducঞon

Cats contains awide variety of funcঞonal programming tools and allows
developers to pick and choose the ones we want to use. The majority
of these tools are delivered in the form of type classes that we can apply
to exisঞng Scala types.

Type classes are a programming pa�ern originaঞng in Haskell. They al-
low us to extend exisঞng libraries with new funcঞonality, without using
tradiঞonal inheritance, and without altering the original library source
code.

In this chapter we will refresh our memory of type classes from Under-
score’s Essenঞal Scala book, and take a first look at the Cats codebase.
We will look at two example type classes—Show and Eq—using them to
idenঞfy pa�erns that lay the foundaঞons for the rest of the book.

1.1 Anatomy of a Type Class

There are three important components to the type class pa�ern: the
type class itself, instances for parঞcular types, and the interfacemethods
that we expose to users.

23
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1.1.1 The Type Class

A type class is an interface or API that represents some funcঞonality we
want to implement. In Cats a type class is represented by a trait with
at least one type parameter. For example, we can represent generic
“serialize to JSON” behaviour as follows:

// Define a very simple JSON AST

sealed trait Json

final case class JsObject(get: Map[String, Json]) extends Json

final case class JsString(get: String) extends Json

final case class JsNumber(get: Double) extends Json

// The "serialize to JSON" behavior is encoded in this trait

trait JsonWriter[A] {

def write(value: A): Json

}

1.1.2 Type Class Instances

The instances of a type class provide implementaঞons for the types we
care about, including types from the Scala standard library and types
from our domain model.

In Scala we define instances by creaঞng concrete implementaঞons of
the type class and tagging them with the implicit keyword:

final case class Person(name: String, email: String)

object JsonWriterInstances {

implicit val stringJsonWriter = new JsonWriter[String] {

def write(value: String): Json =

JsString(value)

}

implicit val personJsonWriter = new JsonWriter[Person] {

def write(value: Person): Json =

JsObject(Map(
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"name" -> JsString(value.name),

"email" -> JsString(value.email)

))

}

// etc...

}

1.1.3 Interfaces

An interface is any funcঞonality we expose to users. Interfaces to type
classes are generic methods that accept instances of the type class as
implicit parameters.

There are two common ways of specifying an interface: Interface Ob-
jects and Interface Syntax.

Interface Objects

The simplest way of creaঞng an interface is to place methods in a sin-
gleton object:

object Json {

def toJson[A](value: A)(implicit w: JsonWriter[A]): Json =

w.write(value)

}

To use this object, we import any type class instances we care about
and call the relevant method:

import JsonWriterInstances._

Json.toJson(Person("Dave", "dave@example.com"))

// res4: Json = JsObject(Map(name -> JsString(Dave), email ->

JsString(dave@example.com)))

Interface Syntax
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We can alternaঞvely use extension methods to extend exisঞng types
with interface methods¹. Cats refers to this as “syntax” for the type
class:

object JsonSyntax {

implicit class JsonWriterOps[A](value: A) {

def toJson(implicit w: JsonWriter[A]): Json =

w.write(value)

}

}

We use interface syntax by imporঞng it along-side the instances for the
types we need:

import JsonWriterInstances._

import JsonSyntax._

Person("Dave", "dave@example.com").toJson

// res5: Json = JsObject(Map(name -> JsString(Dave), email ->

JsString(dave@example.com)))

1.1.4 Exercise: Printable Library

Scala provides a toString method to let us convert any value to a
String. However, this method comes with a few disadvantages. It
is implemented for every type in the language, many implementaঞons
are of limited use, and we can’t opt-in to specific implementaঞons for
specific types.

Let’s define a Printable type class to work around these problems:

1. Define a type class Printable[A] containing a single method
format. format should accept a value of type A and returns a
String.

¹You may occasionally see extension methods referred to as “type enrichment” or
“pimping”. These are older terms that we don’t use anymore.



1.1. ANATOMY OF A TYPE CLASS 27

2. Create an object PrintableInstances containing instances of
Printable for String and Int.

3. Define an object Printable with two generic interface meth-
ods:

• format accepts a value of type A and a Printable of the
corresponding type. It uses the relevant Printable to con-
vert the A to a String.

• print accepts the same parameters as format and returns
Unit. It prints the A value to the console using println.

See the soluঞon

Using the Library

The code above forms a general purpose prinঞng library that we can
use in mulঞple applicaঞons. Let’s define an “applicaঞon” now that uses
the library:

1. Define a data type Cat:

final case class Cat(

name: String,

age: Int,

color: String

)

2. Create an implementaঞon of Printable for Cat that returns
content in the following format:

NAME is a AGE year-old COLOR cat.

3. Finally, use the type class on the console or in a short demo app:
create a Cat and print it to the console:
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// Define a cat:

val cat = Cat(/* ... */)

// Print the cat!

See the soluঞon

Be�er Syntax

Let’s make our prinঞng library easier to use by defining some extension
methods to provide be�er syntax:

1. Create an object called PrintableSyntax.

2. Inside PrintableSyntax define an implicit class PrintOps[A]

to wrap up a value of type A.

3. In PrintOps define the following methods:

• format accepts an implicit Printable[A] and returns a
String representaঞon of the wrapped A;

• print accepts an implicit Printable[A] and returns Unit.
It prints the wrapped A to the console.

4. Use the extensionmethods to print the example Cat you created
in the previous exercise.

See the soluঞon

1.1.5 Take Home Points

In this secঞon we revisited the concept of a type class, which allows us
to add new funcঞonality to exisঞng types.

The Scala implementaঞon of a type class has three parts:
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• the type class itself, a generic trait;
• instances for each type we care about; and
• one or more generic interface methods.

Interface methods can be defined in interface objects or interface syntax.
Implicit classes are the most common way of implemenঞng syntax.

In the next secঞon we will take a first look at Cats. We will examine
the standard code layout Cats uses to organize its type classes, and see
how to select type classes, instances, and syntax for use in our code.

1.2 Meet Cats

In the previous secঞon we saw how to implement type classes in Scala.
In this secঞon wewill look at how type classes are implemented in Cats.

Cats is wri�en using amodular structure that allows us to choosewhich
type classes, instances, and interface methods we want to use. Let’s
take a first look using cats.Show as an example.

Show is Cats’ equivalent of the Printable type class we defined in the
last secঞon. It provides a mechanism for producing developer-friendly
console output without using toString.

Show defines one method of interest:

def show[A](value: A): String = ???

// show: [A](value: A)String

1.2.1 Imporঞng Type Classes

The type classes in Cats are defined in the cats package. We can import
Show directly from this package:

http://typelevel.org/cats/api/cats/Show.html
http://typelevel.org/cats/api/cats/
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import cats.Show

The companion object of every Cats type class has an apply method
that locates an instance for any type we specify:

val showInt = Show.apply[Int]

// <console>:13: error: could not find implicit value for

parameter instance: cats.Show[Int]

// val showInt = Show.apply[Int]

// ^

Oops—that didn’t work! The apply method uses implicits to look up
individual instances, so we’ll have to bring some instances into scope.

1.2.2 Imporঞng Default Instances

The cats.instances package provides default instances for a wide
variety of types. We can import these as shown in the table below.
Each import provides instances of all Cats’ type classes for a specific
target type:

Import Parameter types

cats.instances.int Int

cats.instances.string String

cats.instances.list List

cats.instances.option Option

cats.instances.map Map and subtypes
cats.instances.all All instances
and so on… See the

cats.instances

package for more

http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/instances/package$$int$
http://typelevel.org/cats/api/cats/instances/package$$string$
http://typelevel.org/cats/api/cats/instances/package$$list$
http://typelevel.org/cats/api/cats/instances/package$$option$
http://typelevel.org/cats/api/cats/instances/package$$map$
http://typelevel.org/cats/api/cats/instances/package$$all$
http://typelevel.org/cats/api/cats/instances/
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Most people use import cats.implicits.all._ to bring all in-
stances into scope at the same ঞme. In this book we will use
specific imports to show you exactly which instances we need in
each case. Don’t feel you have to do this in your code.

Let’s import the instances of Show for Int and String:

import cats.instances.int._

import cats.instances.string._

val showInt: Show[Int] = Show.apply[Int]

val showString: Show[String] = Show.apply[String]

That’s be�er! We now have access to two instances of Show, and can
use them to print Ints and Strings:

val intAsString: String =

showInt.show(123)

// intAsString: String = 123

val stringAsString: String =

showString.show("abc")

// stringAsString: String = abc

1.2.3 Imporঞng Interface Syntax

We can make Show easier to use by imporঞng the interface syntax from
cats.syntax.show. This adds a show method to any type for which
we have an instance of Show in scope:

import cats.syntax.show._

val shownInt = 123.show

// shownInt: String = 123

val shownString = "abc".show

http://typelevel.org/cats/api/cats/syntax/package$$show$
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// shownString: String = abc

Cats provides separate syntax imports for each type class. We will in-
troduce these as we encounter them in later secঞons and chapters.

1.2.4 Defining Custom Instances

There are two constructor methods on the companion object of Show
that we can use to define instances for our own types:

// Convert a function to a `Show` instance:

def show[A](f: A => String): Show[A] = ???

// Create a `Show` instance from a `toString` method:

def fromToString[A]: Show[A] = ???

These allows us to quickly construct instances of Show.

import java.util.Date

implicit val dateShow: Show[Date] =

Show.show(date => s"${date.getTime}ms since the epoch.")

These constructors exist for Show but don’t make sense for all Cats type
classes. We will introduce constructors for other type classes as we
come to then.

1.2.5 Exercise: Cat Show

Re-implement the Cat applicaঞon from the previous secঞon using Show
instead of Printable.

See the soluঞon
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1.2.6 Take Home Points

Cats type classes are defined in the cats package. For example, the
Show type class is defined as cats.Show.

Default instances are defined in the cats.instances package. Imports
are organized by parameter type (as opposed to by type class).

Interface syntax is defined in the cats.syntax package. There are sep-
arate syntax imports for each type class. For example, the syntax for
Show is defined in cats.syntax.show.

1.3 Example: Eq

We will finish off this chapter by looking at another useful type class:
cats.Eq.

1.3.1 Equality, Liberty, and Fraternity

We can use Eq to define type-safe equality between instances of any
given type:

package cats

trait Eq[A] {

def eqv(a: A, b: A): Boolean

// other concrete methods based on eqv...

}

The interface syntax, defined in [cats.syntax.equal][cats.syntax.equal],
provides two methods for performing type-safe equality checks pro-
vided there is an instance Eq[A] in scope:

• === compares two objects for equality;
• =!= compares two objects for inequality.

http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/Show.html
http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/syntax/
http://typelevel.org/cats/api/cats/syntax/package$$show$
http://typelevel.org/cats/api/cats/kernel/Eq.html
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1.3.2 Comparing Ints

Let’s look at a few examples. First we import the type class:

import cats.Eq

Now let’s grab an instance for Int:

import cats.instances.int._

val eqInt = Eq[Int]

We can use eqInt directly to test for equality:

eqInt.eqv(123, 123)

// res1: Boolean = true

eqInt.eqv(123, 234)

// res2: Boolean = false

Unlike Scala’s ==method, if we try to compare objects of different types
using eqv we get a compile error:

eqInt.eqv(123, "234")

// <console>:18: error: type mismatch;

// found : String("234")

// required: Int

// eqInt.eqv(123, "234")

// ^

We can also import the interface syntax in cats.syntax.eq to use the
=== and =!= methods:

import cats.syntax.eq._

123 === 123

// res4: Boolean = true

123 =!= 234

http://typelevel.org/cats/api/cats/syntax/package$$eq$
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// res5: Boolean = true

1.3.3 Comparing Opࢼons

Now for amore interesঞng example—Option[Int]. To compare values
of type Option[Int] we need to import instances of Eq for Option as
well as Int:

import cats.instances.int._

import cats.instances.option._

Now we can try some comparisons:

Some(1) === None

// <console>:26: error: value === is not a member of Some[Int]

// Some(1) === None

// ^

We have received a compile error here because the Eq type class is
invariant. The instanceswe have in scope are for Int and Option[Int],
not Some[Int]. To fix the issue we have to re-type the arguments as
Option[Int]:

(Some(1) : Option[Int]) === (None : Option[Int])

// res7: Boolean = false

We can do this in a friendlier fashion using the Option.apply and
Option.empty methods from the standard library:

Option(1) === Option.empty[Int]

// res8: Boolean = false

or using special syntax from cats.syntax.option:

http://typelevel.org/cats/api/cats/syntax/package$$option$
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import cats.syntax.option._

1.some === None

// res9: Boolean = false

1.some =!= None

// res10: Boolean = true

1.3.4 Comparing Custom Types

We can define our own instances of Eq using the Eq.instancemethod,
which accepts a funcঞon of type (A, A) => Boolean and returns an
Eq[A]:

import java.util.Date

import cats.instances.long._

implicit val dateEqual = Eq.instance[Date] { (date1, date2) =>

date1.getTime === date2.getTime

}

val x = new Date() // now

val y = new Date() // a bit later than now

x === x

// res11: Boolean = true

x === y

// res12: Boolean = false

1.3.5 Exercise: Equality, Liberty, and Felinity

Implement an instance of Eq for our running Cat example:
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final case class Cat(name: String, age: Int, color: String)

Use this to compare the following pairs of objects for equality and in-
equality:

val cat1 = Cat("Garfield", 35, "orange and black")

val cat2 = Cat("Heathcliff", 30, "orange and black")

val optionCat1 = Option(cat1)

val optionCat2 = Option.empty[Cat]

See the soluঞon

1.3.6 Take Home Points

In this secঞon we introduced a new type class—cats.Eq—that lets us
perform type-safe equality checks:

• we create an instance Eq[A] to implement equality-tesঞng func-
ঞonality for A.

• cats.syntax.eq provides twomethods of interest: === for test-
ing equality and =!= for tesঞng inequality.

Because Eq[A] is invariant in A, we have to be precise about the types
of the values we use as arguments. We someঞmes need to manually
type expressions in our code to help the compiler locate the correct
type class instances.

1.4 Summary

In this chapter we took a first look at type classes. We implemented
our own Printable type class using plain Scala before looking at two
examples from Cats—Show and Eq.

http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/syntax/package$$eq$
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We have now seen the general pa�erns in Cats type classes:

• The type classes themselves are generic traits in the cats pack-
age.

• Each type class has a companion object with:

– an apply method for materializing instances;

– typically, one or more addiঞonal methods for creaঞng in-
stances.

• Default instances are provided via the cats.instances pack-
age, and are organized by parameter type rather than by type
class.

• Many type classes have syntax provided via the cats.syntax

package.

In the remaining chapters of this book we will look at four broad and
powerful type classes—Monoids, Functors, Monads, Applicatives,
and more. In each case we will learn what funcঞonality the type class
provides, the formal rules it follows, and how it is implemented in Cats.
Many of these type classes are more abstract than Show or Eq. While
this makes them harder to learn, it makes them far more useful for solv-
ing general problems in our code.

http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/instances/
http://typelevel.org/cats/api/cats/syntax/
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Monoids and Semigroups

In this secঞon we explore our first type classes,monoid and semigroup.
These allow us to add or combine values. There are instances for Ints,
Strings, Lists, Options, and many, many more. Let’s start by looking
at a few simple types and operaঞons to see what common principles
we can extract.

Integer addiঞon

Addiঞon of Ints is a binary operaঞon that is closed, meaning that
adding two Ints always produces another Int:

2 + 1

// res0: Int = 3

There is also the idenࢼty element 0with the property that a + 0 == 0

+ a == a for any Int a:

2 + 0

// res1: Int = 2

39
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0 + 2

// res2: Int = 2

There are also other properঞes of addiঞon. For instance, it doesn’t mat-
ter in what order we add elements because we always get the same
result. This is a property known as associaࢼvity:

(1 + 2) + 3

// res3: Int = 6

1 + (2 + 3)

// res4: Int = 6

Integer mulঞplicaঞon

The same properঞes for addiঞon also apply for mulঞplicaঞon, provided
wee use 1 as the idenঞty instead of 0:

1 * 3

// res5: Int = 3

3 * 1

// res6: Int = 3

Mulঞplicaঞon, like addiঞon, is associaঞve:

(1 * 2) * 3

// res7: Int = 6

1 * (2 * 3)

// res8: Int = 6

String and sequence concatenaঞon

We can also add Strings, using string concatenaঞon as our binary op-
erator:
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"One" ++ "two"

// res9: String = Onetwo

and the empty string as the idenঞty:

"" ++ "Hello"

// res10: String = Hello

"Hello" ++ ""

// res11: String = Hello

Once again, concatenaঞon is associaঞve:

("One" ++ "Two") ++ "Three"

// res12: String = OneTwoThree

"One" ++ ("Two" ++ "Three")

// res13: String = OneTwoThree

Note thatwe used ++ above instead of themore usual + to suggest a par-
allel with sequences. We can do exactly the same with other types of
sequence, using concatenaঞon as as the binary operator and the empty
sequence as our idenঞty.

2.1 Definiঞon of a Monoid

We’ve seen a number of “addiঞon” scenarios above each with an asso-
ciaঞve binary addiঞon and an idenঞty element. It will be no surprise to
learn that this is a monoid. Formally, a monoid for a type A is:

• an operaঞon combine with type (A, A) => A

• an element empty of type A

This definiঞon translates nicely into Scala code. Here is a simplified
version of the definiঞon from Cats:
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trait Monoid[A] {

def combine(x: A, y: A): A

def empty: A

}

In addiঞon to providing these operaঞons, monoids must formally obey
several laws. For all values x, y, and z, in A, combinemust be associaঞve
and empty must be an idenঞty element:

def associativeLaw[A](x: A, y: A, z: A)

(implicit m: Monoid[A]): Boolean =

m.combine(x, m.combine(y, z)) == m.combine(m.combine(x, y), z)

def identityLaw[A](x: A)

(implicit m: Monoid[A]): Boolean = {

(m.combine(x, m.empty) == x) &&

(m.combine(m.empty, x) == x)

}

Integer subtracঞon, for example, is not a monoid because subtracঞon
is not associaঞve:
(1 - 2) - 3

// res15: Int = -4

1 - (2 - 3)

// res16: Int = 2

In pracঞce we only need to think about laws when we are wriঞng our
own Monoid instances for custom data types. Most of the ঞme we can
rely on the instances provided by Cats and assume the library authors
know what they’re doing.

2.2 Definiঞon of a Semigroup

A semigroup is simply the combine part of a monoid. While many semi-
groups are also monoids, there are some data types for which we can-
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not define an empty element. For example, we have just seen that se-
quence concatenaঞon and integer addiঞon are monoids. However, if
we restrict ourselves to non-empty sequences and posiঞve integers, we
lose access to an empty element. Cats has a NonEmptyList data type
that has an implementaঞon of Semigroup but no implementaঞon of
Monoid.

A more accurate (though sঞll simplified) definiঞon of Cats’ Monoid is:

trait Semigroup[A] {

def combine(x: A, y: A): A

}

trait Monoid[A] extends Semigroup[A] {

def empty: A

}

We’ll see this kind of inheritance o[en when discussing type classes. It
provides modularity and allows us to re-use behaviour. If we define a
Monoid for a type A, we get a Semigroup for free. Similarly, if a method
requires a parameter of type Semigroup[B], we can pass a Monoid[B]
instead.

2.3 Exercise: The Truth About Monoids

We’ve seen a few examples of monoids but there are plenty more to
be found. Consider Boolean. How many monoids can you define for
this type? For each monoid, define the combine and empty operaঞons
and convince yourself that the monoid laws hold. Use the following
definiঞons as a starঞng point:

trait Semigroup[A] {

def combine(x: A, y: A): A

}

http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html
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trait Monoid[A] extends Semigroup[A] {

def empty: A

}

object Monoid {

def apply[A](implicit monoid: Monoid[A]) =

monoid

}

See the soluঞon

2.4 Exercise: All Set for Monoids

What monoids and semigroups are there for sets?

See the soluঞon

2.5 Monoids in Cats

Now we’ve seen what a monoid is, let’s look at their implementaঞon in
Cats. Once again we’ll look at the three main aspects of the implemen-
taঞon: the type class, the instances, and the interface.

2.5.1 TheMonoid Type Class

The monoid type class is cats.kernel.Monoid, which is aliased as
cats.Monoid. Monoid extends cats.kernel.Semigroup, which is
aliased as cats.Semigroup. When using Cats we normally import
type classes from the cats package:

http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/
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import cats.Monoid

import cats.Semigroup

Cats Kernel?

Cats Kernel is a subproject of Cats providing a small set of
typeclasses for libraries that don’t require the full Cats toolbox.
While these core type classes are technically defined in the
cats.kernel package, they are all aliased to the cats package
so we rarely need to be aware of the disঞncঞon.

The Cats Kernel type classes covered in this book are Eq,
Semigroup, and Monoid. All the other type classes we cover are
part of the main Cats project and are defined directly in the cats
package.

2.5.2 Obtaining Instances

Monoid follows the standard Cats pa�ern for the user interface: the
companion object has an apply method that returns the type class in-
stance. So if we wanted the monoid instance for String, and we have
the correct implicits in scope, we can write the following:

import cats.Monoid

import cats.instances.string._

Monoid[String].combine("Hi ", "there")

// res0: String = Hi there

Monoid[String].empty

// res1: String = ""

which is equivalent to:

http://typelevel.org/cats/api/cats/kernel/
http://typelevel.org/cats/api/cats/
http://typelevel.org/cats/api/cats/kernel/Eq.html
http://typelevel.org/cats/api/cats/kernel/Semigroup.html
http://typelevel.org/cats/api/cats/kernel/Monoid.html
http://typelevel.org/cats/api/cats/
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Monoid.apply[String].combine("Hi ", "there")

// res2: String = Hi there

Monoid.apply[String].empty

// res3: String = ""

As we know, Monoid extends Semigroup. If we don’t need empty we
can equivalently write:

import cats.Semigroup

Semigroup[String].combine("Hi ", "there")

// res4: String = Hi there

2.5.3 Default Instances

The type class instances for Monoid are organised under cats.instances
in the standard way described in Chapter 1. For example, if we want
to pull in instances for Int we import from cats.instances.int:

import cats.Monoid

import cats.instances.int._

Monoid[Int].combine(32, 10)

// res5: Int = 42

Similarly, we can assemble a Monoid[Option[Int]] using instances
from cats.instances.int and cats.instances.option:

import cats.Monoid

import cats.instances.int._

import cats.instances.option._

val a = Option(22)

// a: Option[Int] = Some(22)

val b = Option(20)

http://typelevel.org/cats/api/cats/instances/package$$int$
http://typelevel.org/cats/api/cats/instances/package$$int$
http://typelevel.org/cats/api/cats/instances/package$$option$
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// b: Option[Int] = Some(20)

Monoid[Option[Int]].combine(a, b)

// res6: Option[Int] = Some(42)

Refer back to Chapter 1 for a more comprehensive list of imports.

2.5.4 Monoid Syntax

Cats provides syntax for the combine method in the form of the |+|

operator. Because combine technically comes from Semigroup, we ac-
cess the syntax by imporঞng from cats.syntax.semigroup:

import cats.syntax.semigroup._

import cats.instances.string._

val stringResult = "Hi " |+| "there" |+| Monoid[String].empty

// stringResult: String = Hi there

import cats.instances.int._

val intResult = 1 |+| 2 |+| Monoid[Int].empty

// intResult: Int = 3

2.5.5 Exercise: Adding All The Things

The cuমng edge SuperAdder v3.5a-32 is the world’s first choice for
adding together numbers. The main funcঞon in the program has sig-
nature def add(items: List[Int]): Int. In a tragic accident this
code is deleted! Rewrite the method and save the day!

See the soluঞon

Well done! SuperAdder’s market share conঞnues to grow, and now
there is demand for addiঞonal funcঞonality. People now want to add

http://typelevel.org/cats/api/cats/syntax/package$$semigroup$
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List[Option[Int]]. Change add so this is possible. The SuperAd-
der code base is of the highest quality, so make sure there is no code
duplicaঞon!

See the soluঞon

SuperAdder is entering the POS (point-of-sale, not the other POS) mar-
ket. Now we want to add up Orders:

case class Order(totalCost: Double, quantity: Double)

We need to release this code really soon so we can’t make any modifi-
caঞons to add. Make it so!

See the soluঞon

2.6 Controlling Instance Selecঞon

When working with type classes we must consider two issues that con-
trol instance selecঞon:

• What is the relaঞonship between an instance defined on a type
and its subtypes?

For example, if we define a Monoid[Option[Int]], will the ex-
pression Some(1) |+| Some(2) select this instance? (Remem-
ber that Some is a subtype of Option).

• How dowe choose between type class instances when there are
many available?

We’ve seen two monoids for Int: addiঞon and zero, and mulঞ-
plicaঞon and one. Similarly there are at least four monoids for
Boolean (and, or, equal, and not equal). When we write true

|+| false, which instance is selected?

In this secঞon we explore how Cats answers these quesঞons.
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2.6.1 Type Class Variance

When we define type classes we can add variance annotaঞons to the
type parameter like we can for any other generic type. To quickly recap,
there are three cases:

• A type with an unannotated parameter Foo[A] is invariant in A.

This means there is no relaঞonship between Foo[B] and Foo[C]
no ma�er what the sub- or super-type relaঞonship is between B
and C.

• A type with a parameter Foo[+A] is covariant in A.

If C is a subtype of B, Foo[C] is a subtype of Foo[B].

• A type with a parameter Foo[-A] is contravariant in A.

If C is a supertype of B, Foo[C] is a subtype of Foo[B].

When the compiler searches for an implicit it looks for one matching
the type or subtype. Thus we can use variance annotaঞons to control
type class instance selecঞon to some extent.

There are two issues that tend to arise. Let’s imagine we have an alge-
braic data type like:

sealed trait A

final case object B extends A

final case object C extends A

The issues are:

1. Will an instance defined on a supertype be selected if one is avail-
able? For example, can we define an instance for A and have it
work for values of type B and C?
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2. Will an instance for a subtype be selected in preference to that
of a supertype. For instance, if we define an instance for A and B,
and we have a value of type B, will the instance for B be selected
in preference to A?

It turns out we can’t have both at once. The three choices give us be-
haviour as follows:

Type Class Variance Invariant Covariant
Contravariant

Supertype instance used? No No Yes
More specific type
preferred?

Yes Yes No

It’s clear there is no perfect system. Cats generally prefers to use in-
variant type classes. This allows us to specify more specific instances
for subtypes if we want. It does mean that if we have, for example, a
value of type Some[Int], our monoid instance for Option will not be
used. We can solve this problem with a type annotaঞon like Some(1)
: Option[Int] or by using “smart constructors” that construct values
with the type of the base trait in an algebraic data type. For example,
Cats provides some and none constructors for Option:

import cats.instances.option._

import cats.syntax.option._

Some(1)

// res0: Some[Int] = Some(1)

1.some

// res1: Option[Int] = Some(1)

None

// res2: None.type = None
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none[Int]

// res3: Option[Int] = None

2.6.2 Idenঞcally Typed Instances

The other issue is choosing between type class instances when several
are available for a specific type. For example, how do we select the
monoid for integer mulঞplicaঞon instead of the monoid for integer ad-
diঞon?

Cats currently has no mechanism for selecঞng alternaঞve instances,
though this may change in the future.

We can always define or import a type class instance into the local
scope. This will take precedence over other type class instances in the
implicit scope:

import cats.Monoid

import cats.syntax.semigroup._

implicit val multiplicationMonoid =

new Monoid[Int] {

def empty: Int = 1

override def combine(x: Int, y: Int): Int = x * y

}

3 |+| 2

// res5: Int = 6

2.7 Applicaঞons of Monoids

We now know what a moniod is—an abstracঞon of the concept of
adding or combining—but where is it useful? Here are a few big ideas
where monoids play a major role. These are explored in more detail in
case studies later in the book.
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2.7.1 Big Data

In big data applicaঞons like Spark and Hadoop we distribute data anal-
ysis over many machines, giving fault tolerance and scalability. This
means each machine will return results over a porঞon of the data, and
we must then combine these results to get our final result. In the vast
majority of cases this can be viewed as a monoid.

If we want to calculate how many total visitors a web site has received,
thatmeans calculaঞng an Int on each porঞon of the data. We know the
monoid instance of Int is addiঞon, which is the right way to combine
parঞal results.

If we want to find out howmany unique visitors a website has received,
that’s equivalent to building a Set[User] on each porঞon of the data.
We know the monoid instance for Set is the set union, which is the
right way to combine parঞal results.

If we want to calculate 99% and 95% response ঞmes from our server
logs, we can use a data structure called a QTree for which there is a
monoid.

Hopefully you get the idea. Almost every analysis that we might want
to do over a large data set is a monoid, and therefore we can build
an expressive and powerful analyঞcs system around this idea. This is
exactly what Twi�er’s Algebird and Summingbird projects have done.
We explore this idea further in the Map-Reduce case study.

2.7.2 Distributed Systems

In a distributed system, different machines may end up with different
views of data. For example, one machine may receive an update that
other machines did not receive. We would like to reconcile these dif-
ferent views, so every machine has the same data if no more updates
arrive. This is called eventual consistency.
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A parঞcular class of data types support this reconciliaঞon. These data
types are called commutaঞve replicated data types (CRDTs). The key
operaঞon is the ability to merge two data instances, with a result that
captures all the informaঞon in both instances. This operaঞon relies on
having a monoid instance. We explore this idea further in the CRDT
case study.

2.7.3 Monoids in the Small

The two examples above are cases where monoids inform the enঞre
system architecture. There are also many cases where having a monoid
around makes it easier to write a small code fragment. We’ll see lots of
examples in the case studies in this book.

2.8 Summary

Wehit a big milestone in this chapter—we covered our first type classes
with fancy funcঞonal programming names:

• a Semigroup represents an addiঞon or combinaঞon operaঞon;
• a Monoid extends a Semigroup by adding an idenঞty or “zero”

element.

We can use Semigroups and Monoids by imporঞng three things: the
type classes themselves, the instances for the types we care about, and
the semigroup syntax to give us the |+| operator:

import cats.Monoid

import cats.instances.all._

import cats.syntax.semigroup._

With these three things in scope, we can set about adding anything we
want:
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Option(1) |+| Option(2)

// res0: Option[Int] = Some(3)

val map1 = Map("a" -> 1, "b" -> 2)

val map2 = Map("b" -> 3, "d" -> 4)

map1 |+| map2

// res1: Map[String,Int] = Map(b -> 5, d -> 4, a -> 1)

val tuple1 = ("hello", 123)

val tuple2 = ("world", 321)

tuple1 |+| tuple2

// res2: (String, Int) = (helloworld,444)

Monoids are a great gateway to Cats. They’re easy to understand and
simple to use. However, they’re just the ঞp of the iceberg in terms of
the abstracঞons Cats enables us to make. In the next chapter we’ll look
at functors, the type class personificaঞon of the beloved map method.
That’s where the fun really begins!



Chapter 3

Functors

In this chapter we will invesঞgate functors. Functors on their own
aren’t so useful, but special cases of functors such as monads and ap-
plicaঞve functors are some of the most commonly used abstracঞons in
Cats.

3.1 Examples of Functors

Informally, a functor is anything with a mapmethod. You probably know
lots of types that have this: Option, List, Either, and Future, to
name a few.

Let’s start as we did with monoids by looking at a few types and opera-
ঞons and seeing what general principles we can abstract.

Sequences

The map method is perhaps the most commonly used method on List.
If we have a List[A] and a funcঞon A => B, mapwill create a List[B].

55
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List(1, 2, 3).map(x => (x % 2) == 0)

// res0: List[Boolean] = List(false, true, false)

There are some properঞes of map that we rely on without even think-
ing about them. For example, we expect the two snippets below to
produce the same output:

List(1, 2, 3).map(_ * 2).map(_ + 4)

// res1: List[Int] = List(6, 8, 10)

List(1, 2, 3).map(x => (x * 2) + 4)

// res2: List[Int] = List(6, 8, 10)

In general, the map method for a List works like this: We start with a
List[A] of length n, we supply a funcঞon from A to B, and we end up
with a List[B] of length n. The elements are changed but the ordering
and length of the list are preserved. This is illustrated in Figure 3.1.

List[A]

map

List[B]A => B

Figure 3.1: Type chart: mapping over a List

Opঞons

We can do the same thing with an Option. If we have a Option[A] and
a funcঞon A => B, map will create a Option[B]:

Option(1).map(_.toString)

// res3: Option[String] = Some(1)

We expect map on Option to behave in the same way as List:
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Option(123).map(_ * 4).map(_ + 4)

// res4: Option[Int] = Some(496)

Option(123).map(x => (x * 2) + 4)

// res5: Option[Int] = Some(250)

In general, the map method for an Option works similarly to that for a
List. We start with an Option[A] that is either a Some[A] or a None,
we supply a funcঞon from A to B, and the result is either a Some[B] or
a None. Again, the structure is preserved: if we start with a Some we
end up with a Some, and a None always maps to a None. This is shown
in Figure 3.2.

Option[A]

map

Option[B]A => B

Figure 3.2: Type chart: mapping over an Opঞon

3.2 More Examples of Functors

Let’s expand how we think about map by taking some other examples
into account:

Futures

Future is also a functor with a map method¹. If we start with a
Future[A] and call map supplying a funcঞon A => B, we end up with
a Future[B]:

¹Some funcঞonal purists disagree with this because the excepঞon handling in
Scala futures breaks the functor laws. We’re going to ignore this detail because real
funcঞonal programs don’t do excepঞons.
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import scala.concurrent.{Future, Await}

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

val future1 = Future("Hello world!")

// future1: scala.concurrent.Future[String] = Future(<not

completed>)

val future2 = future1.map(_.length)

// future2: scala.concurrent.Future[Int] = Future(<not completed

>)

Await.result(future1, 1.second)

// res6: String = Hello world!

Await.result(future2, 1.second)

// res7: Int = 12

The general pa�ern looks like Figure 3.3. Seem familiar?

Future[A] Future[B]A => B

map

Figure 3.3: Type chart: mapping over a Future

Funcঞons (?!)

Can we map over funcঞons of a single argument? What would this
mean?

All our examples above have had the following general shape:

• start with F[A];
• supply a funcঞon A => B;
• get back F[B].
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A funcঞon with a single argument has two types: the parameter type
and the result type. To get them to the same shape we can fix the
parameter type and let the result type vary:

• start with X => A;
• supply a funcঞon A => B;
• get back X => B.

We can see this with our trusty type chart in Figure 3.4.

X => A X => BA => B

map

Figure 3.4: Type chart: mapping over a Funcঞon1

In other words, “mapping” over a Function1 is just funcঞon composi-
ঞon:

import cats.instances.function._

import cats.syntax.functor._

val func1 = (x: Int) => x.toDouble

// func1: Int => Double = <function1>

val func2 = (y: Double) => y * 2

// func2: Double => Double = <function1>

val func3 = func1.map(func2)

// func3: Int => Double = scala.runtime.

AbstractFunction1$$Lambda$9405/272413009@2deb99ee

func3(1) // function composition by calling map

// res8: Double = 2.0

func2(func1(1)) // function composition written out by hand
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// res9: Double = 2.0

3.3 Definiঞon of a Functor

Formally, a functor is a type F[A] with an operaঞon map with type (A
=> B) => F[B]. The general type chart is shown in Figure 3.5.

F[A] F[B]A => B

map

Figure 3.5: Type chart: generalised functor map

Intuiঞvely, a functor F[A] represents some data (the A type) in a context
(the F type). The map operaঞon modifies the data within but retains the
structure of the surrounding context. To ensure this is the case, the
following laws must hold:

Idenࢼty: calling mapwith the idenঞty funcঞon is the same as doing noth-
ing:

fa.map(a => a) == fa

Composiࢼon: mapping with two funcঞons f and g is the same as
mapping with f and then mapping with g:

fa.map(g(f(_))) == fa.map(f).map(g)

If we consider the laws in the context of the functors we’ve discussed
above, we can see they make sense and are true. We’ve seen some
examples of the second law already.

A simplified version of the definiঞon from Cats is:
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import scala.language.higherKinds

trait Functor[F[_]] {

def map[A, B](fa: F[A])(f: A => B): F[B]

}

If you haven’t seen syntax like F[_] before, it’s ঞme to take a brief de-
tour to discuss type constructors and higher kinded types. We’ll explain
that scala.language import as well.

3.4 Aside: Higher Kinds and Type Constructors

Kinds are like types for types. They describe the number of “holes” in
a type. We disঞnguish between regular types that have no holes, and
“type constructors” that have holes that we can fill to produce types.

For example, List is a type constructor with one hole. We fill that hole
by specifying a parameter to produce a regular type like List[Int]

or List[A]. The trick is not to confuse type constructors with generic
types. List is a type constructor, List[A] is a type:

List // type constructor, takes one parameter

List[A] // type, produced using a type parameter

There’s a close analogy here with funcঞons and values. Funcঞons are
“value constructors”—they produce values when we supply parameters:

math.abs // function, takes one parameter

math.abs(x) // value, produced using a value parameter
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Kind notaࢼon

We someঞmes use “kind notaঞon” to describe the shape of types
and their constructors. Regular types have a kind *. List has
kind * => * to indicate that it produces a type given a single pa-
rameter. Either has kind * => * => * because it accepts two
parameters, and so on.

In Scala we declare type constructors using underscores but refer to
them without:

// Declare F using underscores:

def myMethod[F[_]] = {

// Refer to F without underscores:

val functor = Functor.apply[F]

// ...

}

This is analogous to specifying a funcঞon’s parameters in its definiঞon
and omiমng them when referring to it:

// Declare f specifying parameters:

val f = (x: Int) => x * 2

// Refer to f without parameters:

val f2 = f andThen f

Armed with this knowledge of type constructors, we can see that the
Cats definiঞon of Functor allows us to create instances for any single-
parameter type constructor, such as List, Option, or Future.
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Language feature imports

Higher kinded types are considered an advanced language feature
in Scala. Wherever we declare a type constructor with A[_] syn-
tax, we need to “import” the feature to suppress compiler warn-
ings:

import scala.language.higherKinds

3.5 Functors in Cats

Let’s look at the implementaঞon of functors in Cats. We’ll follow the
usual pa�ern of looking at the three main aspects of the implementa-
ঞon: the type class, the instances, and the interface.

3.5.1 The Functor Type Class

The functor type class is cats.Functor. We obtain instances using
the standard Functor.apply method on the companion object. As
usual, default instances are arranged by type in the cats.instances

package:

import cats.Functor

import cats.instances.list._

import cats.instances.option._

val list1 = List(1, 2, 3)

// list1: List[Int] = List(1, 2, 3)

val list2 = Functor[List].map(list1)(_ * 2)

// list2: List[Int] = List(2, 4, 6)

val option1 = Option(123)

http://typelevel.org/cats/api/cats/Functor.html
http://typelevel.org/cats/api/cats/instances/
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// option1: Option[Int] = Some(123)

val option2 = Functor[Option].map(option1)(_.toString)

// option2: Option[String] = Some(123)

Functor also provides the lift method, which converts a funcঞon of
type A => B to one that operates over a functor and has type F[A] =>

F[B]:

val func = (x: Int) => x + 1

// func: Int => Int = <function1>

val lifted = Functor[Option].lift(func)

// lifted: Option[Int] => Option[Int] = cats.

Functor$$Lambda$28362/1686307543@514a39b6

lifted(Option(1))

// res0: Option[Int] = Some(2)

3.5.2 Functor Syntax

The main method provided by the syntax for Functor is map. It’s dif-
ficult to demonstrate this with Options and Lists as they have their
own built-in map operaঞons. If there is a built-in method it will always
be called in preference to an extension method. Instead we will use
funcࢼons as our example:

import cats.instances.function._

import cats.syntax.functor._

val func1 = (a: Int) => a + 1

// func1: Int => Int = <function1>

val func2 = (a: Int) => a * 2

// func2: Int => Int = <function1>

val func3 = func1.map(func2)



3.5. FUNCTORS IN CATS 65

// func3: Int => Int = scala.runtime.

AbstractFunction1$$Lambda$9405/272413009@5f430fe0

func3(123)

// res1: Int = 248

Other methods are available but we won’t discuss them here.
Functors are more important to us as building blocks for later
abstracঞons than they are as a tool for direct use.

3.5.3 Instances for Custom Types

We can define a functor simply by defining its map method. Here’s an
example of a Functor for Option, even though such a thing already
exists in cats.instances:

implicit val optionFunctor = new Functor[Option] {

def map[A, B](value: Option[A])(func: A => B): Option[B] =

value.map(func)

}

The implementaঞon is trivial—we simply call Option's map method.

Someঞmes we need to inject dependencies into our instances. For
example, if we had to define a custom Functor for Future, we would
need to account for the implicit ExecutionContext parameter on
future.map. We can’t add extra parameters to functor.map so we
have to account for the dependency when we create the instance:

import scala.concurrent.{Future, ExecutionContext}

implicit def futureFunctor(implicit ec: ExecutionContext) =

new Functor[Future] {

def map[A, B](value: Future[A])(func: A => B): Future[B] =

http://typelevel.org/cats/api/cats/instances/
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value.map(func)

}

3.5.4 Exercise: Branching out with Functors

Write a Functor for the following binary tree data type. Verify that the
code works as expected on instances of Branch and Leaf:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])

extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]

See the soluঞon

3.6 Contravariant and Invariant Functors

We can think of map as “appending” a transformaঞon to a chain. We
start with an F[A], run it through a funcঞon A => B, and end up with
an F[B]. We can extend the chain further by mapping again: run the
F[B] through a funcঞon B => C and end up with an F[C]:

Option(1).map(_ + 2).map(_ * 3).map(_ + 100)

// res0: Option[Int] = Some(109)

We’re now going to look at two other type classes, one that represents
prepending operaঞons to a chain, and one that represents building a
bidirecࢼonal chain of operaঞons.

One great use case for these new type classes is building libraries that
transform, read, and write values. The content ঞes in ঞghtly to the
JSON codec case study later in the book.



3.6. CONTRAVARIANT AND INVARIANT FUNCTORS 67

3.6.1 Contravariant functors and the contramapmethod

The first of our type classes, the contravariant functor, provides an oper-
aঞon called contramap that represents “prepending” a transformaঞon
to a chain. This is illustrated in Figure 3.6.

F[B] F[A]A => B

contramap

Figure 3.6: Type chart: the contramap method

We’ll talk about contramap itself directly for now, bringing in the type
class in a moment.

The contramap method only makes sense for certain data types. For
example, we can’t define contramap for an Option because there is no
way of feeding a value in an Option[B] backwards through a funcঞon
A => B.

contramap starts to make sense when we have a data types that repre-
sent tranformaঞons. For example, consider the Printable type class
we discussed in Chapter 2:

trait Printable[A] {

def format(value: A): String

}

A Printable[A] represents a transformaঞon from A to String. We
can define a contramapmethod that “prepends” a transformaঞon from
another type B:
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trait Printable[A] {

def format(value: A): String

def contramap[B](func: B => A): Printable[B] =

???

}

def format[A](value: A)(implicit p: Printable[A]): String =

p.format(value)

This says that if A is Printable, and we can transform B into A, then B

is also Printable.

3.6.1.1 Exercise: Showing off with Contramap

Implement the contramap method for Printable above.

See the soluঞon

Let’s define some basic instances of Printable for String and
Boolean:

implicit val stringPrintable =

new Printable[String] {

def format(value: String): String =

"\"" + value + "\""

}

implicit val booleanPrintable =

new Printable[Boolean] {

def format(value: Boolean): String =

if(value) "yes" else "no"

}

format("hello")

// res4: String = "hello"

format(true)
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// res5: String = yes

Define an instance of Printable that prints the value from this case
class:

final case class Box[A](value: A)

Rather than wriঞng out the complete definiঞon from scratch (new
Printable[Box] etc…), create your instance using the contramap

method of one of the instances above.

See the soluঞon

Your instance should work as follows:

format(Box("hello world"))

// res6: String = "hello world"

format(Box(true))

// res7: String = yes

If we don’t have a Printable for the contents of the Box, calls to
format should fail to compile:

format(Box(123))

// <console>:19: error: could not find implicit value for

parameter p: Printable[Box[Int]]

// format(Box(123))

// ^

3.6.2 Invariant functors and the imapmethod

The second of our type classes, the invariant functor, provides a method
called imap that is informally equivalent to a combinaঞon of map and
contramap. We can demonstrate this by extending Printable to pro-
duce a typeclass for encoding and decoding to a String:
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trait Codec[A] {

def encode(value: A): String

def decode(value: String): Option[A]

def imap[B](dec: A => B, enc: B => A): Codec[B] =

???

}

def encode[A](value: A)(implicit c: Codec[A]): String =

c.encode(value)

def decode[A](value: String)(implicit c: Codec[A]): Option[A] =

c.decode(value)

The type chart for imap is showin in Figure 3.7.

F[A] F[B]A => B

,

B => A

imap

Figure 3.7: Type chart: the imap method

3.6.2.1 Transformaঞve Thinking with Imap

Implement the imap method for Codec above.

See the soluঞon

Here’s an example Codec represenঞng parsing and serializing Ints:

See the soluঞon

Demonstrate your imapmethod works by creaঞng a Codec for conver-
sions between Strings and Boxes:
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case class Box[A](value: A)

See the soluঞon

Your instance should work as follows:

encode(Box(123))

// res13: String = 123

decode[Box[Int]]("123")

// res14: Option[Box[Int]] = Some(Box(123))

3.6.3 What’s With the Name?

What’s the relaঞonship between contravariance, invariance, and covari-
ance as we usually understand them in Scala, and the names for the
functors above?

The usual meaning of these terms in Scala relates to subtypes. We say
that B is a subtype of A if we can use B anywhere we want an A. Put an-
other way, we can convert A into B and our program keeps on working.

Co- and contravariance usually arises in Scala when working with type
constructors like List and Option. If we declare a type constructor F,
and we want F[B] to be a subtype of F[A] when B is a subtype of A,
we declare the type parameter to be covariant.

trait F[+A] // A is covariant

If B is a subtype of A, and we want F[A] to be a subtype of F[B], then
we declare F to have a contravariant type parameter.

trait F[-A] // A is contravariant

Co- and contravariant functors capture the same principle without the
limitaঞons of subtyping. As we said above subtyping can be viewed as
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a conversion. B is a subtype of A if we can convert A to B. In other words
there exists a funcঞon A => B. A covariant functor, which is what the
standard Functor is, captures exactly this. If F is a (covariant) functor,
whenever we have a F[A] and a conversion A => B we have a F[B]. A
contravariant functor captures the case in the opposite direcঞon. If F
is a contravariant functor, whenever we have a F[A] and a conversion
B => A we have a F[B].

3.7 Contravariant and Invariant in Cats

Cats’s Contravariant and Invariant type classes are slightly differ-
ent to its other type classes: they live under cats.functor instead of
cats. Here’s a simplified version of the code:

trait Invariant[F[_]] {

def imap[A, B](fa: F[A])(f: A => B)(g: B => A): F[B]

}

trait Contravariant[F[_]] extends Invariant[F] {

def contramap[A, B](fa: F[A])(f: B => A): F[B]

def imap[A, B](fa: F[A])(f: A => B)(fi: B => A): F[B] =

contramap(fa)(fi)

}

trait Functor[F[_]] extends Invariant[F] {

def map[A, B](fa: F[A])(f: A => B): F[B]

def imap[A, B](fa: F[A])(f: A => B)(fi: B => A): F[B] =

map(fa)(f)

}

Cats treats Functor and Contravariant as specialisaঞons of
Invariant where one side of the bidirecঞonal transformaঞon is

http://typelevel.org/cats/api/cats/functor/Contravariant.html
http://typelevel.org/cats/api/cats/functor/Invariant.html
http://typelevel.org/cats/api/cats/functor/
http://typelevel.org/cats/api/cats/
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ignored. Cats uses this to provide operaঞons that work with any of
the three types of functor².

3.7.1 Contravariant in Cats

Wecan summon instances of Contravariant using the Contravariant.apply
method. Cats provides instances for data types that consume parame-
ters, including Eq, Show, Writer, WriterT, and Function1:

import cats.Show

import cats.functor.Contravariant

import cats.instances.string._

val showString = Show[String]

val showSymbol = Contravariant[Show].

contramap(showString)((sym: Symbol) => s"'${sym.name}")

showSymbol.show('dave)

// res2: String = 'dave

More conveniently, we can use cats.syntax.contravariant, which
provides a contramap extension method:

import cats.instances.function._

import cats.syntax.contravariant._

val div2: Int => Double = _ / 2.0

val add1: Int => Int = _ + 1

div2.contramap(add1)(2)

// res4: Double = 1.5

²One example is the tupled method provided by the cartesian builder syntax dis-
cussed in Chapter 6.

http://typelevel.org/cats/api/cats/syntax/package$$contravariant$
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3.7.1.1 Invariant in Cats

Cats provides instances of Invariant for Semigroup and Monoid. It
also provides an imap extensionmethod via the cats.syntax.invariant
import. Imagine we have a semigroup for a well known type, for exam-
ple Semigroup[String], and we want to convert it to another type
like Semigroup[Symbol]. To do this we need two funcঞons: one to
convert the Symbol parameters to Strings, and one to convert the
result of the String append back to a Symbol:

import cats.Semigroup

import cats.instances.string._ // semigroup for String

import cats.syntax.invariant._ // imap extension method

implicit val symbolSemigroup: Semigroup[Symbol] =

Semigroup[String].imap(Symbol.apply)(_.name)

import cats.syntax.semigroup._

'a |+| 'few |+| 'words

// res7: Symbol = 'afewwords

3.8 Summary

We covered three types of functor in this chapter: regular covariant
Functors with their map method, as well as Contravariant functors
with their contramap methods, and Invariant functors with their
imap methods.

Regular Functors are by far the most common of these type classes,
but even then is rare to use them on their own. They form the build-
ing block of several more interesঞng abstracঞons that we use all the
ঞme. In the following chapters we will look at two of these abstrac-
ঞons: Monads and Applicatives.
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The mapmethod for collecঞon types is important because each element
in a collecঞon can be transformed independently of the rest. This al-
lows us to parallelise or distribute transformaঞons on large collecঞons,
a technique leveraged heavily in “map reduce” frameworks like Hadoop.
We will invesঞgate this approach in more detail in the Pygmy Hadoop
case study later in the book.

The Contravariant and Invariant type classes are more situaঞonal.
We won’t be doing much more work with them, although we will revisit
them to discuss Cartesians, and for the JSON Codec case study later
in the book.

http://hadoop.apache.org/
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Chapter 4

Monads

Monads are one of the most common abstracঞons in Scala. Many Scala
programmers quickly become intuiঞvely familiar with monads, even if
we don’t know them by name.

Informally, a monad is anything with a flatMapmethod. All of the func-
tors we saw in the last chapter are alsomonads, including Option, List,
Either, and Future. We even have special syntax to support monads:
for comprehensions. However, despite the ubiquity of the concept, the
Scala standard library lacks a concrete type to encompass “things that
can be flatMapped”. This is one of the benefits that Cats brings us.

In this chapter we will take a deep dive into monads. We will start by
moঞvaঞng them with a few examples. We’ll proceed to their formal
definiঞon and their implementaঞon in Cats. Finally, we’ll tour some
interesঞng monads that you may not have heard of, providing introduc-
ঞons and examples of their use.

77
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4.1 What is a Monad?

This is the quesঞon that has been posed in a thousand blog posts, with
explanaঞons and analogies involving concepts as diverse as cats, mexi-
can food, and monoids in the category of endofunctors (whatever they
are). We’re going to solve the problem of explaining monads once and
for all by staঞng very simply:

A monad is a control mechanism for sequencing computa-
.onsࢼ

That was easy! Problem solved, right? Ok, maybe we need some more
discussion…

Informally, the most important feature of a monad is its flatMap

method, which allows us to specify what happens next. This is what
we mean by sequencing computaঞons. A monad allows us to specify
a sequence of operaঞons that happen one a[er another. We specify
the applicaঞon-specific part of the computaঞon as a funcঞon param-
eter, and flatMap runs our funcঞon and takes care of some kind of
complicaঞon (convenঞonally referred to as an “effect”). Let’s ground
things by looking at some examples.

Opঞons

Option is a monad that allows us to sequence computaঞons that may
or may not return values. Here are some examples:

def parseInt(str: String): Option[Int] =

scala.util.Try(str.toInt).toOption

def divide(a: Int, b: Int): Option[Int] =

if(b == 0) None else Some(a / b)

Each of these computaঞons may fail, as indicated by their Option re-
turn types. The flatMap method on Option allows us to sequence
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these operaঞons without having to constantly check whether they re-
turn Some or None:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

parseInt(aStr).flatMap { aNum =>

parseInt(bStr).flatMap { bNum =>

divide(aNum, bNum)

}

}

We know the semanঞcs well:

• the first call to parseInt returns a None or a Some;
• if it returns a Some, the flatMap method calls our funcঞon and

passes us aNum;
• the second call to parseInt returns a None or a Some;
• if it returns a Some, the flatMap method calls our funcঞon and

passes us bNum;
• the call to divide returns a None or a Some, which is our result.

At each step, flatMap chooses whether to call our funcঞon, and our
funcঞon generates the next computaঞon in the sequence. This is
shown in Figure 4.1.

Option[A]

flatMap

Option[B]A => Option[B]

Figure 4.1: Type chart: flatMap for Opঞon

The result of the computaঞon is an Option, allowing us to call flatMap
again and so the process conঞnues. This results in the fail-fast error
handling behaviour that we know and love, where a None at any step
results in a None overall:
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stringDivideBy("6", "2")

// res1: Option[Int] = Some(3)

stringDivideBy("6", "0")

// res2: Option[Int] = None

stringDivideBy("6", "foo")

// res3: Option[Int] = None

stringDivideBy("bar", "2")

// res4: Option[Int] = None

Every monad is also a functor (see below for proof), so we can rely on
both flatMap and map to sequence computaঞons that do and and don’t
introduce a newmonad. Plus, if we have both flatMap and mapwe can
use for comprehensions to clarify the sequencing behaviour:

def stringDivideBy(aStr: String, bStr: String): Option[Int] =

for {

aNum <- parseInt(aStr)

bNum <- parseInt(bStr)

ans <- divide(aNum, bNum)

} yield ans

Lists

When we first encounter flatMap as budding Scala developers, we
tend to think of it as a pa�ern for iteraঞng over Lists. This is rein-
forced by the syntax of for comprehensions, which look very much like
imperaঞve for loops:

def numbersBetween(min: Int, max: Int): List[Int] =

(min to max).toList

for {

x <- numbersBetween(1, 3)

y <- numbersBetween(4, 5)

} yield (x, y)
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// res5: List[(Int, Int)] = List((1,4), (1,5), (2,4), (2,5),

(3,4), (3,5))

However, there is another mental model we can apply that highlights
the monadic behaviour of List. If we think of funcঞons that return
Lists as funcঞons with mulঞple return values, flatMap becomes a
construct that calculates results from permutaঞons and combinaঞons
of intermediate values.

For example, in the for comprehension above, there are three possi-
ble values of x and two possible values of y. This means there are six
possible values of the overall expression. flatMap is generaঞng these
combinaঞons from our code, which simply says “get x from here and y
from over there”.

The type chart in Figure 4.2 illustrates this behaviour: although the re-
sult of flatMap (List[B]) is the same type as the result of the user-
supplied funcঞon, the end result is actually a larger list created from
combinaঞons of intermediate As and Bs:

List[A]

flatMap

List[B]A => List[B]

Figure 4.2: Type chart: flatMap for List

Futures

Future is a monad that allows us to sequence computaঞons without
worrying that they are asynchronous:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

def getTrafficFromHost(hostname: String): Future[Int] =
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??? // grab traffic information using a network client

def getTrafficFromAllHosts: Future[Int] =

for {

traffic1 <- getTrafficFromHost("host1")

traffic2 <- getTrafficFromHost("host2")

traffic3 <- getTrafficFromHost("host3")

} yield traffic1 + traffic2 + traffic3

Again, we specify the code to run at each step, and flatMap takes care
of all the horrifying underlying complexiঞes of thread pools and sched-
ulers.

If you’ve made extensive use of Scala’s Futures, you’ll know that the
code above is fetching traffic from each server in sequence. This be-
comes clearer if we expand out the for comprehension to show the
nested calls to flatMap:

def getTrafficFromAllHosts: Future[Int] =

getTrafficFromHost("host1").flatMap { traffic1 =>

getTrafficFromHost("host2").flatMap { traffic2 =>

getTrafficFromHost("host3").map { traffic3 =>

traffic1 + traffic2 + traffic3

}

}

}

Each Future in our sequence is created by a funcঞon that receives the
result from a previous Future. In other words, each step in our compu-
taঞon can only start once the previous step is finished. This is born out
by the type chart for flatMap in Figure 4.3, which shows the funcঞon
parameter of type A => Future[B]:

In otherwords, themonadic behaviour of Future allows us to sequence
asynchronous computaঞons one a[er the other. We can run Futures

in parallel, but that is another story and shall be told another ঞme. Mon-
ads are truly all about sequencing.
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Future[A] Future[B]A => Future[B]

flatMap

Figure 4.3: Type chart: flatMap for Future

4.1.1 Monad Definiঞon and Laws

While we have only talked about the flatMap method above, the
monad behaviour is formally captured in two operaঞons:

• an operaঞon pure with type A => F[A];
• an operaঞon flatMap¹ with type (F[A], A => F[B]) =>

F[B].

The pure operaঞon abstracts over constructors, providing a way to cre-
ate a new monadic context from a plain value. flatMap provides the
sequencing step we have already discussed, extracঞng the value from
a context and using the supplied funcঞon to generate the next context
in the sequence. Here is a simplified version of the Monad type class in
Cats:

import scala.language.higherKinds

trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

}

¹In some languages and libraries, notably Haskell and Scalaz, flatMap is referred
to as bind. This is purely a difference in terminology. We’ll use the term flatMap for
compaঞbility with Cats and the Scala standard library.
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Importantly, the pure and flatMap methods must obey three laws:

Le[ idenࢼty: calling pure then transforming the result with a funcঞon
f is the same as simply calling f:

pure(a).flatMap(f) == f(a)

Right idenࢼty: passing pure to flatMap is the same as doing nothing:

m.flatMap(pure) == m

Associaࢼvity: flatMapping over two funcঞons f and g is the same as
flatMapping over f and then flatMapping over g:

m.flatMap(f).flatMap(g) == m.flatMap(x => f(x).flatMap(g))

4.1.2 Exercise: Geমng Func-y

Every monad is also a functor. If flatMap represents sequencing a
computaঞon that introduces a new monadic context, map represents
sequencing a computaঞon that does not. We can define map in the
same way for every monad using the exisঞng methods, flatMap and
pure:

import scala.language.higherKinds

trait Monad[F[_]] {

def pure[A](a: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

}

Try defining map yourself now.

See the soluঞon
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4.2 Monads in Cats

It’s ঞme to give monads our standard Cats treatment. As usual we’ll
look at the type class, instances, and syntax.

4.2.1 TheMonad Type Class

The monad type class is cats.Monad. Monad extends two other
type classes: FlatMap, which provides the flatMap method, and
Applicative, which provides pure. Applicative also extends
Functor so every Monad also has a map method. We’ll discuss
Applicatives in a later chapter.

Here are some examples using pure and flatMap, and map directly:

import cats.Monad

import cats.instances.option._

import cats.instances.list._

val opt1 = Monad[Option].pure(3)

// opt1: Option[Int] = Some(3)

val opt2 = Monad[Option].flatMap(opt1)(a => Some(a + 2))

// opt2: Option[Int] = Some(5)

val opt3 = Monad[Option].map(opt2)(a => 100 * a)

// opt3: Option[Int] = Some(500)

val list1 = Monad[List].pure(3)

// list1: List[Int] = List(3)

val list2 = Monad[List].

flatMap(List(1, 2, 3))(x => List(x, x*10))

// list2: List[Int] = List(1, 10, 2, 20, 3, 30)

http://typelevel.org/cats/api/cats/Monad.html
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val list3 = Monad[List].map(list2)(_ + 123)

// list3: List[Int] = List(124, 133, 125, 143, 126, 153)

Monad provides many other methods as well, including all of the meth-
ods from Functor. See the scaladoc for more informaঞon.

4.2.2 Default Instances

Cats provides instances for all the monads in the standard library
(Option, List, Vector and so on) via cats.instances:

import cats.instances.option._

Monad[Option].flatMap(Option(1))(x => Option(x*2))

// res0: Option[Int] = Some(2)

import cats.instances.list._

Monad[List].flatMap(List(1, 2, 3))(x => List(x, x*10))

// res1: List[Int] = List(1, 10, 2, 20, 3, 30)

import cats.instances.vector._

Monad[Vector].flatMap(Vector(1, 2, 3))(x => Vector(x, x*10))

// res2: Vector[Int] = Vector(1, 10, 2, 20, 3, 30)

The Monad for Future doesn’t accept implicit ExecutionContext pa-
rameters to pure and flatMap like Future itself does (it can’t because
the parameters aren’t in the definiঞons in the Monad trait). To work
around this, Cats requires us to have an ExecutionContext in scope
when we summon the Monad for Future:

import cats.instances.future._

import scala.concurrent._

import scala.concurrent.duration._

http://typelevel.org/cats/api/cats/Monad.html
http://typelevel.org/cats/api/cats/instances/
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val fm = Monad[Future]

// <console>:37: error: could not find implicit value for

parameter instance: cats.Monad[scala.concurrent.Future]

// val fm = Monad[Future]

// ^

import scala.concurrent.ExecutionContext.Implicits.global

val fm = Monad[Future]

// fm: cats.Monad[scala.concurrent.Future] = cats.instances.

FutureInstances$$anon$1@1c54d4ad

The Monad instances uses the captured ExecutionContext for subse-
quent calls to pure and flatMap:

Await.result(

fm.flatMap(fm.pure(1)) { x =>

fm.pure(x + 2)

},

1.second

)

// res3: Int = 3

In addiঞon to the above, Cats provides a host of new monads that we
don’t have in the standard library. We’ll familiarise ourselves with the
most important of these in a moment.

4.2.3 Monad Syntax

The syntax for monads comes from three places:

• cats.syntax.flatMap provides syntax for flatMap;
• cats.syntax.functor provides syntax for map;
• cats.syntax.applicative provides syntax for pure.

http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/syntax/package$$functor$
http://typelevel.org/cats/api/cats/syntax/package$$applicative$
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In pracঞce it’s o[en easier to import everything in one go from
cats.implicits. However, we’ll use the individual imports here for
clarity.

We can use pure to construct instances of a monad. We’ll o[en need
to specify the type parameter to disambiguate the parঞclar instancewe
want.

import cats.syntax.applicative._

import cats.instances.option._

import cats.instances.list._

1.pure[Option]

// res4: Option[Int] = Some(1)

1.pure[List]

// res5: List[Int] = List(1)

It’s difficult to demonstrate the flatMap and map methods directly on
Scala monads like Option and List, because they define their own ex-
plicit versions of those methods. Instead we’ll write a generic func-
ঞon that performs a calculaঞon on parameters that come wrapped in a
monad of the user’s choice:

import scala.language.higherKinds

import cats.Monad

import cats.syntax.functor._

import cats.syntax.flatMap._

def sumSquare[M[_] : Monad](a: M[Int], b: M[Int]): M[Int] =

a.flatMap(x => b.map(y => x*x + y*y))

import cats.instances.option._

import cats.instances.list._

sumSquare(Option(3), Option(4))

// res8: Option[Int] = Some(25)

http://typelevel.org/cats/api/cats/implicits$.html
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sumSquare(List(1, 2, 3), List(4, 5))

// res9: List[Int] = List(17, 26, 20, 29, 25, 34)

We can rewrite this code using for comprehensions. The Scala compiler
will “do the right thing” by rewriঞng our comprehension in terms of
flatMap and map and inserঞng the correct implicit conversions to use
our Monad:

def sumSquare[M[_] : Monad](a: M[Int], b: M[Int]): M[Int] =

for {

x <- a

y <- b

} yield x*x + y*y

sumSquare(Option(3), Option(4))

// res10: Option[Int] = Some(25)

sumSquare(List(1, 2, 3), List(4, 5))

// res11: List[Int] = List(17, 26, 20, 29, 25, 34)

That’s more or less everything we need to know about the generali-
ঞes of monads in Cats. Now let’s take a look at some useful monad
instances.

4.3 The IdenࢼtyMonad

In the previous secঞonwe demonstrated Cats’ flatMap and map syntax
by wriঞng a method that abstracted over different monads:

import scala.language.higherKinds

import cats.Monad

import cats.syntax.functor._

import cats.syntax.flatMap._

def sumSquare[M[_] : Monad](a: M[Int], b: M[Int]): M[Int] =

for {
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x <- a

y <- b

} yield x*x + y*y

This method works well on Options and Lists but we can’t call it pass-
ing in plain values:

sumSquare(3, 4)

// <console>:22: error: no type parameters for method sumSquare:

(a: M[Int], b: M[Int])(implicit evidence$1: cats.Monad[M])M

[Int] exist so that it can be applied to arguments (Int, Int

)

// --- because ---

// argument expression's type is not compatible with formal

parameter type;

// found : Int

// required: ?M[Int]

// sumSquare(3, 4)

// ^

// <console>:22: error: type mismatch;

// found : Int(3)

// required: M[Int]

// sumSquare(3, 4)

// ^

// <console>:22: error: type mismatch;

// found : Int(4)

// required: M[Int]

// sumSquare(3, 4)

// ^

It would be incredibly useful if we could use sumSquare with a com-
binaঞon of monadic and non-monadic parameters. This would allow
us to abstract over monadic and non-monadic code. Fortunately, Cats
provides the Id type to bridge the gap:

import cats.Id



4.3. THE IDENTITY MONAD 91

sumSquare(3 : Id[Int], 4 : Id[Int])

// res2: cats.Id[Int] = 25

Now we can call our monadic method using plain values. However, the
exact semanঞcs are difficult to understand. We cast the parameters to
sumSquare as Id[Int] and received an Int back as a result!

What’s going on? Here is the definiঞon of Id to explain:

package cats

type Id[A] = A

Id is actually a type alias that turns an atomic type into a single-
parameter type constructor. We can cast any value of any type to a
corresponding Id:

"Dave" : Id[String]

// res3: cats.Id[String] = Dave

123 : Id[Int]

// res4: cats.Id[Int] = 123

List(1, 2, 3) : Id[List[Int]]

// res5: cats.Id[List[Int]] = List(1, 2, 3)

Cats provides instances of various type classes for Id, including
Functor and Monad. These let us call map, flatMap and so on on plain
values:

val a = Monad[Id].pure(3)

// a: cats.Id[Int] = 3

val b = Monad[Id].flatMap(a)(_ + 1)

// b: cats.Id[Int] = 4

import cats.syntax.flatMap._

import cats.syntax.functor._
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for {

x <- a

y <- b

} yield x + y

// res6: cats.Id[Int] = 7

The main use for Id is to write generic methods like sumSquare

that operate on monadic and non-monadic data types. For example,
we can run code asynchronously in producঞon using Future and
synchronously in test using Id:

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

import cats.instances.future._

// In production:

Await.result(sumSquare(Future(3), Future(4)), 1.second)

// res8: Int = 25

// In test:

sumSquare(a, b)

// res10: cats.Id[Int] = 25

4.3.1 Exercise: Monadic Secret Idenঞঞes

Implement pure, map, and flatMap for Id! What interesঞng discover-
ies do you uncover about the implementaঞon?

See the soluঞon

4.4 Either

Let’s look at another useful monadic data type. The Scala standard li-
brary has a type Either. In Scala 2.11 and earlier, Either wasn’t tech-
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nically a monad because it didn’t have map and flatMap methods. In
Scala 2.12, however, Either became right biased.

4.4.1 Le[ and Right Bias

In Scala 2.11, Either was unbiased. It had no map or flatMapmethod:

// Scala 2.11 example

Right(123).flatMap(x => Right(x * 2))

// <console>:12: error: value flatMap is not a member

// of scala.util.Right[Nothing, Int]

// Right(123).flatMap(x => Right(x * 2))

// ^

Instead of calling map or flatMap directly, we had to decide which side
we wanted to be the “correct” side by taking a le[- or right-projecঞon:

// Valid in Scala 2.11 and Scala 2.12

val either1: Either[String, Int] = Right(123)

// either1: Either[String,Int] = Right(123)

val either2: Either[String, Int] = Right(321)

// either2: Either[String,Int] = Right(321)

either1.right.flatMap(x => Right(x * 2))

// res2: scala.util.Either[String,Int] = Right(246)

either2.left.flatMap(x => Left(x + "!!!"))

// res3: scala.util.Either[String,Int] = Right(321)

This made the Scala 2.11 version of Either incovenient to use as a
monad. If we wanted to use for comprehensions, for example, we had
to insert calls to .right in every generator clause:
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for {

a <- either1.right

b <- either2.right

} yield a + b

// res4: scala.util.Either[String,Int] = Right(444)

In Scala 2.12, Either was redesigned. The modern Either makes the
decision that the right side is always the success case and thus supports
map and flatMap directly. This turns Either into a monad and makes
working with it much more pleasant:

for {

a <- either1

b <- either2

} yield a + b

// res5: scala.util.Either[String,Int] = Right(444)

4.4.2 Creaঞng Instances

In addiঞon to creaঞng instances of Left and Right directly, we
can also import the asLeft and asRight extension methods from
cats.syntax.either:

import cats.syntax.either._

val a = 3.asRight[String]

// a: Either[String,Int] = Right(3)

val b = 4.asRight[String]

// b: Either[String,Int] = Right(4)

for {

x <- a

y <- b

http://typelevel.org/cats/api/cats/syntax/package$$either$


4.4. EITHER 95

} yield x*x + y*y

// res6: scala.util.Either[String,Int] = Right(25)

Smart Constructors and Avoiding Over-Narrowing

The asLeft and asRight methods have advantages over
Left.apply and Right.apply in terms of type inference. The
following code provides an example:

def countPositive(nums: List[Int]) =

nums.foldLeft(Right(0)) { (accumulator, num) =>

if(num > 0) {

accumulator.map(_ + 1)

} else {

Left("Negative. Stopping!")

}

}

// <console>:18: error: type mismatch;

// found : scala.util.Either[Nothing,Int]

// required: scala.util.Right[Nothing,Int]

// accumulator.map(_ + 1)

// ^

// <console>:20: error: type mismatch;

// found : scala.util.Left[String,Nothing]

// required: scala.util.Right[Nothing,Int]

// Left("Negative. Stopping!")

// ^

There are two problems here, both arising because the compiler
chooses the type of accumulator based on the first parameter
list to foldRight:

1. the type of the accumulator ends up being Right instead
of Either;



96 CHAPTER 4. MONADS

2. we didn’t specify type parameters for Right.apply so the
compiler infers the le[ parameter as Nothing.

Switching to asRight avoids both of these problems. It as a re-
turn type of Either, and allows us to completely specify the type
with only one type parameter:

def countPositive(nums: List[Int]) =

nums.foldLeft(0.asRight[String]) { (accumulator, num) =>

if(num > 0) {

accumulator.map(_ + 1)

} else {

Left("Negative. Stopping!")

}

}

countPositive(List(1, 2, 3))

// res7: Either[String,Int] = Right(3)

countPositive(List(1, -2, 3))

// res8: Either[String,Int] = Left(Negative. Stopping!)

In addiঞon to asLeft and asRight, cats.syntax.either also adds
some useful extension methods to the Either companion object.
The catchOnly and catchNonFatal methods are for capturing
Exceptions in instances of Either:

Either.catchOnly[NumberFormatException]("foo".toInt)

Either.catchNonFatal(sys.error("Badness"))

There are also methods for creaঞng an Either from other data types:

Either.fromTry(scala.util.Try("foo".toInt))

Either.fromOption[String, Int](None, "Badness")
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4.4.3 Transforming Eithers

cats.syntax.either adds a number of useful methods to Either.
We can use orElse and getOrElse to extract values from the right
side: the right value or return a default:

import cats.syntax.either._

"Error".asLeft[Int].getOrElse(0)

// res9: Int = 0

"Error".asLeft[Int].orElse(2.asRight[String])

// res10: Either[String,Int] = Right(2)

The ensuremethod allows us to check whether a wrapped value saঞs-
fies a predicate:

-1.asRight[String].ensure("Must be non-negative!")(_ > 0)

// res11: Either[String,Int] = Left(Must be non-negative!)

The recover and recoverWithmethods provide similar error handling
to their namesakes on Future:

"error".asLeft[String] recover {

case str: String =>

"Recovered from " + str

}

// res12: Either[String,String] = Right(Recovered from error)

"error".asLeft[String] recoverWith {

case str: String =>

Right("Recovered from " + str)

}

// res13: Either[String,String] = Right(Recovered from error)

There are leftMap and bimap methods to complement map:
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"foo".asLeft[Int].leftMap(_.reverse)

// res14: Either[String,Int] = Left(oof)

6.asRight[String].bimap(_.reverse, _ * 7)

// res15: Either[String,Int] = Right(42)

"bar".asLeft[Int].bimap(_.reverse, _ * 7)

// res16: Either[String,Int] = Left(rab)

The swap method lets us exchange le[ for right:

123.asRight[String]

// res17: Either[String,Int] = Right(123)

123.asRight[String].swap

// res18: scala.util.Either[Int,String] = Left(123)

Finally, Cats adds a host of conversion methods: toOption, toList,
toTry, toValidated, and so on.

4.4.4 Fail-Fast Error Handling

Either is typically used to implement fail-fast error handling. We se-
quence a number of computaঞons using flatMap, and if one computa-
ঞon fails the remaining computaঞons are not run:

for {

a <- 1.asRight[String]

b <- 0.asRight[String]

c <- if(b == 0) "DIV0".asLeft[Int] else (a / b).asRight[String

]

} yield c * 100

// res19: scala.util.Either[String,Int] = Left(DIV0)
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4.4.5 Represenঞng Errors

When using Either for error handling, we need to determinewhat type
we want to use to represent errors. We could use Throwable for this
as follows:

type Result[A] = Either[Throwable, A]

This gives us similar semanঞcs to scala.util.Try. The problem, how-
ever, is that Throwable is an extremely broad supertype. We have (al-
most) no idea about what type of error occurred.

Another approach is to define an algebraic data type to represent the
errors that can occur:

sealed trait LoginError extends Product with Serializable

final case class UserNotFound(

username: String

) extends LoginError

final case class PasswordIncorrect(

username: String

) extends LoginError

case object UnexpectedError extends LoginError

case class User(username: String, password: String)

type LoginResult = Either[LoginError, User]

This approach solves the problems we saw with Throwable. It gives us
a fixed set of expected error types and a catch-all for anything else that
we didn’t expect. We also get the safety of exhausঞvity checking on
any pa�ern matching we do:
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// Choose error-handling behaviour based on type:

def handleError(error: LoginError): Unit =

error match {

case UserNotFound(u) =>

println(s"User not found: $u")

case PasswordIncorrect(u) =>

println(s"Password incorrect: $u")

case UnexpectedError =>

println(s"Unexpected error")

}

val result1: LoginResult = User("dave", "passw0rd").asRight

// result1: LoginResult = Right(User(dave,passw0rd))

val result2: LoginResult = UserNotFound("dave").asLeft

// result2: LoginResult = Left(UserNotFound(dave))

result1.fold(handleError, println)

// User(dave,passw0rd)

result2.fold(handleError, println)

// User not found: dave

4.4.6 Exercise: What is Best?

Is the error handling strategy in the previous exercises well suited for
all purposes? What other features might we want from error handling?

See the soluঞon

4.5 The EvalMonad

cats.Eval is a monad that allows us to abstract over different models
of evaluaࢼon. We typically hear of two such models: eager and lazy.

http://typelevel.org/cats/api/cats/Eval.html
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Eval throws in a further disঞncঞon of memoized and unmemoized to
create three models of evaluaঞon:

• now—evaluated once immediately (equivalent to val);
• later—evaluated once when the value is first needed (equivalent

to lazy val);
• always—evaluated every ঞme the value is needed (equivalent to

def).

4.5.1 Eager, lazy, memoized, oh my!

What do these terms mean?

Eager computaঞons happen immediately, whereas lazy computaঞons
happen on access.

For example, Scala vals are eager definiঞons. We can see this using
a computaঞon with a visible side-effect. In the following example, the
code to compute the value of x happens eagerly at the definiঞon site.
Accessing x simply recalls the stored value without re-running the code.

val x = {

println("Computing X")

1 + 1

}

// Computing X

// x: Int = 2

x // first access

// res0: Int = 2

x // second access

// res1: Int = 2

By contrast, defs are lazy and not memoized. The code to compute y
below is not run unঞl we access it (lazy), and is re-run on every access
(not memoized):
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def y = {

println("Computing Y")

1 + 1

}

// y: Int

y // first access

// Computing Y

// res2: Int = 2

y // second access

// Computing Y

// res3: Int = 2

Last but not least, lazy vals are lazy and memoized. The code to
compute z below is not run unঞlwe access it for the first ঞme (lazy). The
result is then cached and re-used on subsequent accesses (memoized):

lazy val z = {

println("Computing Z")

1 + 1

}

// z: Int = <lazy>

z // first access

// Computing Z

// res4: Int = 2

z // second access

// res5: Int = 2

4.5.2 Eval’s models of evaluaঞon

Eval has three subtypes: Eval.Now, Eval.Later, and Eval.Always.
We construct these with three constructor methods, which create in-
stances of the three classes and return them typed as Eval:
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import cats.Eval

// import cats.Eval

val now = Eval.now(1 + 2)

// now: cats.Eval[Int] = Now(3)

val later = Eval.later(3 + 4)

// later: cats.Eval[Int] = cats.Later@49373f5e

val always = Eval.always(5 + 6)

// always: cats.Eval[Int] = cats.Always@53dd8e4b

We can extract the result of an Eval using its value method:

now.value

// res6: Int = 3

later.value

// res7: Int = 7

always.value

// res8: Int = 11

Each type of Eval calculates its result using one of the evaluaঞon mod-
els defined above. Eval.now captures a value right now. Its semanঞcs
are similar to a val—eager and memoized:

val x = Eval.now {

println("Computing X")

1 + 1

}

// Computing X

// x: cats.Eval[Int] = Now(2)

x.value // first access

// res9: Int = 2
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x.value // second access

// res10: Int = 2

Eval.always captures a lazy computaঞon, similar to a def:

val y = Eval.always {

println("Computing Y")

1 + 1

}

// y: cats.Eval[Int] = cats.Always@253eef84

y.value // first access

// Computing Y

// res11: Int = 2

y.value // second access

// Computing Y

// res12: Int = 2

Finally, Eval.later captures a lazy computaঞon and memoizes the re-
sult, similar to a lazy val:

val z = Eval.later {

println("Computing Z")

1 + 1

}

// z: cats.Eval[Int] = cats.Later@a81d4d5

z.value // first access

// Computing Z

// res13: Int = 2

z.value // second access

// res14: Int = 2

The three behaviours are summarized below:
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Eager Lazy

Memoized val, Eval.now lazy val,
Eval.later

Not memoized N/A def, Eval.always

4.5.3 Eval as a Monad

Eval's map and flatMapmethods add computaঞons to a chain. This is
similar to the map and flatMapmethods on scala.concurrent.Future,
except that the computaঞons aren’t run unঞl we call value to obtain
a result:

val greeting = Eval.always {

println("Step 1")

"Hello"

}.map { str =>

println("Step 2")

str + " world"

}

// greeting: cats.Eval[String] = cats.Eval$$anon$8@3c88d726

greeting.value

// Step 1

// Step 2

// res15: String = Hello world

Note that, while the semanঞcs of the originaঞng Eval instances are
maintained, mapping funcঞons are always called lazily on demand (def
semanঞcs):

val ans = for {

a <- Eval.now { println("Calculating A") ; 40 }

b <- Eval.always { println("Calculating B") ; 2 }

} yield {

println("Adding A and B")
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a + b

}

// Calculating A

// ans: cats.Eval[Int] = cats.Eval$$anon$8@9284e40

ans.value // first access

// Calculating B

// Adding A and B

// res16: Int = 42

ans.value // second access

// Calculating B

// Adding A and B

// res17: Int = 42

We can use Eval's memoize method to memoize a chain of compu-
taঞons. Calculaঞons before the call to memoize are cached, whereas
calculaঞons a[er the call retain their original semanঞcs:

val saying = Eval.always {

println("Step 1")

"The cat"

}.map { str =>

println("Step 2")

s"$str sat on"

}.memoize.map { str =>

println("Step 3")

s"$str the mat"

}

// saying: cats.Eval[String] = cats.Eval$$anon$8@397aee40

saying.value // first access

// Step 1

// Step 2

// Step 3

// res18: String = The cat sat on the mat

saying.value // second access

// Step 3
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// res19: String = The cat sat on the mat

4.5.4 Trampolining and Eval.defer

One useful property of Eval is that its map and flatMap methods are
trampolined. This means we can nest calls to map and flatMap arbitrar-
ily without consuming stack frames. We call this property “stack safety”.

For example, consider this funcঞon for calculaঞng factorials:

def factorial(n: BigInt): BigInt =

if(n == 1) n else n * factorial(n - 1)

It is relaঞvely easy to make this method stack overflow:

factorial(50000)

// java.lang.StackOverflowError

// ...

We can rewrite the method using Eval to make it stack safe:

def factorial(n: BigInt): Eval[BigInt] =

if(n == 1) Eval.now(n) else factorial(n - 1).map(_ * n)

factorial(50000).value

// java.lang.StackOverflowError

// ...

Oops! That didn’t work—our stack sঞll blew up! This is because we’re
sঞll making all the recursive calls to factorial before we start working
with Eval's mapmethod. We can work around this using Eval.defer,
which takes an exisঞng instance of Eval and defers its evaluaঞon unঞl
later. defer is trampolined like Eval's map and flatMap methods, so
we can use it as a way to quickly make an exisঞng operaঞon stack safe:
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def factorial(n: BigInt): Eval[BigInt] =

if(n == 1) {

Eval.now(n)

} else {

Eval.defer(factorial(n - 1).map(_ * n))

}

factorial(50000).value

// res20: BigInt =

3347320509597144836915476094071486477912773223810454807730100321990168022144365641697381231071916930879848043819020829989361638474306669374263057284536378403832575628212335998726824407823597235604085385444137338375356856553637116832740516607615516592140615607546129420179056747966549862924222002254155351071815980161547645181061667497021799653747497254113933819163882350063030764425687485727139465108190987490964348626858922980787003103100896286115455397991161294065232739697149721103126114286073379350968783735581183060955172890660383359253285163596173088527981195739949529945030635444247849264102899006955963488352990055767655092917547592078804480762256241516513045904631806851740676636001232955645406572422517547342818312102919571559378742364111719451383859303800641313297631250...

Eval is a useful tool to enforce stack when working on very large com-
putaঞons and data structures. However, we must bear in mind that
trampolining is not free. It avoids consuming stack by creaঞng a chain
of funcঞon calls on the heap. There are sঞll limits on how deeply we
can nest computaঞons, but they are bounded by the size of the heap
rather than the stack.

4.5.5 Exercise: Safer Folding using Eval

The naive implementaঞon of foldRight below is not stack safe. Make
it so using Eval:

def foldRight[A, B](as: List[A], acc: B)(fn: (A, B) => B): B =

as match {

case head :: tail =>

fn(head, foldRight(tail, acc)(fn))

case Nil =>

acc

}

See the soluঞon



4.6. THE WRITER MONAD 109

4.6 TheWriterMonad

cats.data.Writer is a monad that lets us carry a log along with a
computaঞon. We can use it to record messages, errors, or addiঞonal
data about a computaঞon, and extract the log with the final result.

One common use for Writers is recording sequences of steps in
mulঞ-threaded computaঞons, where standard imperaঞve logging
techniques can result in interleaved messages from different contexts.
With Writer the log for the computaঞon is ঞed to the result, so we
can run concurrent computaঞons without mixing logs.

Cats data types

Writer is the first data type we’ve seen from the [cats.data]
package. This package provides numerous data types: instances
of various type classes that produce useful semanঞcs. Other ex-
amples from cats.data include the monad transformers that we
will see in the next chapter, and the Validated type that we will
see in Chapter 6.

4.6.1 Creaঞng and Unpacking Writers

A Writer[W, A] carries two values: a log of type W and a result of type
A. We can create a Writer from values of each type as follows:

import cats.data.Writer

import cats.instances.vector._

Writer(Vector(

"It was the best of times",

"It was the worst of times"

), 123)

// res0: cats.data.WriterT[cats.Id,scala.collection.immutable.

Vector[String],Int] = WriterT((Vector(It was the best of

http://typelevel.org/cats/api/cats/data/#Writer%5BS,A%5D=cats.data.WriterT%5Bcats.Eval,S,A%5D
http://typelevel.org/cats/api/cats/data/Validated.html
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times, It was the worst of times),123))

We’ve used a Vector as the log in this example as it is a sequence struc-
ture with an efficient append operaঞon.

Noঞce that the type of the writer reported on the console
is actually WriterT[Id, Vector[String], Int] instead of
Writer[Vector[String], Int] as we might expect. In the spirit
of code reuse, Cats implements Writer in terms of another type,
WriterT. WriterT is an example of a new concept called a “monad
tranformer”, which we will cover in the next chapter.

Let’s try to ignore this detail for now. Writer is a type alias for WriterT,
so we can read types like WriterT[Id, W, A] as Writer[W, A]:

type Writer[W, A] = WriterT[Id, W, A]

For convenience, Cats provides a way of creaঞng Writers specifying
only the log or the result. If we only have a result we can use the stan-
dard pure syntax. To do this we must have a Monoid[W] in scope so
Cats knows how to produce an empty log:

import cats.syntax.applicative._ // `pure` method

type Logged[A] = Writer[Vector[String], A]

123.pure[Logged]

// res2: Logged[Int] = WriterT((Vector(),123))

If we have a log and no result, we can create a Writer[Unit] using the
tell syntax from cats.syntax.writer:

import cats.syntax.writer._

Vector("msg1", "msg2", "msg3").tell

// res3: cats.data.Writer[scala.collection.immutable.Vector[

http://typelevel.org/cats/api/cats/syntax/package$$writer$
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String],Unit] = WriterT((Vector(msg1, msg2, msg3),()))

If we have both a result and a log, in addiঞon to using Writer.apply as
wedid abovewe can use the writer syntax from cats.syntax.writer:

import cats.syntax.writer._

val a = Writer(Vector("msg1", "msg2", "msg3"), 123)

// a: cats.data.WriterT[cats.Id,scala.collection.immutable.

Vector[String],Int] = WriterT((Vector(msg1, msg2, msg3),123)

)

val b = 123.writer(Vector("msg1", "msg2", "msg3"))

// b: cats.data.Writer[scala.collection.immutable.Vector[String

],Int] = WriterT((Vector(msg1, msg2, msg3),123))

We can extract the result and log from a Writer using the value and
written methods respecঞvely:

a.value

// res4: cats.Id[Int] = 123

a.written

// res5: cats.Id[scala.collection.immutable.Vector[String]] =

Vector(msg1, msg2, msg3)

or we can extract log and result at the same ঞme using the runmethod:

val (log, result) = b.run

// log: scala.collection.immutable.Vector[String] = Vector(msg1,

msg2, msg3)

// result: Int = 123

4.6.2 Composing and Transforming Writers

The log in a Writer is preserved when we map or flatMap over it.
flatMap actually appends the logs from the source Writer and the re-
sult of the user’s sequencing funcঞon. For this reason it’s good pracঞce

http://typelevel.org/cats/api/cats/syntax/package$$writer$
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to use a log type that has an efficient append and concatenate opera-
ঞons, such as a Vector:

val writer1 = for {

a <- 10.pure[Logged]

_ <- Vector("a", "b", "c").tell

b <- 32.writer(Vector("x", "y", "z"))

} yield a + b

// writer1: cats.data.WriterT[cats.Id,Vector[String],Int] =

WriterT((Vector(a, b, c, x, y, z),42))

writer1.run

// res6: cats.Id[(Vector[String], Int)] = (Vector(a, b, c, x, y,

z),42)

In addiঞon to transforming the result with map and flatMap, we can
transform the log in a Writer with the mapWritten method:

val writer2 = writer1.mapWritten(_.map(_.toUpperCase))

// writer2: cats.data.WriterT[cats.Id,scala.collection.immutable

.Vector[String],Int] = WriterT((Vector(A, B, C, X, Y, Z),42)

)

writer2.run

// res7: cats.Id[(scala.collection.immutable.Vector[String], Int

)] = (Vector(A, B, C, X, Y, Z),42)

We can tranform both log and result simultaneously using bimap or
mapBoth. bimap takes two funcঞon parameters, one for the log and
one for the result. mapBoth takes a single funcঞon that accepts two
parameters:

val writer3 = writer1.bimap(

log => log.map(_.toUpperCase),

result => result * 100

)

// writer3: cats.data.WriterT[cats.Id,scala.collection.immutable

.Vector[String],Int] = WriterT((Vector(A, B, C, X, Y, Z)

,4200))
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writer3.run

// res8: cats.Id[(scala.collection.immutable.Vector[String], Int

)] = (Vector(A, B, C, X, Y, Z),4200)

val writer4 = writer1.mapBoth { (log, result) =>

val log2 = log.map(_ + "!")

val result2 = result * 1000

(log2, result2)

}

// writer4: cats.data.WriterT[cats.Id,scala.collection.immutable

.Vector[String],Int] = WriterT((Vector(a!, b!, c!, x!, y!, z

!),42000))

writer4.run

// res9: cats.Id[(scala.collection.immutable.Vector[String], Int

)] = (Vector(a!, b!, c!, x!, y!, z!),42000)

Finally, we can clear the log with the reset method and swap log and
result with the swap method:

val writer5 = writer1.reset

// writer5: cats.data.WriterT[cats.Id,Vector[String],Int] =

WriterT((Vector(),42))

writer5.run

// res10: cats.Id[(Vector[String], Int)] = (Vector(),42)

val writer6 = writer1.swap

// writer6: cats.data.WriterT[cats.Id,Int,Vector[String]] =

WriterT((42,Vector(a, b, c, x, y, z)))

writer6.run

// res11: cats.Id[(Int, Vector[String])] = (42,Vector(a, b, c, x

, y, z))
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4.6.3 Exercise: Show Your Working

Writers are useful for logging operaঞons in mulঞ-threaded environ-
ments. Let’s confirm this by compuঞng (and logging) some factorials.

The factorial funcঞon below computes a factorial, prinঞng out the
intermediate steps in the calculaঞon as it runs. The slowly helper func-
ঞon ensures this takes a while to run, even on the very small examples
we need in this book to fit the output on the page:

def slowly[A](body: => A) =

try body finally Thread.sleep(100)

def factorial(n: Int): Int = {

val ans = slowly(if(n == 0) 1 else n * factorial(n - 1))

println(s"fact $n $ans")

ans

}

Here’s the output—a sequence of monotonically increasing values:

factorial(5)

// fact 0 1

// fact 1 1

// fact 2 2

// fact 3 6

// fact 4 24

// fact 5 120

// res13: Int = 120

If we start several factorials in parallel, the log messages can become
interleaved on standard out. This makes it difficult to see which mes-
sages come from which computaঞon.

import scala.concurrent._

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._
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Await.result(Future.sequence(Vector(

Future(factorial(3)),

Future(factorial(3))

)), 5.seconds)

// fact 0 1

// fact 0 1

// fact 1 1

// fact 1 1

// fact 2 2

// fact 2 2

// fact 3 6

// fact 3 6

// res14: scala.collection.immutable.Vector[Int] =

// Vector(120, 120)

Rewrite factorial so it captures the log messages in a Writer.
Demonstrate that this allows us to reliably separate the logs for
concurrent computaঞons.

See the soluঞon

4.7 The ReaderMonad

cats.data.Reader is a monad that allows us to compose operaঞons
that depend on some input. Instances of Reader wrap up funcঞons of
one argument, providing us with useful methods for composing them.

One common use for Readers is injecঞng configuraঞon. If we have a
number of operaঞons that all depend on some external configuraঞon,
we can chain them together using a Reader. The Reader produces one
large operaঞon that accepts the configuraঞon as a parameter and runs
our program in the order we specified it.

http://typelevel.org/cats/api/cats/data/?search=reader#Reader%5BA,B%5D=cats.data.package.ReaderT%5Bcats.Id,A,B%5D
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4.7.1 Creaঞng and Unpacking Readers

We can create a Reader[A, B] from a funcঞon A => B using the
Reader.apply constructor:

import cats.data.Reader

case class Cat(name: String, favoriteFood: String)

// defined class Cat

val catName: Reader[Cat, String] =

Reader(cat => cat.name)

// catName: cats.data.Reader[Cat,String] = Kleisli(<function1>)

We can extract the funcঞon again using the Reader's runmethod and
call it using apply as usual:

catName.run(Cat("Garfield", "lasagne"))

// res0: cats.Id[String] = Garfield

We can create Readers from funcঞons and extract the funcঞons again.
So far so simple, but what advantage do Readers give us over the raw
funcঞons?

4.7.2 Composing Readers

The power of Readers comes from their map and flatMap methods,
which represent different kinds of funcঞon composiঞon. The general
pa�ern of usage is to create a set of Readers that accept the same
type of configuraঞon, combine them with map and flatMap, and then
call run to inject the config at the end.

The mapmethod simply extends the computaঞon in the Reader by pass-
ing its result through a funcঞon:
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val greetKitty: Reader[Cat, String] =

catName.map(name => s"Hello ${name}")

greetKitty.run(Cat("Heathcliff", "junk food"))

// res1: cats.Id[String] = Hello Heathcliff

The flatMapmethod is more interesঞng. It allows us to combine mulঞ-
ple readers that depend on the same input type. To illustrate this, let’s
extend our greeঞng example to produce a login system that checks a
user’s password and displays different messages depending onwhether
it was valid:

val feedKitty: Reader[Cat, String] =

Reader(cat => s"Have a nice bowl of ${cat.favoriteFood}")

val greetAndFeed: Reader[Cat, String] =

for {

msg1 <- greetKitty

msg2 <- feedKitty

} yield s"${msg1} ${msg2}"

greetAndFeed(Cat("Garfield", "lasagne"))

// res3: cats.Id[String] = Hello Garfield Have a nice bowl of

lasagne

greetAndFeed(Cat("Heathcliff", "junk food"))

// res4: cats.Id[String] = Hello Heathcliff Have a nice bowl of

junk food

4.7.3 Exercise: Hacking on Readers

The classic use of Readers is to build programs that accept a configura-
ঞon at the end. Let’s ground this with a complete example of a simple
login system. Our configuraঞon will consist of two databases: a list of
valid users, and a list of their passwords:
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case class Db(

usernames: Map[Int, String],

passwords: Map[String, String]

)

Start by creaঞng a type alias DbReader for a Reader that consumes a
Db as input. This will make the rest of our code shorter:

See the soluঞon

Now createmethods that generate DbReaders to look up the username
for an Int user ID, and look up the password for a String username.
The type signatures should be as follows:

def findUsername(userId: Int): DbReader[Option[String]] =

???

def checkPassword(

username: String,

password: String

): DbReader[Boolean] = ???

See the soluঞon

Finally create a checkLoginmethod to check the password for a given
user ID. The type signature should be as follows:

def checkLogin(

userId: Int,

password: String

): DbReader[Boolean] = ???

See the soluঞon

You should be able to use checkLogin as follows:
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val db = Db(

Map(

1 -> "dade",

2 -> "kate",

3 -> "margo"

),

Map(

"dade" -> "zerocool",

"kate" -> "acidburn",

"margo" -> "secret"

)

)

// db: Db = Db(Map(1 -> dade, 2 -> kate, 3 -> margo),Map(dade ->

zerocool, kate -> acidburn, margo -> secret))

checkLogin(1, "zerocool").run(db)

// res8: cats.Id[Boolean] = true

checkLogin(4, "davinci").run(db)

// res9: cats.Id[Boolean] = false

4.7.4 When to Use Readers?

As you can hopefully see from the exercise, Readers effecঞvely pro-
vide a simple tool for doing dependency injecঞon. We write steps of
our program as instances of Reader, chain them together with map and
flatMap, and build a funcঞon that accepts the dependency as input.

There are many, many ways of implemenঞng dependency injecঞon in
Scala, from simple techniques like methods with mulঞple parameter
lists, through implicit parameters and type classes, to complex tech-
niques like the cake pa�ern and DI frameworks.

Readers are most useful in situaঞons where:

• we are construcঞng a batch program that can easily be repre-
sented by a funcঞon;
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• we need to defer injecঞon of a known parameter or set of pa-
rameters;

• we want to be able to test parts of the program in isolaঞon.

By represenঞng the steps of our program as Readers we can test that
them as easily as pure funcঞons, plus we gain access to the map and
flatMap combinators.

For more advanced problems where we have lots of dependencies, or
a our program isn’t easily represented as a pure funcঞon, other depen-
dency injecঞon techniques tend to be more appropriate.

Kleisli arrows

You may have noঞced from console output in this secঞon that
Reader is implemented in terms of another type called Kleisli.
Kleisli arrows provide a more general form of Reader that gener-
alise over the type constructor of the result type.

Kleislis are beyond the scope of this book, but will be easy to pick
up based on your newfound knowledge of Reader and the con-
tent we’ll cover in the next chapter on monad transformers.

4.8 The StateMonad

cats.data.State allows us to pass addiঞonal state around as part of
a computaঞon. We define State instances represenঞng atomic opera-
ঞons on the state, and thread them together using map and flatMap. In
this way we can model mutable state in a purely funcঞonal way, with-
out using mutaঞon.

http://typelevel.org/cats/api/cats/data/#State%5BS,A%5D=cats.data.StateT%5Bcats.Eval,S,A%5D
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4.8.1 Creaঞng and Unpacking State

Boiled down to its simplest form, instances of State[S, A] represent
funcঞons of type S => (S, A). S is the type of the state and and A is
the type of the result.

import cats.data.State

val a = State[Int, String] { state =>

(state, s"The state is $state")

}

// a: cats.data.State[Int,String] = cats.data.StateT@ad944e3

In other words, an instance of State is a combinaঞon of two things:

• a transformaঞon from an input state to an output state;
• a computaঞon of a result.

We can “run” our monad by supplying an iniঞal state. State provides
three methods—run, runS, and runA—that return different combina-
ঞons of state and result. Each method actually returns an instance of
Eval, which State uses to maintain stack safety. We call the value

method as usual to extract the actual result:

// Get the state and the result:

val (state, result) = a.run(10).value

// state: Int = 10

// result: String = The state is 10

// Get the state, ignore the result:

val state = a.runS(10).value

// state: Int = 10

// Get the result, ignore the state:

val result = a.runA(10).value
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// result: String = The state is 10

4.8.2 Composing and Transforming State

As we’ve seen with Reader and Writer, the power of the State

monad comes from combining instances. The map and flatMap

methods thread the State from one instance to another. Because
each primiঞve instance represents a transformaঞon on the state, the
combined instance represents a more complex transformaঞon.

val step1 = State[Int, String] { num =>

val ans = num + 1

(ans, s"Result of step1: $ans")

}

// step1: cats.data.State[Int,String] = cats.data.StateT@e680f25

val step2 = State[Int, String] { num =>

val ans = num * 2

(ans, s"Result of step2: $ans")

}

// step2: cats.data.State[Int,String] = cats.data.StateT@1119

acde

val both = for {

a <- step1

b <- step2

} yield (a, b)

// both: cats.data.StateT[cats.Eval,Int,(String, String)] = cats

.data.StateT@2d4d4ff3

val (state, result) = both.run(20).value

// state: Int = 42

// result: (String, String) = (Result of step1: 21,Result of

step2: 42)

As you can see, in this example the final state is the result of applying
both transformaঞons in sequence. The state is threaded from step to
step even though we don’t interact with it in the for comprehension.
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The general model for using the State monad, then, is to represent
each step of a computaঞon as an instance of State, and compose the
steps using the standard monad operators. Cats provides several con-
venience constructors for creaঞng primiঞve steps:

• get extracts the state as the result;
• set updates the state and returns unit as the result;
• pure ignores the state and returns a supplied result;
• inspect extracts the state via a transformaঞon funcঞon;
• modify updates the state using an update funcঞon.

val getDemo = State.get[Int]

// getDemo: cats.data.State[Int,Int] = cats.data.StateT@26c929b1

getDemo.run(10).value

// res3: (Int, Int) = (10,10)

val setDemo = State.set[Int](30)

// setDemo: cats.data.State[Int,Unit] = cats.data.StateT@1748341

a

setDemo.run(10).value

// res4: (Int, Unit) = (30,())

val pureDemo = State.pure[Int, String]("Result")

// pureDemo: cats.data.State[Int,String] = cats.data.StateT@

1826901

pureDemo.run(10).value

// res5: (Int, String) = (10,Result)

val inspectDemo = State.inspect[Int, String](_ + "!")

// inspectDemo: cats.data.State[Int,String] = cats.data.StateT@

77e7bb7e

inspectDemo.run(10).value

// res6: (Int, String) = (10,10!)
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val modifyDemo = State.modify[Int](_ + 1)

// modifyDemo: cats.data.State[Int,Unit] = cats.data.StateT@56

cf32b8

modifyDemo.run(10).value

// res7: (Int, Unit) = (11,())

We can assemble these building blocks into useful computaঞons. We
o[en end up ignoring the results of intermediate stages when they only
represent transformaঞons on the state:

import State._

val program: State[Int, (Int, Int, Int)] = for {

a <- get[Int]

_ <- set[Int](a + 1)

b <- get[Int]

_ <- modify[Int](_ + 1)

c <- inspect[Int, Int](_ * 1000)

} yield (a, b, c)

// program: cats.data.State[Int,(Int, Int, Int)] = cats.data.

StateT@4996bc50

val (state, result) = program.run(1).value

// state: Int = 3

// result: (Int, Int, Int) = (1,2,3000)

4.8.3 Exercise: Post-Order Calculator

The State monad allows us to implement simple evaluators for com-
plex expressions, passing the values of mutable registers along in the
state component. We model the atomic operaঞons as instances of
State, and combine them to evaluate whole sequences of inputs. We
can see a simple example of this by implemenঞng a calculator for post-
order integer arithmeঞc expressions.
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In case you haven’t heard of post-order expressions before (don’t worry
if you haven’t), they are a mathemaঞcal notaঞon where we write the
operator a[er its operands. So, for example, instead of wriঞng 1 + 2

we would write:

1 2 +

Although post-order expressions are difficult for humans to read, they
are easy to evaluate using a computer program.

All we need to do is traverse the symbols from le[ to right, carrying a
stack of operands with us as we go:

• when we see a number, we push it onto the stack;

• when we see an operator, we pop two operands off the stack,
operate on them, and push the result in their place.

This allows us to evaluate complex expressions without using parenthe-
ses. For example, we can evaluate (1 + 2) * 3) as follows:

1 2 + 3 * // see 1, push onto stack

2 + 3 * // see 2, push onto stack

+ 3 * // see +, pop 1 and 2 off of stack,

// push (1 + 2) = 3 in their place

3 3 * // see 3, push onto stack

3 * // see 3, push onto stack

* // see *, pop 3 and 3 off of stack,

// push (3 * 3) = 9 in their place

Wecanwrite a simple interpreter for these expressions using the State
monad. We can parse each symbol into a State instance represenঞng
a context-free stack transform and intermediate result. The State in-
stances can be threaded together using flatMap to produce an inter-
preter for any sequence of symbols.
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Let’s do this now. Start by wriঞng a funcঞon evalOne that parses a sin-
gle symbol into an instance of State. Use the code below as a template.
Don’t worry about error handling for now—if the stack is in the wrong
configuraঞon, it’s ok to throw an excepঞon and fail.

import cats.data.State

type CalcState[A] = State[List[Int], A]

def evalOne(sym: String): CalcState[Int] = ???

If this seems difficult, think about the basic form of the State instances
you’re returning. Each instance represents a funcঞonal transformaঞon
from a stack to a pair of a stack and a result. You can ignore any wider
context and focus on just that one step:

State[List[Int], Int] { oldStack =>

val newStack = someTransformation(oldStack)

val result = someCalculation

(newStack, result)

}

Feel free to write your Stack instances in this form or as sequences of
the convenience constructors we saw above.

See the soluঞon

evalOne allows us to evaluate single-symbol expressions as follows.
We call runA supplying Nil as an iniঞal stack, and call value to unpack
the resulঞng Eval instance:

evalOne("42").runA(Nil).value

// res3: Int = 42

We can represent more complex programs using evalOne, map, and
flatMap. Note that most of the work is happening on the stack, so
we ignore the results of the intermediate steps for evalOne("1") and
evalOne("2"):
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val program = for {

_ <- evalOne("1")

_ <- evalOne("2")

ans <- evalOne("+")

} yield ans

// program: cats.data.StateT[cats.Eval,List[Int],Int] = cats.

data.StateT@5f0e1a6c

program.runA(Nil).value

// res4: Int = 3

Generalise this example by wriঞng an evalAll method that computes
the result of a List[String]. Use evalOne to process each symbol,
and thread the resulঞng State monads together using flatMap. Your
funcঞon should have the following signature:

def evalAll(input: List[String]): CalcState[Int] = ???

// evalAll: (input: List[String])CalcState[Int]

See the soluঞon

We can use evalAll to conveniently evaluate mulঞ-stage expressions:

val program = evalAll(List("1", "2", "+", "3", "*"))

program.runA(Nil).value

Because evalOne and evalAll both return instances of State, we can
even thread these results together using flatMap. evalOne produces a
simple stack transformaঞon and evalAll produces a complex one, but
they’re both pure funcঞons and we can use them in any order as many
ঞmes as we like:

val program = for {

_ <- evalAll(List("1", "2", "+"))

_ <- evalAll(List("3", "4", "+"))

ans <- evalOne("*")

} yield ans
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program.runA(Nil).value

4.9 Defining CustomMonads

We can define a Monad for a custom type by providing implementaঞons
of thee methods: flatMap, pure, and a new method called tailRecM.
Here is an implementaঞon of Monad for Option as an example:

import cats.Monad

import scala.annotation.tailrec

val optionMonad =

new Monad[Option] {

def flatMap[A, B](opt: Option[A])

(fn: A => Option[B]): Option[B] =

opt flatMap fn

def pure[A](opt: A): Option[A] =

Some(opt)

@tailrec

def tailRecM[A, B](a: A)

(fn: A => Option[Either[A, B]]): Option[B] =

fn(a) match {

case None => None

case Some(Left(a1)) => tailRecM(a1)(fn)

case Some(Right(b)) => Some(b)

}

}

tailRecM is an opঞmisaঞon in Cats that limits the amount of stack
space used by nested calls to flatMap. The technique comes from a
2015 paper by PureScript creator Phil Freeman. The method should re-
cursively call itself as long as the result of f returns a Right. If we can
make tailRecM tail recursive, we should do so to allow Cats to perform
addiঞonal internal opঞmisaঞons.

http://functorial.com/stack-safety-for-free/index.pdf
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4.9.1 Exercise: Branching out Further with Monads

Let’s write a Monad for our Tree data type from last chapter. Here’s the
type again, together with the smart constructors we used to simplify
type class instance selecঞon:

sealed trait Tree[+A]

final case class Branch[A](left: Tree[A], right: Tree[A])

extends Tree[A]

final case class Leaf[A](value: A) extends Tree[A]

def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =

Branch(left, right)

def leaf[A](value: A): Tree[A] =

Leaf(value)

Verify that the code works on instances of Branch and Leaf, and that
the Monad provides Functor-like behaviour for free.

Verify that having a Monad in scope allows us to use for comprehensions,
despite the fact that we haven’t directly implemented flatMap or map
on Tree.

See the soluঞon

4.10 Summary

In this chapter we’ve seen monads up-close. We saw that flatMap
can be viewed as sequencing computaঞons, giving the order in which
operaঞons must happen. In this view, Option represents a computa-
ঞon that can fail without an error message; Either represents compu-
taঞons that can fail with a message; List represents mulঞple possible
results; and Future represents a computaঞon thatmay produce a value
at some point in the future.
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In this chapter we’ve also seen some of the custom types and data
structures that Cats provides, including Id, Reader, Writer, and State.
These cover a wide range of uses and many problems can be solved by
using one of these constructs.

Finally, if we do have to implement our own monad instance, we’ve
have learned about tailRecM. This is an odd wrinkle—a concession to
building a funcঞonal programming library that is stack-safe by default.
We don’t need to understand tailRecM to understand monads, but
having it around gives us mechanical benefits that we can be grateful
for when wriঞng monadic code.
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Monad Transformers

Monads are like burritos, which means that once you acquire a taste,
you’ll find yourself returning to them again and again. This is not with-
out issues. As burritos can bloat the waist, monads can bloat the code
base through nested for-comprehensions.

Imagine we are interacঞng with a database. We want to look up a
user record. The user may or may not be present, so we return an
Option[User]. Our communicaঞon with the database could fail for
many reasons (network issues, authenঞcaঞon problems, database prob-
lems, and so on), so this result is wrapped up in an Either, giving us a
final result of Either[Error, Option[User]].

To use this value we must nest flatMap calls (or equivalently,
for-comprehensions):

def lookupUserName(id: Long): Either[Error, Option[String]] =

for {

optUser <- lookupUser(id)

} yield {

for {

user <- optUser

} yield user.name

131

http://blog.plover.com/prog/burritos.html
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}

This quickly becomes very tedious.

A quesঞon arises. Given two monads, can we make one monad out of
them in a generic way? That is, do monads compose? We can try to
write the code but we’ll soon find it impossible to implement flatMap:

// This code won't actually compile.

// It's just illustrating a point:

def compose[M1[_] : Monad, M2[_] : Monad] = {

type Composed[A] = M1[M2[A]]

new Monad[Composed] {

def pure[A](a: A): Composed[A] =

a.pure[M2].pure[M1]

def flatMap[A, B](fa: Composed[A])

(f: A => Composed[B]): Composed[B] =

// This is impossible to implement in general

// without knowing something about M1 or M2:

???

}

}

Wecan’t composemonads in general. However, somemonad instances
can be made to compose with instance-specific glue code. For these
special cases we can use monad transformers to compose them.

Monad transformers allow us to squash together monads, creaঞng one
monad where we previously had two or more. With this transformed
monad we can avoid nested calls to flatMap.

5.1 A Transformaঞve Example

Cats provides a library of such transformers: EitherT for composing
Eitherwith other monads, OptionT for composing Option, and so on.
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Here’s an example that uses OptionT to squash List and Option into
a single monad. Where we might use List[Option[A]] we can use
ListOption[A] to avoid nested flatMap calls.

import cats.data.OptionT

type ListOption[A] = OptionT[List, A]

ListOption is a monad that combines the properঞes of List and
Option. Note how we build it from the inside out: we pass List, the
type of the outer monad, as a parameter to OptionT, the transformer
for the inner monad.

We can create instances with pure as usual:

import cats.Monad

import cats.instances.list._

import cats.syntax.applicative._

val result: ListOption[Int] = 42.pure[ListOption]

// result: ListOption[Int] = OptionT(List(Some(42)))

The map and flatMap methods of ListOption combine the corre-
sponding methods of List and Option into single operaঞons:

val a = 10.pure[ListOption]

// a: ListOption[Int] = OptionT(List(Some(10)))

val b = 32.pure[ListOption]

// b: ListOption[Int] = OptionT(List(Some(32)))

a flatMap { (x: Int) =>

b map { (y: Int) =>

x + y

}

}

// res1: cats.data.OptionT[List,Int] = OptionT(List(Some(42)))
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This is the basics of using monad transformers. The combined map and
flatMap methods allow us to use both component monads without
having to recursively unpack and repack values at each stage in the
computaঞon. Now let’s look at the API in more depth.

Complexity of imports

Note the imports in the code samples above—they hint at how
everything bolts together.

We import cats.syntax.applicative to get the pure syntax.
pure requires an implicit parameter of type Applicative[ListOption].
We haven’t met Applicatives yet, but all Monads are also
Applicatives so we can ignore that difference for now.

We need an Applicative[ListOption] to call pure. We
have cats.data.OptionT in scope, which provides the
implicits for OptionT. However, in order to generate our
Applicative[ListOption], the implicits for OptionT also
require an Applicative for List. Hence the addiঞonal import
from cats.instances.list.

Noঞce we’re not imporঞng cats.syntax.functor or
cats.syntax.flatMap. This is because OptionT is a con-
crete data type with its own explicit map and flatMap methods.
It wouldn’t hurt to import the syntax—the compiler will simply
ignore it in favour of the explicit methods.

Remember that we’re subjecঞng ourselves to this shenanigans
because we’re stubbornly refusing to import our instances from
cats.instances.all. If we did that, everything would just
work.

http://typelevel.org/cats/api/cats/syntax/package$$applicative$
http://typelevel.org/cats/api/cats/data/OptionT.html
http://typelevel.org/cats/api/cats/instances/package$$list$
http://typelevel.org/cats/api/cats/syntax/package$$functor$
http://typelevel.org/cats/api/cats/syntax/package$$flatMap$
http://typelevel.org/cats/api/cats/instances/package$$all$
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5.2 Monad Transformers in Cats

Monad transformers are a li�le different to the other abstracঞons
we’ve seen—they don’t have their own type class. We use monad
transformers to build monads, which we then use via the Monad type
class. Thus the main points of interest when using monad transformers
are:

• the available transformer classes;
• building stacks of monads using transformers;
• construcঞng instances of a monad stack; and
• pulling apart a stack to access the wrapped monads.

5.2.1 The Monad Transformer Classes

By convenঞon, in Cats a monad Foowill have a transformer class called
FooT. In fact, many monads in Cats are defined by combining a monad
transformer with the Id monad. Concretely, some of the available in-
stances are:

• cats.data.OptionT for Option;
• cats.data.EitherT for Either;
• cats.data.ReaderT, cats.data.WriterT, and cats.data.StateT;
• cats.data.IdT for the Id monad.

All of these monad transformers follow the same convenঞon: the first
type parameter specifies the monad that is wrapped around the monad
implied by the transformer. The remaining type parameters are the
types we’ve used to form the corresponding monads.

http://typelevel.org/cats/api/cats/data/OptionT.html
http://typelevel.org/cats/api/cats/data/EitherT.html
http://typelevel.org/cats/api/cats/data/?search=reader#ReaderT%5BF%5B_%5D,A,B%5D=cats.data.Kleisli%5BF,A,B%5D
http://typelevel.org/cats/api/cats/data/WriterT.html
http://typelevel.org/cats/api/cats/data/StateT.html
http://typelevel.org/cats/api/cats/data/IdT.html
http://typelevel.org/cats/api/cats/Id.html
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Kleisli Arrows

Last chapter, in the secঞon on the Readermonad, we menঞoned
that Readerwas a specialisaঞon of a more general concept called
a “kleisli arrow” (aka cats.data.Kleisli).

We can now reveal that Kleisli and ReaderT are, in fact, the
same thing! ReaderT is actually a type alias for Kleisli. Hence
why wewere creaঞng Readers last chapter and seeing Kleislis
on the console.

5.2.2 Building Monad Stacks

Building monad stacks is a li�le confusing unঞl you know the pa�erns.
The first type parameter to a monad transformer is the outer monad in
the stack—the transformer itself provides the inner monad. For exam-
ple, our ListOption type above was built using OptionT[List, A]

but the result was effecঞvely a List[Option[A]]. In other words, we
build monad stacks from the inside out.

Many monads and all transformers have at least two type parameters,
so we o[en have to define type aliases for intermediate stages. For
example, suppose we want to wrap Either around Option. Option is
the innermost type so we want to use the OptionTmonad transformer.
We need to use Either as the first type parameter. However, Either
itself has two type parameters and monads only have one. We need a
type alias to make everything the correct shape:

import cats.instances.either._

type Error = String

// Create a type alias, ErrorOr, to convert Either to

// a type constructor with a single parameter:

type ErrorOr[A] = Either[Error, A]

http://typelevel.org/cats/api/cats/data/Kleisli.html
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// Use ErrorOr as a type parameter to OptionT:

type ErrorOptionOr[A] = OptionT[ErrorOr, A]

ErrorOptionOr is a monad. We can use pure and flatMap as usual to
create and transform instances:

val result1 = 41.pure[ErrorOptionOr]

// result1: ErrorOptionOr[Int] = OptionT(Right(Some(41)))

val result2 = result1.flatMap(x => (x + 1).pure[ErrorOptionOr])

// result2: cats.data.OptionT[ErrorOr,Int] = OptionT(Right(Some

(42)))

Now let’s add another monad into our stack. Let’s create a Future of
an Either of Option. Once again we build this from the inside out with
an OptionT of an EitherT of Future. However, we can’t define this in
one line because EitherT has three type parameters:

import scala.concurrent.Future

import cats.data.EitherT

type FutureEitherOption[A] = OptionT[EitherT, A]

// <console>:25: error: cats.data.EitherT takes three type

parameters, expected: one

// type FutureEitherOption[A] = OptionT[EitherT, A]

// ^

As before, we solve the problem by creaঞng a type alias with a single
parameter. This ঞme we create an alias for EitherT that fixes Future
and Error and allows A to vary:

import scala.concurrent.Future

import cats.data.{EitherT, OptionT}

type Error = String
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type FutureEither[A] = EitherT[Future, String, A]

type FutureEitherOption[A] = OptionT[FutureEither, A]

Our mammoth stack composes not two but threemonads. Our map and
flatMap methods cut through three layers of abstracঞon:

import scala.concurrent.ExecutionContext.Implicits.global

import cats.instances.future._

val answer: FutureEitherOption[Int] =

for {

a <- 10.pure[FutureEitherOption]

b <- 32.pure[FutureEitherOption]

} yield a + b

// answer: FutureEitherOption[Int] = OptionT(EitherT(Future(<not

completed>)))

Kind Projector

If you frequently find yourself defining mulঞple type aliases when
building monad stacks, you may want to try the Kind Projector
compiler plugin. Kind Projector enhances Scala’s type syntax to
make it easier to define parঞal types. For example:

import cats.instances.option._

// import cats.instances.option._

123.pure[EitherT[Option, String, ?]]

// res9: cats.data.EitherT[Option,String,Int] = EitherT(

Some(Right(123)))

Kind Projector can’t simplify all type declaraঞons down to a single
line, but it can reduce the number of intermediate type definiঞons
we need to keep our code readable.

https://github.com/non/kind-projector
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5.2.3 Construcঞng and Unpacking Instances

As we saw above, we can use pure to directly inject raw values into
transformed monad stacks. We can also create instances from untrans-
formed stacks using the monad transformer’s apply method:

import cats.syntax.either._ // for foo.asRight

import cats.syntax.option._ // for foo.some

type ErrorOr[A] = Either[String, A]

type ErrorOrOption[A] = OptionT[ErrorOr, A]

// Create using pure:

val stack1 = 123.pure[ErrorOrOption]

// stack1: ErrorOrOption[Int] = OptionT(Right(Some(123)))

// Create using apply:

val stack2 = OptionT[ErrorOr, Int](

123.some.asRight[String]

)

// stack2: cats.data.OptionT[ErrorOr,Int] = OptionT(Right(Some

(123)))

Once we’ve finished with a monad transformer stack, we can unpack it
using its valuemethod. This returns the untransformed stack. We can
then manipulate the individual monads in the usual way:

stack1.value

// res13: ErrorOr[Option[Int]] = Right(Some(123))

stack2.value

// res14: ErrorOr[Option[Int]] = Right(Some(123))

Each call to value unpacks a singlemonad transformer, sowemay need
more than one call to completely unpack a large stack:
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import cats.instances.vector._

import cats.data.{Writer, EitherT, OptionT}

type Logged[A] = Writer[Vector[String], A]

type LoggedFallable[A] = EitherT[Logged, String, A]

type LoggedFallableOption[A] = OptionT[LoggedFallable, A]

val packed = 123.pure[LoggedFallableOption]

// packed: LoggedFallableOption[Int] = OptionT(EitherT(WriterT((

Vector(),Right(Some(123))))))

val partiallyPacked = packed.value

// partiallyPacked: LoggedFallable[Option[Int]] = EitherT(

WriterT((Vector(),Right(Some(123)))))

val completelyUnpacked = partiallyPacked.value

// completelyUnpacked: Logged[Either[String,Option[Int]]] =

WriterT((Vector(),Right(Some(123))))

5.2.4 Usage Pa�erns

Widespread use of monad tranformers is someঞmes difficult because
they fuse monads together in predefined ways. Without careful
thought, we can end up having to unpack and repack monads in
different configuraঞons to operate on them in different contexts.

One way of avoiding this is to use monad transformers as local “glue
code”. Expose untransformed stacks at module boundaries, transform
them to operate on them locally, and untransform them before passing
them on. This allows each module of code to make its own decisions
about which transformers to use. Here’s an example:

type Logged[A] = Writer[List[String], A]

// Example method that returns nested monads:

def parseNumber(str: String): Logged[Option[Int]] =

util.Try(str.toInt).toOption match {
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case Some(num) => Writer(List(s"Read $str"), Some(num))

case None => Writer(List(s"Failed on $str"), None)

}

// Example combining multiple calls to parseNumber:

def addNumbers(

a: String,

b: String,

c: String

): Logged[Option[Int]] = {

import cats.data.OptionT

// Transform the incoming stacks to work on them:

val result = for {

a <- OptionT(parseNumber(a))

b <- OptionT(parseNumber(b))

c <- OptionT(parseNumber(c))

} yield a + b + c

// Return the untransformed monad stack:

result.value

}

// This approach doesn't force OptionT on other users' code:

val result1 = addNumbers("1", "2", "3")

// result1: Logged[Option[Int]] = WriterT((List(Read 1, Read 2,

Read 3),Some(6)))

val result2 = addNumbers("1", "a", "3")

// result2: Logged[Option[Int]] = WriterT((List(Read 1, Failed

on a),None))

5.2.5 Default Instances

Many monads in Cats are defined using the corresponding transformer
and the Id monad. This is reassuring as it confirms that the APIs for
these monads and transformers are idenঞcal. Reader, Writer, and
State are all defined in this way:
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type Reader[E, A] = ReaderT[Id, E, A] // = Kleisli[Id, E, A]

type Writer[W, A] = WriterT[Id, W, A]

type State[S, A] = StateT[Id, S, A]

In other cases monad transformers have separate definiঞons to their
corresponding monads. In these cases, the methods of the transformer
tend to mirror the methods on the monad. For example, OptionT de-
fines getOrElse, and EitherT defines fold, bimap, swap, and other
useful methods.

5.3 Exercise: Monads: Transform and Roll Out

The Autobots, well known robots in disguise, frequently sendmessages
during ba�le requesঞng the power levels of their team mates. This
helps them coordinate strategies and launch devastaঞng a�acks. The
message sending method looks like this:

def getPowerLevel(autobot: String): Response[Int] =

???

Transmissions take ঞme in Earth’s viscous atmosphere, and messages
are occasionally lost due to malfuncঞoning satellites or Decepঞcon in-
tercepঞon. Responses are therefore represented as a stack of monads:

type Response[A] = Future[Either[String, A]]

// defined type alias Response

Opঞmus Prime is geমng ঞred of the nested for comprehensions in his
neural matrix. Help him by rewriঞng Response using a monad trans-
former.

See the soluঞon

Now test the code by implemenঞng getPowerLevel to retrieve data
from a set of imaginary allies. Here’s the data we’ll use:
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val powerLevels = Map(

"Jazz" -> 6,

"Bumblebee" -> 8,

"Hot Rod" -> 10

)

If an Autobot isn’t in the powerLevels map, return an error message
reporঞng that they were unreachable. Include the name in the message
for good effect.

See the soluঞon

Two autobots can perform a special move if their combined power level
is greater than 15. Write a second method, canSpecialMove, that ac-
cepts the names of two allies and checks whether a special move is
possible. If either ally is unavailable, fail with an appropriate error mes-
sage:

def canSpecialMove(

ally1: String,

ally2: String

): Response[Boolean] = ???

See the soluঞon

Finally, write a method tacticalReport that takes two ally names and
prints a message saying whether they can perform a special move:

def tacticalReport(

ally1: String,

ally2: String

): String = ???

See the soluঞon

You should be able to use report as follows:
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tacticalReport("Jazz", "Bumblebee")

// res25: String = Jazz and Bumblebee need a recharge.

tacticalReport("Bumblebee", "Hot Rod")

// res26: String = Bumblebee and Hot Rod are ready to roll out!

tacticalReport("Jazz", "Ironhide")

// res27: String = Comms error: Ironhide unreachable

5.4 Summary

In this chapter we introduced monad transformers, which eliminate the
need for nested for comprehensions and pa�ern matching when work-
ing with “stacks” of nested monads such as below:

import cats.syntax.either._

// import cats.syntax.either._

val a = Option(1.asRight[String])

// a: Option[Either[String,Int]] = Some(Right(1))

val b = Option(1.asRight[String])

// b: Option[Either[String,Int]] = Some(Right(1))

val result = for {

x <- a

y <- b

} yield {

for {

u <- x

v <- y

} yield u + v

}

// result: Option[scala.util.Either[String,Int]] = Some(Right(2)

)

Each monad transformer, such as FutureT, OptionT or EitherT, pro-
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vides the code needed to merge its related monad with other monads.
The transformer is a data structure that wraps amonad stack, equipping
it with map and flatMap methods that unpack and repack the whole
stack:

import cats.data.EitherT

val wrappedA = EitherT(a)

// wrappedA: cats.data.EitherT[Option,String,Int] = EitherT(Some

(Right(1)))

val wrappedB = EitherT(b)

// wrappedB: cats.data.EitherT[Option,String,Int] = EitherT(Some

(Right(1)))

import cats.instances.option._

val wrappedResult = for {

x <- wrappedA

y <- wrappedB

} yield x + y

// wrappedResult: cats.data.EitherT[Option,String,Int] = EitherT

(Some(Right(2)))

val result = wrappedResult.value

// result: Option[Either[String,Int]] = Some(Right(2))

The type signatures of monad transformers are wri�en from the in-
side out, so an EitherT[Option, String, A] is a wrapper for an
Option[Either[String, A]]. It is o[en useful to use type aliases
when wriঞng transformer types for deeply nested monads.

With this look atmonad transformers, we have now covered everything
we need to know about monads and the sequencing of computaঞons
using flatMap. In the next chapter we will switch tack and discuss
two new type classes, Cartesian and Applicative, that support new
kinds of operaঞon such as zipping independent values within a con-
text.
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Chapter 6

Cartesians and Applicaঞves

In previous chapters we saw how functors and monads let us transform
values using map and flatMap. While functors and monads are both
immensely useful abstracঞons, there are types of transformaঞon that
are inconvenient to represent with these methods.

One such example is form validaঞon. When we validate a form we
want to return all the errors to the user, not simply stop on the first
error we encounter. If we model this with a monad like Either, we fail
fast and lose errors. For example, the code below fails on the first call
to parseInt and doesn’t go any further:

import cats.syntax.either._

def parseInt(str: String): Either[String, Int] =

Either.catchOnly[NumberFormatException](str.toInt).

leftMap(_ => s"Couldn't read $str")

for {

a <- parseInt("a")

b <- parseInt("b")

c <- parseInt("c")

} yield (a + b + c)

147
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// res1: scala.util.Either[String,Int] = Left(Couldn't read a)

Another example is the concurrent evaluaঞon of Futures. If we have
several long-running independent tasks, it makes sense to execute
them concurrently. However, monadic comprehension only allows us
to run them in sequence. Even on a mulঞcore CPU, the code below
runs in sequence as you can see from the ঞmestamps:

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

lazy val timestamp0 = System.currentTimeMillis

def getTimestamp: Long = {

val timestamp = System.currentTimeMillis - timestamp0

Thread.sleep(100)

timestamp

}

val timestamps = for {

a <- Future(getTimestamp)

b <- Future(getTimestamp)

c <- Future(getTimestamp)

} yield (a, b, c)

Await.result(timestamps, 1.second)

// res5: (Long, Long, Long) = (0,106,210)

map and flatMap aren’t quite capable of capturing what we want here
because theymake the assumpঞon that each computaঞon is dependent
on the previous one:

// context2 is dependent on value1:

context1.flatMap(value1 => context2)

The calls to parseInt and Future.apply above are independent of one
another, but map and flatMap can’t exploit this. We need a weaker



6.1. CARTESIAN 149

construct—one that doesn’t guarantee sequencing—to achieve the re-
sult we want. In this chapter we will look at two type classes that sup-
port this pa�ern:

• Cartesians encompass the noঞon of “zipping” pairs of contexts.
Cats provides a CartesianBuilder syntax that combines
Cartesians and Functors to allow users to join values within
a context using arbitrary funcঞons.

• Applicaࢼve functors, also known as Applicatives, extend
Cartesian and Functor and provide a way of applying func-
ঞons to parameters within a context. Applicative is the
source of the pure method we introduced in Chapter 4.

Applicaঞves are o[en formulated in terms of funcঞon applicaঞon, in-
stead of the cartesian formulaঞon that is emphasised in Cats. This al-
ternaঞve formulaঞon provides a link to other libraries and languages
such as Scalaz and Haskell. We’ll take a look a different formulaঞons of
Applicaঞve, as well as the relaঞonships between Cartesian, Functor,
Applicative, and Monad, towards the end of the chapter.

6.1 Cartesian

Cartesian is a type class that allows us to “zip” values within a context.
If we have two objects of type F[A] and F[B], a Cartesian[F] allows
us to combine them to form an F[(A, B)]. Its definiঞon in Cats is:

trait Cartesian[F[_]] {

def product[A, B](fa: F[A], fb: F[B]): F[(A, B)]

}

As we discussed above, the parameters fa and fb are independent of
one another. This gives us a lot more flexibility when defining instances
of Cartesian than we do when defining Monads.
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6.1.1 Joining Two Contexts

Whereas Semigroups allow us to join values, Cartesians allow us to
join contexts. Let’s join some Options as an example:

import cats.Cartesian

import cats.instances.option._ // Cartesian for Option

Cartesian[Option].product(Some(123), Some("abc"))

// res0: Option[(Int, String)] = Some((123,abc))

If both parameters are instances of Some, we end up with a tuple of the
values within. If either parameter evaluates to None, the enঞre result is
None:

Cartesian[Option].product(None, Some("abc"))

// res1: Option[(Nothing, String)] = None

Cartesian[Option].product(Some(123), None)

// res2: Option[(Int, Nothing)] = None

6.1.2 Joining Three or More Contexts

The companion object for Cartesian defines a set of methods on top
of product. For example, the methods tuple2 through tuple22 gen-
eralise product to different ariঞes:

import cats.instances.option._ // Cartesian for Option

Cartesian.tuple3(Option(1), Option(2), Option(3))

// res3: Option[(Int, Int, Int)] = Some((1,2,3))

Cartesian.tuple3(Option(1), Option(2), Option.empty[Int])

// res4: Option[(Int, Int, Int)] = None

The methods map2 through map22 apply a user-specified funcঞon to
the values inside 2 to 22 contexts:
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Cartesian.map3(

Option(1),

Option(2),

Option(3)

)(_ + _ + _)

// res5: Option[Int] = Some(6)

Cartesian.map3(

Option(1),

Option(2),

Option.empty[Int]

)(_ + _ + _)

// res6: Option[Int] = None

There are also methods contramap2 through contramap22 and
imap2 through imap22, that require instances of Contravariant and
Invariant respecঞvely.

6.2 Cartesian Builder Syntax

Cats provides a convenient syntax called cartesian builder syntax, that
provides shorthand for methods like tupleN and mapN. We import the
syntax from cats.syntax.cartesian. Here’s an example:

import cats.instances.option._

import cats.syntax.cartesian._

(Option(123) |@| Option("abc")).tupled

// res7: Option[(Int, String)] = Some((123,abc))

The |@| operator, be�er known as a “ঞe fighter”, creates a temporary
“builder” object that provides several methods for combining the param-
eters to create useful data types. For example, the tupledmethod zips
the values into a tuple:

http://typelevel.org/cats/api/cats/syntax/package$$cartesian$
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val builder2 = Option(123) |@| Option("abc")

builder2.tupled

// res8: Option[(Int, String)] = Some((123,abc))

We can use |@| repeatedly to create builders for up to 22 values. Each
arity of builder, from 2 to 22, defines a tupledmethod to combine the
values to form a tuple of the correct size:

val builder3 = Option(123) |@| Option("abc") |@| Option(true)

builder3.tupled

// res9: Option[(Int, String, Boolean)] = Some((123,abc,true))

val builder5 = builder3 |@| Option(0.5) |@| Option('x')

builder5.tupled

// res10: Option[(Int, String, Boolean, Double, Char)] = Some

((123,abc,true,0.5,x))

The idiomaঞc way of wriঞng builder syntax is to combine |@| and
tupled in a single expression, going from single values to a tuple in
one step:

(

Option(1) |@|

Option(2) |@|

Option(3)

).tupled

// res11: Option[(Int, Int, Int)] = Some((1,2,3))

In addiঞon to tupled, every builder has a map method that accepts
an implicit Functor and a funcঞon of the correct arity to combine the
values:
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case class Cat(name: String, born: Int, color: String)

(

Option("Garfield") |@|

Option(1978) |@|

Option("Orange and black")

).map(Cat.apply)

// res12: Option[Cat] = Some(Cat(Garfield,1978,Orange and black)

)

If we supply a funcঞon that accepts the wrong number or types of pa-
rameters, we get a compile error:

val add: (Int, Int) => Int = (a, b) => a + b

// add: (Int, Int) => Int = <function2>

(Option(1) |@| Option(2) |@| Option(3)).map(add)

// <console>:27: error: type mismatch;

// found : (Int, Int) => Int

// required: (Int, Int, Int) => ?

// (Option(1) |@| Option(2) |@| Option(3)).map(add)

// ^

(Option("cats") |@| Option(true)).map(add)

// <console>:27: error: type mismatch;

// found : (Int, Int) => Int

// required: (String, Boolean) => ?

// (Option("cats") |@| Option(true)).map(add)

// ^

6.2.1 Fancy Functors and Cartesian Builder Syntax

Cartesian builders also have a contramap and imap methods that ac-
cept Contravariant and Invariant functors. For example, we can com-
bine Monoids and Semigroups using Invariant. Here’s an example:
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import cats.Monoid

import cats.instances.boolean._

import cats.instances.int._

import cats.instances.list._

import cats.instances.string._

import cats.syntax.cartesian._

case class Cat(

name: String,

yearOfBirth: Int,

favoriteFoods: List[String]

)

def catToTuple(cat: Cat) =

(cat.name, cat.yearOfBirth, cat.favoriteFoods)

implicit val catMonoid = (

Monoid[String] |@|

Monoid[Int] |@|

Monoid[List[String]]

).imap(Cat.apply)(catToTuple)

Our Monoid allows us to create “empty” Cats and add Cats together
using the syntax from Chapter 2:

import cats.syntax.monoid._

Monoid[Cat].empty

// res18: Cat = Cat(,0,List())

val garfield = Cat("Garfield", 1978, List("Lasagne"))

val heathcliff = Cat("Heathcliff", 1988, List("Junk Food"))

garfield |+| heathcliff

// res19: Cat = Cat(GarfieldHeathcliff,3966,List(Lasagne, Junk

Food))
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6.3 Cartesian Applied to Different Types

Cartesians don’t always provide the behaviour we expect, parঞcu-
larly for types that also have instances of Monad. We have seen the
behaviour of the Cartesian for Option. Let’s look at some examples
for other types.

6.3.1 Cartesian Applied to Future

The semanঞcs for Future are pre�y much what we’d expect, providing
parallel as opposed to sequenঞal execuঞon:

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

import cats.Cartesian

import cats.instances.future._

val futurePair = Cartesian[Future].

product(Future("Hello"), Future(123))

Await.result(futurePair, 1.second)

// res2: (String, Int) = (Hello,123)

The two Futures start execuঞng the moment we create them, so they
are already calculaঞng results by the ঞme we call product. Cartesian
builder syntax provides a concise syntax for zipping fixed numbers of
Futures:

import cats.syntax.cartesian._

case class Cat(

name: String,

yearOfBirth: Int,

favoriteFoods: List[String]
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)

val futureCat = (

Future("Garfield") |@|

Future(1978) |@|

Future(List("Lasagne"))

).map(Cat.apply)

Await.result(futureCat, 1.second)

// res5: Cat = Cat(Garfield,1978,List(Lasagne))

6.3.2 Cartesian Applied to List

There is a Cartesian instance for List. What value do you think the
following expression will produce?

import cats.Cartesian

import cats.instances.list._

Cartesian[List].product(List(1, 2), List(3, 4))

There are at least two reasonable answers:

1. product could zip the lists, returning List((1, 3), (2, 4));

2. product could compute the cartesian product, taking every
element from the first list and combining it with every element
from the second returning List((1, 3), (1, 4), (2, 3),

(2, 4)).

The name Cartesian is a hint as to which answer we’ll get, but let’s
run the code to be sure:
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Cartesian[List].product(List(1, 2), List(3, 4))

// res8: List[(Int, Int)] = List((1,3), (1,4), (2,3), (2,4))

We get the cartesian product! This is perhaps surprising: zipping lists
tends to be a more common operaঞon.

6.3.3 Cartesian Applied to Either

What about Either? We opened this chapter with a discussion of
fail-fast versus accumulaঞng error-handling. Which behaviour will
product produce?

import cats.instances.either._

type ErrorOr[A] = Either[Vector[String], A]

Cartesian[ErrorOr].product(

Left(Vector("Error 1")),

Left(Vector("Error 2"))

)

// res10: ErrorOr[(Nothing, Nothing)] = Left(Vector(Error 1))

Surprisingly, we sঞll get fail-fast semanঞcs. The product method sees
the first failure and stops, despite knowing that the second parameter
is also a failure.

6.3.4 Cartesian Applied to Monads

The reason for these surprising results is that, like Option, List and
Either are both monads. To ensure consistent semanঞcs, Cats’ Monad
(which extends Cartesian) provides a standard definiঞon of product
in terms of map and flatMap.

Try wriঞng this implementaঞon now:
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import scala.language.higherKinds

import cats.Monad

def product[M[_]: Monad, A, B](

fa: M[A],

fb: M[B]

): M[(A, B)] = ???

See the soluঞon

We can implement product in terms of themonad operaঞons, and Cats
enforces this implementaঞon for all monads. This gives what we might
think of as unexpected and less useful behaviour for a number of data
types. The consistency of semanঞcs is actually useful for higher level
abstracঞons, but we don’t know about those yet.

So why bother with Cartesian at all? The answer is that we can create
useful data types that have instances of Cartesian (and Applicative)
but not Monad. This frees us to implement product in different ways.
Let’s examing this further by looking at a new data type for error han-
dling.

6.4 Validated

By now we are familiar with the fail-fast error handling behaviour of
Either. Furthermore, because Either is a monad, we know that the
semanঞcs of product are the same as those for flatMap. In fact, it
is impossible for us to design a monadic data type that implements er-
ror accumulaঞng semanঞcs without breaking the consistency rules be-
tween these two methods.

Fortunately, Cats provides a data type called Validated that has an
instance of Cartesian but no instace of Monad. The implementaঞon
of product is therefore free to accumulate errors:
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import cats.Cartesian

import cats.data.Validated

import cats.instances.list._ // Semigroup for List

type AllErrorsOr[A] = Validated[List[String], A]

Cartesian[AllErrorsOr].product(

Validated.invalid(List("Error 1")),

Validated.invalid(List("Error 2"))

)

// res1: AllErrorsOr[(Nothing, Nothing)] = Invalid(List(Error 1,

Error 2))

Validated complements Either nicely. Between the two we have
support for both of the common types of error handling: fail-fast and
accumulaঞng.

6.4.1 Creaঞng Instances of Validated

Validated has two subtypes, Validated.Valid and Validated.Invalid,
that correspond loosely to Right and Left. We can create instances
directly using their apply methods:

val v = Validated.Valid(123)

// v: cats.data.Validated.Valid[Int] = Valid(123)

val i = Validated.Invalid("Badness")

// i: cats.data.Validated.Invalid[String] = Invalid(Badness)

However, it is o[en easier to use the valid and invalid smart con-
structors, which widen the return type to Validated:

val v = Validated.valid[String, Int](123)

// v: cats.data.Validated[String,Int] = Valid(123)
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val i = Validated.invalid[String, Int]("Badness")

// i: cats.data.Validated[String,Int] = Invalid(Badness)

As a third opঞonwe can import the valid and invalid extensionmeth-
ods from cats.syntax.validated:

import cats.syntax.validated._

123.valid[String]

// res2: cats.data.Validated[String,Int] = Valid(123)

"Badness".invalid[Int]

// res3: cats.data.Validated[String,Int] = Invalid(Badness)

Finally, there are a variety ofmethods on Validated to create instances
from different sources. We can create them from Exceptions, as well
as instances of Try, Either, and Option:

Validated.catchOnly[NumberFormatException]("foo".toInt)

// res4: cats.data.Validated[NumberFormatException,Int] =

Invalid(java.lang.NumberFormatException: For input string: "

foo")

Validated.catchNonFatal(sys.error("Badness"))

// res5: cats.data.Validated[Throwable,Nothing] = Invalid(java.

lang.RuntimeException: Badness)

Validated.fromTry(scala.util.Try("foo".toInt))

// res6: cats.data.Validated[Throwable,Int] = Invalid(java.lang.

NumberFormatException: For input string: "foo")

Validated.fromEither[String, Int](Left("Badness"))

// res7: cats.data.Validated[String,Int] = Invalid(Badness)

Validated.fromOption[String, Int](None, "Badness")

// res8: cats.data.Validated[String,Int] = Invalid(Badness)
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6.4.2 Combining Instances of Validated

We can combine instances of Validated using any of the methods de-
scribed above: product, map2..22, cartesian builder syntax, and so
on.

All of these techniques require an appropriate Cartesian to be in
scope. As with Either, we need to fix the error type to create a type
constructor with the correct number of parameters for Cartesian:

type AllErrorsOr[A] = Validated[String, A]

Validated accumulates errors using a Semigroup, so we need one of
those in scope to summon the Cartesian. If we don’t have one we get
an annoyingly unhelpful compilaঞon error:

Cartesian[AllErrorsOr]

// <console>:22: error: could not find implicit value for

parameter instance: cats.Cartesian[AllErrorsOr]

// Cartesian[AllErrorsOr]

// ^

Once we import a Semigroup[String], everything works as expected:

import cats.instances.string._

Cartesian[AllErrorsOr]

// res10: cats.Cartesian[AllErrorsOr] = cats.data.

ValidatedInstances$$anon$1@5e0fe145

As long as the compiler has all the implicits in scope to summon a
Cartesian of the correct type, we can use cartesian builder syntax or
any of the other Cartesian methods to accumulate errors as we like:
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import cats.syntax.cartesian._

(

"Error 1".invalid[Int] |@|

"Error 2".invalid[Int]

).tupled

// res11: cats.data.Validated[String,(Int, Int)] = Invalid(Error

1Error 2)

As you can see, String isn’t an ideal type for accumulaঞng errors. We
commonly use Lists or Vectors instead:

import cats.instances.vector._

(

Vector(404).invalid[Int] |@|

Vector(500).invalid[Int]

).tupled

// res12: cats.data.Validated[scala.collection.immutable.Vector[

Int],(Int, Int)] = Invalid(Vector(404, 500))

The cats.data package also provides the NonEmptyList and
NonEmptyVector types that prevent us failing without at least one
error:

import cats.data.NonEmptyVector

(

NonEmptyVector.of("Error 1").invalid[Int] |@|

NonEmptyVector.of("Error 2").invalid[Int]

).tupled

// res13: cats.data.Validated[cats.data.NonEmptyVector[String],(

Int, Int)] = Invalid(NonEmptyVector(Error 1, Error 2))

6.4.3 Methods of Validated

Validated comes with a suite of methods that closely resem-
ble those available for Either, including the methods from

http://typelevel.org/cats/api/cats/data/NonEmptyList.html
http://typelevel.org/cats/api/cats/data/NonEmptyVector.html
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[cats.syntax.either]. We can use map, leftMap, and bimap

to transform the values inside the valid and invalid sides:

123.valid.map(_ * 100)

// res14: cats.data.Validated[Nothing,Int] = Valid(12300)

"?".invalid.leftMap(_.toString)

// res15: cats.data.Validated[String,Nothing] = Invalid(?)

123.valid[String].bimap(_ + "!", _ * 100)

// res16: cats.data.Validated[String,Int] = Valid(12300)

"?".invalid[Int].bimap(_ + "!", _ * 100)

// res17: cats.data.Validated[String,Int] = Invalid(?!)

We can’t flatMap because Validated isn’t a monad. However, we
can convert back and forth between Validated and Either using the
toEither and toValidated methods. This allows us to switch error-
handling semanঞcs on the fly. Note that toValidated comes from
[cats.syntax.either]:

import cats.syntax.either._ // toValidated method

// import cats.syntax.either._

"Badness".invalid[Int]

// res18: cats.data.Validated[String,Int] = Invalid(Badness)

"Badness".invalid[Int].toEither

// res19: Either[String,Int] = Left(Badness)

"Badness".invalid[Int].toEither.toValidated

// res20: cats.data.Validated[String,Int] = Invalid(Badness)

As with Either, we can use the ensuremethod to fail with a specified
error if a predicate does not hold:
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// 123.valid[String].ensure("Negative!")(_ > 0)

Finally, we can call getOrElse or fold to extract values from the Valid
and Invalid cases:

"fail".invalid[Int].getOrElse(0)

// res22: Int = 0

"fail".invalid[Int].fold(_ + "!!!", _.toString)

// res23: String = fail!!!

6.4.4 Exercise: Form Validaঞon

Let’s get used to Validated by implemenঞng a simple HTML registra-
ঞon form. We receive request data from the client in a Map[String,
String] and we want to parse it to create a User object:

case class User(name: String, age: Int)

Our goal is to implement code that parses the incoming data enforcing
the following rules:

• the name and age must be specified;
• the name must not be blank;
• the the age must be a valid non-negaঞve integer.

If all the rules pass, our parser we should return a User. If any rules fail,
we should return a List of the error messages.

To implement this complete example we’ll need to combine rules in se-
quence and in parallel We’ll use Either to combine computaঞons in
sequence using fail-fast semanঞcs, and Validated to combine them in
parallel using accumulaঞng semanঞcs.

Let’s startwith some sequenঞal combinaঞon. We’ll define twomethods
to read the "name" and "age" fields:
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• readNamewill take a Map[String, String] parameter, extract
the "name" field, check the relevant validaঞon rules, and return
an Either[List[String, String]];

• readAge will take a Map[String, String] parameter, extract
the "age" field, check the relevant validaঞon rules, and return
an Either[List[String, Int].

We’ll build these methods up from smaller building blocks. Start by
defining a method getValue that reads a String from the Map given a
field name.

See the soluঞon

Next define a method parseInt that consumes an Int and parses it as
a String.

See the soluঞon

Next implement the validaঞon checks: nonBlank to check Strings,
and nonNegative to check Ints.

See the soluঞon

Now combine getValue, parseInt, nonBlank and nonNegative to
create readName and readAge:

See the soluঞon

Finally, use a Cartesian to combine the results of readName and
readAge to produce a User. Make sure you switch from Either to
Validated to accumulate errors.

See the soluঞon

6.5 Apply and Applicaࢼve

Cartesians aren’t menঞoned frequently in the wider funcঞonal pro-
gramming literature. They provide a subset of the funcঞonality of a
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related type class called an applicaࢼve functor (“applicaঞve” for short).
Cartesians and applicaঞves effecঞvely provide alternaঞve encodings
of the noঞon of “zipping” values. Both encodings are introduced in the
same 2008 paper by Conor McBride and Ross Paterson.

Cats models Applicatives using two type classes. The first, Apply,
extends Cartesian and Functor and adds an ap method that applies
a parameter to a funcঞon within a context. The second, Applicative
extends Apply, adds the puremethod introduced in Chapter 4. Here’s
a simplified definiঞon in code:

trait Apply[F[_]] extends Cartesian[F] with Functor[F] {

def ap[A, B](ff: F[A => B])(fa: F[A]): F[B]

def product[A, B](fa: F[A], fb: F[B]): F[(A, B)] =

ap(map(fa)(a => (b: B) => (a, b)))(fb)

}

trait Applicative[F[_]] extends Apply[F] {

def pure[A](a: A): F[A]

}

Breaking this down, the apmethod applies a parameter fa to a funcঞon
ff within a context F[_]. The product method from Cartesian is
defined in terms of ap and map.

Don’t worry too much about the implementaঞon of product—it’s diffi-
cult to read and the details aren’t parঞcuarly important. The main point
is that there is a ঞght relaঞonship between product, ap, and map that
allows any one of them to be defined in terms of the other two.

Applicative also introduces the pure method. This is the same pure
we saw in Monad. It constructs a new applicaঞve instance from an
unwrapped value. In this sense, Applicative is related to Apply as
Monoid is related to Semigroup.

http://www.staff.city.ac.uk/~ross/papers/Applicative.html
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6.5.1 The Hierarchy of Sequencing Type Classes

With the introducঞon of Apply and Applicative, we can zoom out
and see a a whole family of type classes that concern themselves with
sequencing computaঞons in different ways. Figure 6.1 shows the big
picture.

Figure 6.1: Monad type class hierarchy

Each type class in the hierarchy represents a parঞcular set of sequenc-
ing semanঞcs. It introduces its characterisঞc methods, and defines all
of the funcঞonality from its supertypes in terms of them. Every monad
is an applicaঞve, every applicaঞve a cartesian, and so on.

Because of the lawful nature of the relaঞonships between the type
classes, the inheritance relaঞonships are constant across all instances
of a type class. Apply defines product in terms of ap and map; Monad
defines product, ap, and map, in terms of pure and flatMap.

To illustrate this let’s consider two hypotheঞcal data types:

• Foo is a monad. It has an instance of the Monad type class that
implements pure and flatMap and inherits standard definiঞons
of product, map, and ap;
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• Bar is an applicaঞve functor. It has an instance of Applicative
that implements pure and ap and inherits standard definiঞons
of product and map.

What can we say about these two data types without knowing more
about their implementaঞon?

We know strictly more about Foo than Bar, Monad is a subtype
of Applicative, so we can guarantee properঞes of Foo (namely
flatMap) that we cannot guarantee with Bar. Conversely, we know
that Bar may have a wider range of behaviours than Foo. It has fewer
laws to obey (no flatMap), so it can implement behaviours that Foo
cannot.

This demonstrates the classic trade-off of power (in the mathemaঞcal
sense) versus constraint. The more constraints we place on a data type,
the more guarantees we have about its behaviour, but the fewer be-
haviours we can model.

Monads happen to be a sweet spot in this trade-off. They are flexible
enough to model a wide range of behaviours and restricঞve enough
to give strong guarantees about those behaviours. However, there are
situaঞons where monads aren’t the right tool for the job. Someঞmes
we want thai food, and burritos just won’t saঞsfy.

Whereas monads impose a strict sequencing on the computaঞons they
model, applicaঞves and cartesians impose no such restricঞon. This puts
them in another sweet spot in the hierarchy. We can use them to rep-
resent classes of parallel / independent computaঞons that monads can-
not.

We choose our semanঞcs by choosing our data structures. If we choose
a monad, we get strict sequencing. If we choose an applicaঞve, we lose
the ability to flatMap. This is the trade-off enforced by the consistency
laws. So choose your types carefully, friend!
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6.6 Summary

While monads and functors are the most widely used sequencing data
types we’ve covered in this book, cartesians and applicaঞves are the
most general. These type classes provide a generic mechanism to com-
bine values and apply funcঞons within a context, from which we can
fashion monads and a variety of other combinators.

Cartesians and applicaঞves aremost commonly used as ameans of com-
bining independent values such as the results of validaঞon rules. Cats
provides the Validated type for this specific purpose, alongwith carte-
sian builder syntax as a convenient way to express the combinaঞon of
rules.

We have almost covered all of the funcঞonal programming concepts
on our agenda for this book. The next chapter covers Traverse and
Foldable, two powerful type classes for converঞng between data
types. A[er that we’ll look at several case studies that bring together
all of the concepts covered.
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Chapter 7

Foldable and Traverse

In this chapter we’ll look at two type classes that capture iteraঞon over
collecঞons:

• Foldable abstracts the familiar foldLeft and foldRight oper-
aঞons;

• Traverse is a higher-level abstracঞon that uses Applicatives
to iterate with less pain than with folds.

We’ll start by looking at Foldable, and then examine cases where fold-
ing becomes complex and Traverse becomes convenient.

7.1 Foldable

The Foldable type class captures the foldLeft and foldRightmeth-
ods we’re used to in sequences like Lists, Vectors, and Streams. Us-
ing Foldable, we can write generic folds that work with a variety of
sequence types. We can also invent new sequences and plug them
into our code. Foldable gives us great use cases for Monoids and the
Eval monad.

171
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7.1.1 Folds and Folding

Let’s start with a quick recap on the general concept of folding.
Foldable is a type class for folding over sequences. We supply an
accumulator value and a binary funcࢼon to combine it with an item in
the sequence:

def show[A](list: List[A]): String =

list.foldLeft("nil")((accum, item) => s"$item then $accum")

show(Nil)

// res0: String = nil

show(List(1, 2, 3))

// res1: String = 3 then 2 then 1 then nil

The view provided by Foldable is recursive. Our binary funcঞon is
called repeatedly for each item in the sequence, result from each call
becoming the accumulator for the next. When we reach the end of the
sequence, the final accumulator becomes our result.

Depending on the operaঞon we’re performing, the order in which we
fold may be important. Because of this there are two standard variants
of fold:

• foldLeft traverses from “le[” to “right” (start to finish);
• foldRight traverses from “right” to “le[” (finish to start).

Figure 7.1 illustrates each direcঞon.

foldLeft and foldRight are equivalent if our binary operaঞon is com-
mutaঞve. For example, we can sum a List[Int] by folding in either
direcঞon, using 0 as our accumulator and + as our operaঞon:
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Figure 7.1: Illustraঞon of foldLe[ and foldRight

List(1, 2, 3).foldLeft(0)(_ + _)

// res2: Int = 6

List(1, 2, 3).foldRight(0)(_ + _)

// res3: Int = 6

If provide a non-commutaঞve operator the order of evaluaঞon makes
a difference. For example, if we fold using -, we get different results in
each direcঞon:

List(1, 2, 3).foldLeft(0)(_ - _)

// res4: Int = -6

List(1, 2, 3).foldRight(0)(_ - _)

// res5: Int = 2

7.1.2 Exercise: Reflecঞng on Folds

Try using foldLeft and foldRight with an empty list as the accumu-
lator and :: as the binary operator. What results do you get in each
case?

See the soluঞon
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7.1.3 Exercise: Scaf-fold-ing other methods

foldLeft and foldRight are very general methods. We can use them
to implement many of the other high-level sequence operaঞons we
know. Prove this to yourself by implemenঞng subsঞtutes for List's
map, flatMap, filter, and sum methods in terms of foldRight.

See the soluঞon

7.1.4 Foldable in Cats

Cats’ Foldable abstracts foldLeft and foldRight into a type class.
Instances of Foldable define these two methods and inherit a host
of derived methods for free. Cats provides out-of-the-box instances
of Foldable for a handful of Scala data types: List, Vector, Stream,
Option, and Map.

We can summon instances as usual using Foldable.apply and call
their implementaঞons of foldLeft directly. Here is an example using
List:

import cats.Foldable

import cats.instances.list._

val ints = List(1, 2, 3)

Foldable[List].foldLeft(ints, 0)(_ + _)

// res1: Int = 6

Other sequences like Vector and Stream work in the same way. Here
is an example using Option, which is treated like a sequence of 0 or 1
elements:

import cats.instances.option._

val maybeInt = Option(123)
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Foldable[Option].foldLeft(maybeInt, 10)(_ * _)

// res3: Int = 1230

Finally, here is an example for Map. The Foldable instance folds over
the values in the map (as opposed to its keys). Map has two type param-
eters so we have to fix the key type to summon the Foldable:

import cats.instances.map._

type StringMap[A] = Map[String, A]

val stringMap = Map("a" -> "b", "c" -> "d")

Foldable[StringMap].foldLeft(stringMap, "nil")(_ + "," + _)

// res6: String = nil,b,d

7.1.4.1 Folding Right

Foldable defines foldRight differently to foldLeft, in terms of the
Eval monad:

def foldRight[A, B](fa: F[A], lb: Eval[B])(f: (A, Eval[B]) =>

Eval[B]): Eval[B]

Using Eval means folding is always stack safe, even when the collec-
ঞon’s default definiঞon of foldRight is not. For example, the default
implementaঞon of foldRight for Stream is not stack safe. The longer
the stream, the larger the stack requirements for the fold. A sufficiently
large stream will trigger a StackOverflowException:

import cats.Eval

import cats.Foldable

def bigData = (1 to 100000).toStream

bigData.foldRight(0)(_ + _)
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// java.lang.StackOverflowError ...

Using Foldable forces us to use stack safe operaঞons, which fixes the
overflow excepঞon:

import cats.instances.stream._

val eval = Foldable[Stream].

foldRight(bigData, Eval.now(0)) { (num, eval) =>

eval.map(_ + num)

}

// eval: cats.Eval[Int] = cats.Eval$$anon$8@5fa48dad

eval.value

// res10: Int = 705082704

Stack Safety in the Standard Library

Stack safety isn’t typically an issue when using the standard li-
brary. The most commonly used collecঞon types, such as List
and Vector, provide stack safe implementaঞons of foldRight:

(1 to 100000).toList.foldRight(0)(_ + _)

// res11: Int = 705082704

(1 to 100000).toVector.foldRight(0)(_ + _)

// res12: Int = 705082704

We’ve called out Stream because it is an excepঞon to this rule.
Whatever data type we’re using, though, it’s useful to know that
Eval has our backs.

7.1.4.2 Folding with Monoids

Foldable provides us with a host of useful methods defined on top of
foldLeft. Many of these are facimiles of familiar methods from the
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standard library: find, exists, forall, toList, isEmpty, nonEmpty,
and so on:

Foldable[Option].nonEmpty(Option(42))

// res13: Boolean = true

Foldable[List].find(List(1, 2, 3))(_ % 2 == 0)

// res14: Option[Int] = Some(2)

In addiঞon to these familiar methods, Cats provides two methods that
make use of Monoids:

• combineAll (and its alias fold) combines all elements in the se-
quence using their Monoid;

• foldMap maps a user-supplied funcঞon over the sequence and
combines the results using a Monoid.

For example, we can use combineAll to sum over a List[Int]:

import cats.instances.int._ // Monoid for Int

Foldable[List].combineAll(List(1, 2, 3))

// res15: Int = 6

Alternaঞvely, we can use foldMap to convert each Int to a String and
concatenate them:

import cats.instances.string._ // Monoid for String

Foldable[List].foldMap(List(1, 2, 3))(_.toString)

// res16: String = 123

Finally, we can compose Foldables to support deep traversal of nested
sequences:
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import cats.instances.vector._ // Monoid of Vector

val ints = List(Vector(1, 2, 3), Vector(4, 5, 6))

(Foldable[List] compose Foldable[Vector]).combineAll(ints)

// res18: Int = 21

7.1.4.3 Syntax for Foldable

Everymethod in Foldable is available in syntax formvia cats.syntax.foldable.
In each case, the first argument to the method on Foldable becomes
the receiver of the method call:

import cats.syntax.foldable._

List(1, 2, 3).combineAll

// res19: Int = 6

List(1, 2, 3).foldMap(_.toString)

// res20: String = 123

Explicits over Implicits

Remember that Scala will only use an instance of Foldable if the
method isn’t explicitly available on the receiver. For example, the
following code will use the version of foldLeft defined on List:

List(1, 2, 3).foldLeft(0)(_ + _)

// res21: Int = 6

whereas the following generic code will use Foldable:

http://typelevel.org/cats/api/cats/syntax/package$$foldable$


7.2. TRAVERSE 179

import scala.language.higherKinds

def sum[F[_]: Foldable](values: F[Int]): Int =

values.foldLeft(0)(_ + _)

// sum: [F[_]](values: F[Int])(implicit evidence$1: cats.

Foldable[F])Int

We typically don’t need to worry about this disঞncঞon. It’s a
feature! We call the method we want and the compiler uses a
Foldable when needed to ensure our code works as expected.
If we need a stack-safe implementaঞon of foldRight, simply us-
ing Eval as the accumulator is enough to force the compiler to
select the method from Cats.

7.2 Traverse

foldLeft and foldRight are flexible iteraঞon methods but they re-
quire us to do a lot of work to define accumulators and combinator
funcঞons. The Traverse type class is a higher level tool that leverages
Applicatives to provide a more convenient, more lawful, pa�ern for
iteraঞon.

7.2.1 Traversing with Futures

We can demonstrate Traverse using the Future.traverse and
Future.sequence methods in the Scala standard library. These
methods provide Future-specific implementaঞons of the traverse
pa�ern. As an example, suppose we have a list of server hostnames
and a method to poll a host for its upঞme:
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import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

val hostnames = List(

"alpha.example.com",

"beta.example.com",

"gamma.demo.com"

)

def getUptime(hostname: String): Future[Int] =

Future(hostname.length * 60) // just for demonstration

Now, suppose we want to poll all of the hosts and collect all of their
upঞmes. We can’t simply map over hostnames because the result—a
List[Future[Int]]—would contain more than one Future. We need
to reduce the results to a single Future to get something we can block
on. Let’s start by doing this manually using a fold:

val allUptimes: Future[List[Int]] =

hostnames.foldLeft(Future(List.empty[Int])) {

(accum, host) =>

val uptime = getUptime(host)

for {

accum <- accum

uptime <- uptime

} yield accum :+ uptime

}

Await.result(allUptimes, 1.second)

// res2: List[Int] = List(1020, 960, 840)

Intuiঞvely, we iterate over hostnames, call func for each item, and com-
bine the results into a list. This sounds simple, but the code is fairly
unwieldy because of the need to create and combine Futures at every
iteraঞon. We can improve on things greatly using Future.traverse,
which is tailor made for this pa�ern:
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val allUptimes: Future[List[Int]] =

Future.traverse(hostnames)(getUptime)

Await.result(allUptimes, 1.second)

// res3: List[Int] = List(1020, 960, 840)

This is much clearer and more concise—let’s see how it works. If we
ignore distracঞons like CanBuildFrom and ExecutionContext, the im-
plementaঞon of Future.traverse in the standard library looks like
this:

object Future {

def traverse[A, B](values: List[A])

(func: A => Future[B]): Future[List[B]] =

values.foldLeft(Future(List.empty[A])) { (accum, host) =>

val item = func(host)

for {

accum <- accum

item <- item

} yield accum :+ item

}

}

This is essenঞally the same as our example code above. Future.traverse
is abstracঞng away the pain of folding and defining accumulators and
combinaঞon funcঞons. It gives us a clean high-level interface to do
what we want:

• start with a List[A];
• provide a funcঞon A => Future[B];
• end up with a Future[List[B]].

The standard library also provides another method, Future.sequence,
that assumes we’re starঞng with a List[Future[B]] and don’t need
to provide an idenঞty funcঞon:
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object Future {

def sequence[B](futures: List[Future[B]]): Future[List[B]] =

traverse(futures)(identity)

// etc...

}

In this case the intuiঞve understanding is even simpler:

• start with a List[Future[A]];
• end up with a Future[List[A]].

Future.traverse and Future.sequence solve a very specific prob-
lem: they allow us to iterate over a sequence of Futures and accu-
mulate a result. The simplified examples above only work with Lists,
but the real Future.traverse and Future.sequence work with any
standard Scala collecঞon.

Cats’ Traverse type class generalises these pa�erns to work with any
type of “effect”: Future, Option, Validated, and so on. We’ll ap-
proach Traverse in the next secঞons in two steps: first we’ll generalise
over the effect type, thenwe’ll generalise over the sequence type. We’ll
end up with an extremely valuable tool that trivialises many operaঞons
involving sequences and other data types.

7.2.2 Traversing with Applicaঞves

If we squint, we’ll see that we can rewrite traverse in terms of an
Applicative. Our accumulator from the example above:

Future(List.empty[Int])

is equivalent to Applicative.pure:
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import cats.Applicative

import cats.instances.future._

import cats.syntax.applicative._

List.empty[Int].pure[Future]

Our combinator, which used to be this:

def oldCombine(

accum : Future[List[Int]],

host : String

): Future[List[Int]] = {

val uptime = getUptime(host)

for {

accum <- accum

uptime <- uptime

} yield accum :+ uptime

}

is now equivalent to Cartesian.combine:

import cats.syntax.cartesian._

// Combining an accumulator and a hostname using an Applicative:

def newCombine(

accum: Future[List[Int]],

host: String

): Future[List[Int]] =

(accum |@| getUptime(host)).map(_ :+ _)

By subsঞtuঞng these snippets back into the definiঞon of traversewe
can generalise it to to work with any Applicative:

import scala.language.higherKinds

def listTraverse[F[_] : Applicative, A, B]

(list: List[A])(func: A => F[B]): F[List[B]] =

list.foldLeft(List.empty[B].pure[F]) { (accum, item) =>

(accum |@| func(item)).map(_ :+ _)
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}

def listSequence[F[_] : Applicative, B]

(list: List[F[B]]): F[List[B]] =

listTraverse(list)(identity)

We can use this new listTraverse to re-implement our upঞme exam-
ple:

Await.result(

listTraverse(hostnames)(getUptime),

1.second

)

// res11: List[Int] = List(1020, 960, 840)

or we can use it with with other Applicative data types as shown in
the following exercises.

7.2.2.1 Exercise: Traversing with Vectors

What is the result of the following?

import cats.instances.vector._

listSequence(List(Vector(1, 2), Vector(3, 4)))

See the soluঞon

What about a list of three parameters?

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))

See the soluঞon
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7.2.2.2 Exercise: Traversing with Opঞons

Here’s an example that uses Options:

import cats.instances.option._

def process(inputs: List[Int]) =

listTraverse(inputs)(n => if(n % 2 == 0) Some(n) else None)

What is the return type of this method? What does it produce for the
following inputs?

process(List(2, 4, 6))

process(List(1, 2, 3))

See the soluঞon

7.2.2.3 Exercise: Traversing with Validated

Finally, gere’s an example that uses Validated:

import cats.data.Validated

import cats.instances.list._ // Applicative[ErrorsOr] needs a

Monoid[List]

type ErrorsOr[A] = Validated[List[String], A]

def process(inputs: List[Int]): ErrorsOr[List[Int]] =

listTraverse(inputs) { n =>

if(n % 2 == 0) {

Validated.valid(n)

} else {

Validated.invalid(List(s"$n is not even"))

}

}

What does this method produce for the following inputs?
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process(List(2, 4, 6))

process(List(1, 2, 3))

See the soluঞon

7.2.3 Traverse in Cats

Our listTraverse and listSequence methods work with any type
of Applicative effect, but they only work with one type of sequence:
List. We can generalise over different sequence types using a type
class, which brings us to Cats’ Traverse. Here’s the abbreviated defi-
niঞon:

package cats

trait Traverse[F[_]] {

def traverse[G[_] : Applicative, A, B](inputs: F[A])(func: A

=> G[B]): G[F[B]]

def sequence[G[_] : Applicative, B](inputs: F[G[B]]): G[F[B]]

=

traverse(inputs)(func)

}

Cats provides instances OF Traverse for List, Vector, Stream,
Option, Either, and a variety of other types. We can summon in-
stances as usual using Traverse.apply as usual and use the traverse
and sequence methods as described in the previous secঞon:

import cats.Traverse

import cats.instances.future._

import cats.instances.list._

Await.result(

Traverse[List].traverse(hostnames)(getUptime),

1.second
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)

// res0: List[Int] = List(1020, 960, 840)

val numbers = List(Future(1), Future(2), Future(3))

Await.result(

Traverse[List].sequence(numbers),

1.second

)

// res1: List[Int] = List(1, 2, 3)

There are also syntax versions of the methods, imported via
cats.syntax.traverse:

import cats.syntax.traverse._

Await.result(hostnames.traverse(getUptime), 1.second)

// res2: List[Int] = List(1020, 960, 840)

Await.result(numbers.sequence, 1.second)

// res3: List[Int] = List(1, 2, 3)

As you can see, this is much more compact and readable than the
foldLeft code we started with earlier this chapter!

7.2.4 Unapply, traverseU, and sequenceU

One frequent problem people encounter when using Traverse is that
it doesn’t play well with effects with two or more type parameters. For
example, suppose we have a List of Eithers:

import cats.instances.list._

import cats.syntax.traverse._

val eithers: List[Either[String, String]] = List(

Right("Wow!"),

Right("Such cool!")

http://typelevel.org/cats/api/cats/syntax/package$$traverse$
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)

When we call sequence we get a compile error:

eithers.sequence

// <console>:20: error: Cannot prove that Either[String,String]

<:< G[A].

// eithers.sequence

// ^

The reason for this failure is that the compiler can’t find an implicit
Applicative. This isn’t a problem in our code—we have the correct
syntax and instances in scope—it’s simply a weakness of Scala’s type in-
ference that has only recently been fixed (more on the fix in a moment).

To understand what’s going on, let’s look again at the definiঞon of
sequence:

trait Traverse[F[_]]

def sequence[G[_]: Applicative, B]: G[F[B]] =

// etc...

}

To compile a call like eithers.sequence, the compiler has to find val-
ues for the type parameters G and B. The types it is a�empঞng to unify
them with are Either[String, Int] and Int, so it has to make a de-
cision about which parameter on Either to fix to create a type con-
structor of the correct shape.

There are two possible soluঞons as you can see below:

type G[A] = Either[A, Int]

type G[A] = Either[String, A]

It’s obvious to us which unificaঞon method to choose. However, prior
to Scala 2.12, an infamous compiler limitaঞon called SI-2712 prevented
this inferrence.

https://issues.scala-lang.org/browse/SI-2712
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To work around this issue Cats provides a uঞliঞy type class called
Unapply, whose purpose is to tell the compiler which parameters to
“fix” to create a unary type constructor for a given type. Cats provides
instances of Unapply for the common binary types: Either, Either,
Validated, and Function1, and so on. Traverse provides variants of
traverse and sequence called traverseU and sequenceU that use
Unapply to guide the compiler to the correct soluঞon:

import cats.instances.either._

eithers.sequenceU

// res2: scala.util.Either[String,List[String]] = Right(List(Wow

!, Such cool!))

The inner workings of Unapply aren’t parঞcularly important— all we
need to know is that this tool is available to fix these kinds of problems.

Fixes to SI-2712

SI-2712 is fixed in Lightbend Scala 2.12.1 and Typelevel Scala
2.11.8. The fix allows calls to traverse and sequence to com-
pile in a much wider set of cases, although tools like Unapply are
sঞll necessary in certain situaঞons.

The SI-2712 fix can be backported to Scala 2.11 and 2.10 using
this compiler plugin.

7.3 Summary

In this chapter we were introduced to Foldable and Traverse, two
type classes for iteraঞng over sequences.

Foldable abstracts the foldLeft and foldRight methods we know
from collecঞons in the standaed library. It adds stack-safe implemen-
taঞons of these methods to a handful of extra data types, and defines

https://issues.scala-lang.org/browse/SI-2712
https://github.com/typelevel/scala
https://github.com/milessabin/si2712fix-plugin
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a host of situaঞonally useful addiঞons. That said, Foldable doesn’t
introduce much that we didn’t already know.

The real power comes from Traverse, which abstracts and generalises
the traverse and sequence methods we know from Future. Using
these methods we can turn an F[G[A]] into a G[F[A]] for any F with
an instance of Traverse and any G with an instance of Applicative.
In terms of the reducঞon we get in lines of code, Traverse is one of
the most powerful pa�erns in this book. We can reduce folds of many
lines down to a single foo.traverse.

Finally we looked at the Unapply type class, which works around re-
stricঞons in the compiler and allows us to use methods like traverse
with types that have mulঞple type parameters. Fixes in recent releases
of Scala make Unapply less important than it once was, but will sঞll be
a necessity in many Scala versions to come.

…and with that, we’ve finished all of the theory in this book. There’s
plenty more to come, though, as we put everything we’ve learned into
pracঞce in a series of in-depth case studies in part 2!
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Case Studies
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Chapter 8

Case Study: Tesঞng
Asynchronous Code

We’ll start with a simple case study: how to simplify unit tests for asyn-
chronous code by making them synchronous.

Let’s return to the example from Chapter 7 where we’re measuring
the upঞme on a set of servers. We’ll flesh out the code into a more
complete structure. There will be two components. The first is an
UptimeClient that polls remote servers for their upঞme:

import scala.concurrent.Future

trait UptimeClient {

def getUptime(hostname: String): Future[Int]

}

We’ll also have an UptimeService that maintains a list of servers and
allows the user to poll them for their total upঞme:

193
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import cats.instances.future._

import cats.instances.list._

import cats.syntax.traverse._

import scala.concurrent.ExecutionContext.Implicits.global

class UptimeService(client: UptimeClient) {

def getTotalUptime(hostnames: List[String]): Future[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

We’ve modelled UptimeClient as a trait because we’re going to want
to stub it out in unit tests. For example, we canwrite a test client that al-
lows us to provide dummy data rather than calling out to actual servers:

class TestUptimeClient(hosts: Map[String, Int]) extends

UptimeClient {

def getUptime(hostname: String): Future[Int] =

Future.successful(hosts.getOrElse(hostname, 0))

}

Now, suppose we’re wriঞng unit tests for UptimeService. We want
to test its ability to sum values, regardless of where it is geমng them
from. Here’s an example:

def testTotalUptime() = {

val hosts = Map("host1" -> 10, "host2" -> 6)

val client = new TestUptimeClient(hosts)

val service = new UptimeService(client)

val actual = service.getTotalUptime(hosts.keys.toList)

val expected = hosts.values.sum

assert(actual == expected)

}

// <console>:31: warning: scala.concurrent.Future[Int] and Int

are unrelated: they will most likely never compare equal

// assert(actual == expected)

// ^

// error: No warnings can be incurred under -Xfatal-warnings.
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The code doesn’t compile because we’ve made a classic error¹. We
forgot that our applicaঞon code is asynchronous. Our actual result is
of type Future[Int] and out expected result is of type Int. We can’t
compare them directly!

There are a couple of ways to solve this problem. We could alter our
test code to accommodate the asynchronousness. However, there is
another alternaঞve. Let’s make our service code synchronous so our
test works without modificaঞon!

8.1 Abstracঞng over Type Constructors

We need to implement two versions of UptimeClient: an asyn-
chronous one for use in producঞon and a synchronous one for use in
our unit tests:

trait RealUptimeClient extends UptimeClient {

def getUptime(hostname: String): Future[Int]

}

trait TestUptimeClient extends UptimeClient {

def getUptime(hostname: String): Int

}

The quesঞon is: what result type shouldwe give to the abstractmethod
in UptimeClient? We need to abstract over Future[Int] and Int:

trait UptimeClient {

def getUptime(hostname: String): ???

}

At first this may seem difficult. We want to retain the Int part from
each type but “throw away” the Future part in the test code. Fortu-
nately, Cats provides a soluঞon in terms of the idenࢼty type, Id, that

¹Technically this is a warning not an error. It has been promoted to an error in our
case because we’re using the -Xfatal-warnings flag on scalac.
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we discussed way back in Secঞon 4.3. Id allows us to “wrap” types in
a type constructor without changing their meaning:

package cats

type Id[A] = A

Id allows us to abstract over them in UptimeClient. Implement this
now:

• write a trait definiঞon for UptimeClient that accepts a type con-
structor F[_] as a parameter;

• extend itwith two traits, RealUptimeClient and TestUptimeClient,
that bind F to Future and Id respecঞvely;

• write out the method header for getUptime in each case to ver-
ify that it compiles.

See the soluঞon

You should now be able to flesh your definiঞon of TestUptimeClient
out into a full class based on a Map[String, Int] as before.

See the soluঞon

8.2 Abstracঞng over Monads

Let’s turn our a�enঞon to UptimeService. We need to rewrite it to
abstract over the two types of UptimeClient. We’ll do this in two
stages: first we’ll get the class and method headers compiling, then
we’ll turn our a�enঞon to themethod bodies. Starঞngwith themethod
headers:
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• comment out the body of getTotalUptime (replace it with ???

to make everything compile);

• add a type parameter F[_] to UptimeService and pass it on to
UptimeClient.

See the soluঞon

Now uncomment the body of getTotalUptime. You should get a com-
pilaঞon error similar to the following:

// <console>:28: error: could not find implicit value for

// evidence parameter of type cats.Applicative[F]

// hostnames.traverse(client.getUptime).map(_.sum)

// ^

The problem here is that traverse only works on sequences of values
that have an Applicative. In our original code we were traversing a
List[Future[Int]]. There is an applicaঞve for Future so that was
fine. In this version we are traversing a List[F[Int]]. We need to
prove to the compiler that F has an Applicative. Do this by adding an
implicit constructor parameter to UptimeService.

See the soluঞon

Finally, let’s turn our a�enঞon to our unit tests. Our test code now
works as intended without any modificaঞon. We create an instance of
TestUptimeClient and wrap it in an UptimeService. This effecঞvely
binds F to Id, allowing the rest of the code to operate synchronously
without worrying about monads or applicaঞves:

def testTotalUptime() = {

val hosts = Map("host1" -> 10, "host2" -> 6)

val client = new TestUptimeClient(hosts)

val service = new UptimeService(client)

val actual = service.getTotalUptime(hosts.keys.toList)

val expected = hosts.values.sum

assert(actual == expected)
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}

testTotalUptime()

8.3 Conclusions

This case study provides a nice introducঞon to how Cats can help
us abstract over different computaঞonal scenarios. We used the
Applicative type class to abstract over asynchronous and syn-
chronous code. Leaning on a funcঞonal abstracঞon allows us to
specify the sequence of computaঞons we want to perform without
worrying about the details of the implementaঞon.

Back in Figure 6.1, we showed a “stack” of computaঞonal type classes
that are meant for exactly this kind of abstracঞon. Type classes like
Functor, Applicative, Monad, and Traverse provide abstract imple-
mentaঞons of pa�erns such as mapping, zipping, sequencing, and it-
eraঞon. The mathemaঞcal laws on those types ensure that they work
together with a consistent set of semanঞcs.

We used Applicative in this case study because it was the least
powerful type class that did what we needed. If we had required
flatMap, we could have swapped out Applicative for Monad. If we
had needed to abstract over different sequence types, we could have
used Traverse. There are also type classes like ApplicativeError

and MonadError that help model failures as well as successful
computaঞons.

Let’s move on now to a more complex case study where type classes
will help us produce something more interesঞng: a map-reduce-style
framework for parallel processing.



Chapter 9

Case Study: Pygmy Hadoop

In this case study we’re going to implement a simple-but-powerful par-
allel processing framework using Monoids, Functors, and a host of
other goodies.

If you have used Hadoop or otherwise worked in “big data” you will
have heard of MapReduce, which is a programming model for doing
parallel data processing across clusters tens or hundreds of machines
(aka “nodes”). As the name suggests, the model is built around a map
phase, which is the same map funcঞon we know from Scala and the
Functor type class, and a reduce phase, which we usually call fold¹ in
Scala.

9.1 Parallelizing map and fold

Recall the general signature for map is to apply a funcঞon A => B to a
F[A], returning a F[B]:

¹In Hadoop there is also a shuffle phase that we will ignore here.
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F[A] F[B]A => B

map

Figure 9.1: Type chart: functor map

map transforms each individual element in a sequence independently.
We can easily parallelize map because there are no dependencies be-
tween the transformaঞons applied to different elements (the type sig-
nature of the funcঞon A => B shows us this, assuming we don’t use
side-effects not reflected in the types).

What about fold? We can implement this step with an instance of
Foldable. Not every functor also has an instance of foldable, but we
can implement a map reduce system on top of any data type that has
both of these type classes. Our reducঞon step becomes a foldLeft
over the results of the distributed map.

F[A] B(B, A) => BB

foldLeft ,

Figure 9.2: Type chart: fold

If you remember from our discussion of Foldable, then depending on
the reducঞon operaঞon we use, the order of combinaঞon can have
effect on the final result. To remain correct we need to ensure our re-
ducঞon operaঞon is associaࢼve:

reduce(a1, reduce(a2, a3)) == reduce(reduce(a1, a2), a3)

If we have associaঞvity, we can arbitrarily distribute work between our
nodes provided we preserve the ordering on the sequence of elements
we’re processing.
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Our fold operaঞon requires us to seed the computaঞonwith an element
of type B. Since our fold may be split into an arbitrary number of parallel
steps, the seed should not effect the result of the computaঞon. This
naturally requires the seed to be an idenࢼty element:

reduce(seed, a1) == reduce(a1, seed) == a1

In summary, our parallel fold will yield the correct results if:

• we require the reducer funcঞon to be associaঞve;
• we seed the computaঞon with the idenঞty of this funcঞon.

What does this pa�ern sound like? That’s right, we’ve come full cir-
cle back to Monoid, the first type class we discussed in this book. We
are not the first to recognise the importance of monoids. The monoid
design pa�ern for map-reduce jobs is at the core of recent big data
systems such as Twi�er’s Summingbird.

In this project we’re going to implement a very simple single-machine
map-reduce. We’ll start by implemenঞng a method called foldMap to
model the data-flow we need.

9.2 Implemenঞng foldMap

We saw foldMap briefly back when we covered Foldable. It is one
of the derived operaঞons that sits on top of foldLeft and foldRight.
However, rather than use Foldable, we will re-implement foldMap
here ourselves as it will provide useful insight into the structure of map
reduce.

Start by wriঞng out the signature of foldMap. It should accept the fol-
lowing parameters:

http://arxiv.org/abs/1304.7544
http://arxiv.org/abs/1304.7544
https://github.com/twitter/summingbird
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• a sequence of type Vector[A];
• a funcঞon of type A => B, where there is a Monoid for B;

You will have to add implicit parameters or context bounds to complete
the type signature.

See the soluঞon

Now implement the body of foldMap. Use the flow chart in Figure 9.3
as a guide to the steps required:

1. start with a sequence of items of type A;
2. map over the list to produce a sequence of items of type B;
3. use the Monoid to reduce the items to a single B.

4. Final result

3. Fold/reduce step

2. Map step

1. Initial data sequence

Figure 9.3: foldMap algorithm

Here’s some sample output for reference:
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import cats.instances.int._

scala foldMap(Vector(1, 2, 3))(identity) // res1: Int =

6scala import cats.instances.string._ “‘

// Mapping to a String uses the concatenation monoid:

foldMap(Vector(1, 2, 3))(_.toString + "! ")

// res3: String = "1! 2! 3! "

// Mapping over a String to produce a String:

foldMap("Hello world!".toVector)(_.toString.toUpperCase)

// res5: String = HELLO WORLD!

See the soluঞon

9.3 Parallelising foldMap

Now we have a working single-threaded implementaঞon of foldMap,
let’s look at distribuঞng work to run in parallel. We’ll use our single-
threaded version of foldMap as a building block.

We’ll write a mulঞ-CPU implementaঞon that simulates the way we
would distribute work in a map-reduce cluster as shown in Figure 9.4:

1. we start with an iniঞal list of all the data we need to process;
2. we divide the data into batches, sending one batch to each CPU;
3. the CPUs run a batch-level map phase in parallel;
4. the CPUs run a batch-level reduce phase in parallel, producing a

local result for each batch;
5. we reduce the results for each batch to a single final result.

Scala provides some simple tools to distribute work amongst threads.
We could simply use the parallel collecঞons library to implement a solu-
ঞon, but let’s challenge ourselves by diving a bit deeper and implement-
ing the algorithm ourselves using Futures.

http://docs.scala-lang.org/overviews/parallel-collections/overview.html
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6. Final result

5. Reduce the batches

4. Reduce each batch in parallel

3. Map over the batches in parallel

2. Divide into batches for each CPU

1. Initial data sequence

Figure 9.4: parallelFoldMap algorithm
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9.3.1 Futures, Thread Pools, and ExecuࢼonContexts

We already know a fair amount about the monadic nature of Futures.
Let’s take amoment for a quick recap, and to describe howScala futures
are scheduled behind the scenes.

Futures run on a thread pool, determined by an implicit ExecutionContext
parameter. Whenever we create a Future, whether through a call to
Future.apply or some other combinator, we must have an implicit
ExecutionContext in scope:

import scala.concurrent.Future

import scala.concurrent.ExecutionContext.Implicits.global

val future1 = Future {

(1 to 100).toList.foldLeft(0)(_ + _)

}

// future1: scala.concurrent.Future[Int] = Future(<not completed

>)

val future2 = Future {

(100 to 200).toList.foldLeft(0)(_ + _)

}

// future2: scala.concurrent.Future[Int] = Future(<not completed

>)

In this examplewe’ve imported a ExecutionContext.Implicits.global.
This default context allocates a thread pool with one thread per CPU
in our machine. When we create a Future the ExecutionContext

schedules it for execuঞon. If there is a free thread in the pool, the
Future starts execuঞng immediately. Most modern machines have
at least two CPUs, so in our example it is likely that future1 and
future2 will execute in parellel.

Some combinators create new Futures that schedule work based on
the results of other Futures. The map and flatMapmethods, for exam-
ple, schedule computaঞons that run as soon as their input values are
computed and a CPU is available:
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val future3 = future1.map(_.toString)

// future3: scala.concurrent.Future[String] = Future(<not

completed>)

val future4 = for {

a <- future1

b <- future2

} yield a + b

// future4: scala.concurrent.Future[Int] = Future(<not completed

>)

As we saw in Secঞon 7.2, we can convert a List[Future[A]] to a
Future[List[A]] using Future.sequence:

Future.sequence(List(Future(1), Future(2), Future(3)))

// res7: scala.concurrent.Future[List[Int]] = Future(Success(

List(1, 2, 3)))

or an instance of Traverse:

import cats.instances.future._ // Applicative for Future

import cats.instances.list._ // Traverse for List

import cats.syntax.traverse._ // foo.sequence syntax

List(Future(1), Future(2), Future(3)).sequence

// res8: scala.concurrent.Future[List[Int]] = Future(Success(

List(1, 2, 3)))

An ExecutionContext is required in either case. Finally, we can use
Await.result to block on a Future unঞl a result is available:

import scala.concurrent._

import scala.concurrent.duration._

Await.result(Future(1), 1.second) // wait forever until a result

arrives

// res9: Int = 1

There are also Monad and Monoid implementaঞons for Future available
from cats.instances.future:
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import cats.Monad

import cats.instances.future._

Monad[Future].pure(42)

import cats.Monoid

import cats.instances.int._

Monoid[Future[Int]].combine(Future(1), Future(2))

9.3.2 Dividing Work

Nowwe’ve refreshed our memory of Futures, let’s look at howwe can
divide work into batches. We can query the number of available CPUs
on our machine using an API call from the Java standard library:

Runtime.getRuntime.availableProcessors

// res15: Int = 8

We can parঞঞon a sequence (actually anything that implements
Vector) using the grouped method. We’ll use this to split off batches
of work for each CPU:

(1 to 10).toList.grouped(3).toList

// res16: List[List[Int]] = List(List(1, 2, 3), List(4, 5, 6),

List(7, 8, 9), List(10))

9.3.3 Implemenঞng parallelFoldMap

Implement a parallel version of foldMap called parallelFoldMap.
Here is the type signature:
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def parallelFoldMap[A, B : Monoid]

(values: Vector[A])

(func: A => B): Future[B] = ???

Use the techniques described above to split the work into batches, one
batch per CPU. Process each batch in a parallel thread. Refer back to
Figure 9.4 if you need to review the overall algorithm.

For bonus points, process the batches for each CPU using your imple-
mentaঞon of foldMap from above.

See the soluঞon

9.3.4 parallelFoldMapwith more Cats

Although we implemented foldMap ourselves above, the method is
also available as part of the Foldable type class we discussed in Sec-
ঞon 7.1.

Reimplement parallelFoldMap usingCats’ Foldable and Traverseable
type classes.

See the soluঞon

9.4 Summary

In this case study we implemented a system that imitates map-reduce
as performed on a cluster. Our algorithm followed three steps:

1. batch the data and send one batch to each “node”;
2. perform a local map-reduce on each batch;
3. combine the results using monoidal addiঞon.
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9.4.1 Batching Strategies in the Real World

The main bo�leneck in real map-reduce is network communicaঞon be-
tween the nodes. To counter this, systems like Hadoop provide mech-
anisms for pre-batching data to limit the communicaঞon required to
distribute work.

Our toy system is designed to emulate this real-world batching be-
haviour. However, in reality we are running all of our work on a single
machine where communcaঞon between nodes is negligable. We don’t
actually need to pre-batch data to gain efficient parallel processing of
a list. We can simply map:

val future1: Future[Vector[Int]] =

(1 to 1000).toVector.

traverse(item => Future(item + 1))

and reduce using a Monoid:

val future2: Future[Int] =

future1.map(_.combineAll)

Await.result(future2, 1.second)

// res4: Int = 501500

9.4.2 Reducঞon usingMonoids

Regardless of the batching strategy, mapping and reducing with
Monoids is a powerful and general framework. The core idea of
monoidal addiঞon underlies Summingbird, Twi�er’s framework that
powers all their internal data processing jobs.

Monoids are not restricted to simple tasks like addiঞon and string con-
catenaঞon. Most of the tasks data scienঞsts perform in their day-to-
day analyses can be cast as monoids. There are monoids for all the
following:

https://github.com/twitter/summingbird
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• approximate sets such as the Bloom filter;
• set cardinality esঞmators, such as the HyperLogLog algorithm;
• vectors and hence vector operaঞons like stochasঞc gradient de-

scent;
• quanঞle esঞmators such as the t-digest

to name but a few.



Chapter 10

Case Study: Data Validaঞon

In this case studywewill build a library for validaঞon. What dowemean
by validaঞon? Almost all programsmust check their inputmeets certain
criteria. Usernames must not be blank, email addresses must be valid,
and so on. This type of validaঞon o[en occurs inweb forms, but it could
be performed on configuraঞon files, on web service responses, and any
other case where we have to deal with data that we can’t guarantee
is correct. Authenঞcaঞon, for example, is just a specialised form of
validaঞon.

We want to build a library that performs these checks. What design
goals should we have? For inspiraঞon, let’s look at some examples of
the types of checks we want to perform:

• A user must be over 18 years old or must have parental consent.

• A String ID must be parsable as a Int and the Int must corre-
spond to a valid record ID.

• A bid in an aucঞon must apply to one or more items and have a
posiঞve value.

211
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• A username must contain at least four characters and all charac-
ters must be alphanumeric.

• An email address must contain a single @ sign. Split the string at
the @. The string to the le[ must not be empty. The string to the
right must be at least three characters long and contain a dot.

With these examples in mind we can state some goals:

• We should be able associate meaningful messages with each val-
idaঞon failure, so the user knows why their data is not valid.

• We should be able to combine small checks into larger ones. Tak-
ing the username example above, we should be able to express
this by combining a check of length and a check for alphanumeric
values.

• We should be able to transform data while we are checking it.
There is an example above requiring we parse data, changing its
type from String to Int.

• Finally, we should be able to accumulate all the failures in one
go, so the user can correct all the issues before resubmiমng.

These goals assume we’re checking a single piece of data. We will also
need to combine checks acrossmulঞple pieces of data. For a login form,
for example, we’ll need to combine the check results for the username
and the password. This will turn out to be quite a small component of
the library, so the majority of our ঞme will focus on checking a single
data item.
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10.1 Sketching the Library Structure

Let’s start at the bo�om, checking individual pieces of data. Before we
start coding let’s try to develop a feel for what we’ll be building. We
can use a graphical notaঞon to help us. We’ll go through our goals one
by one.

Providing error messages

Our first goal requires us to associate useful error messages with a
check failure. The output of a check could be either the value being
checked, if it passed the check, or some kind of error message. We can
abstactly represent this as a value in a context, where the context is the
possibility of an error message as shown in Figure 10.1.

F[A]

Figure 10.1: A validaঞon result

A check itself is therefore a funcঞon that transforms a value into a value
in a context as shown in Figure 10.2.

A => F[A]

Figure 10.2: A validaঞon check

Combine checks

How do we combine smaller checks into larger ones? Is this an applica-
ঞve or cartesian as shown in Figure 10.3?
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A => F[A] A => F[A] A => F[(A, A)]

|@|

Figure 10.3: Applicaঞve combinaঞon of checks

Not really. With a cartesian, both checks are applied to the same value
and result in a tuple with the value repeated. What we want feels
more like a monoid as shown in Figure 10.4. We can define a sensi-
ble idenঞty—a check that always passes—and two binary combinaঞon
operators—and and or:

A => F[A] A => F[A] A => F[A]

|+|

Figure 10.4: Monoidal combinaঞon of checks

We’ll probably be using and and or about equally o[en with our valida-
ঞon library and it will be annoying to conঞnuously switch between two
monoids for combining rules. We consequently won’t actually use the
monoid API: we’ll use two separate methods, and and or, instead.

Accumulaঞng errors as we check

Monoids also feel like a good mechanism for accumulaঞng error mes-
sages. If we store messages as a List or NonEmptyList, we can even
use a pre-exisঞng monoid from inside Cats.

Transforming data as we check it

In addiঞon to checking data, we also have the goal of transforming it.
This seems like it should be a map or a flatMap depending on whether
the transform can fail or not, so it seems we also want checks to be a
monad as shown in Figure 10.5.
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A => F[B] B => (A => F[C]) A => F[C]

flatMap

A => F[B] B => C A => F[C]

map

Figure 10.5: Monadic combinaঞon of checks

We’ve now broken down our library into familiar abstracঞons and are
in a good posiঞon to begin development.

10.2 The Check Datatype

Our design revolves around a Check, whichwe said was a funcঞon from
a value to a value in a context. As soon as you see this descripঞon you
should think of something like

type Check[A] = A => Either[String, A]

Herewe’ve represented the errormessage as a String. This is probably
not the best representaঞon. We may want to accumulate messages in
a List, for example, or even use a different representaঞon that allows
for internaঞonalizaঞon or standard error codes.

We could a�empt to build some kind of ErrorMessage type that holds
all the informaঞonwe can think of. However, we can’t predict the user’s
requirements. Instead let’s let the user specify what they want. We can
do this by adding a second type parameter to Check:
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type Check[E, A] = A => Either[E, A]

Wewill probably want to add custommethods to Check so let’s declare
it as a trait instead of a type alias:

trait Check[E, A] {

def apply(value: A): Either[E, A]

// other methods...

}

If you think back to Essenঞal Scala, there are two funcঞonal program-
ming pa�erns that we should consider when defining a trait:

• we can make it a typeclass, or;
• we can make it an algebraic data type (and hence seal it).

Type classes allow us to unify disparate data types with a common inter-
face. This doesn’t seem like what we’re trying to do here. That leaves
us with an algebraic data type. Let’s keep that thought in mind as we
explore the design a bit further.

10.3 Basic Combinators

Let’s add some combinator methods to Check, starঞng with and. This
method combines two checks into one, succeeding only if both checks
succeed. Think about implemenঞng this method now. You should hit
some problems. Read on when you do!

trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

???
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// other methods...

}

You should very quickly run into a problem: what do you do when both
checks fail? The correct thing to do is to return both errors, but we
don’t currently have any way to combine Es. We need a type class that
abstracts over the concept of “accumulaঞng” errors as shown in Figure
10.6

E • E => E

List[String] • List[String] => List[String]

Figure 10.6: Combining error messages

What type class do we know that looks like this? What method or op-
erator should we use to implement the • operaঞon?

See the soluঞon

There is another semanঞc issue that will come up quite quickly: should
and short-circuit if the first check fails. What do you think the most
useful behavior is?

See the soluঞon

Use this knowledge to implement and. Make sure you end up with the
behavior you expect!

See the soluঞon

Strictly speaking, Either[E, A] is the wrong abstracঞon for the out-
put of our check. Why is this the case? What other data type could we
use instead? Switch your implementaঞon over to this new data type.
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See the soluঞon

Our implementaঞon is looking pre�y good now. Implement an or com-
binator to compliment and.

See the soluঞon

With and and or we can implement many of checks we’ll want in prac-
ঞce. However, we sঞll have a few more methods to add. We’ll turn to
map and related methods next.

10.4 Transforming Data

One of our requirements is the ability to transform data. This allows us
to support addiঞonal scenarios like parsing input. In this secঞon we’ll
extend our check library with this addiঞonal funcঞonality.

The obvious starঞng point is map. When we try to implement this, we
immediately run into a wall. Our current definiঞon of Check requires
the input and output types to be the same:

type Check[E, A] = A => Either[E, A]

When we map over a check, what type do we assign to the result? It
can’t be A and it can’t be B. We are at an impasse:

def map(check: Check[E, A])(func: A => B): Check[E, ???]

To implement map we need to change the definiঞon of Check. Specifi-
cally, we need to a new type variable to separate the input type from
the output:

type Check[E, A, B] = A => Either[E, B]

Checks can now represent operaঞons like parsing a String as an Int:
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val parseInt: Check[List[String], String, Int] =

// etc...

However, spliমng our input and output types raises another issue. Up
unঞl now we have operated under the assumpঞon that a Check always
returns its input when succesful. We used this in and and or to ignore
the output of the le[ and right rules and simply return the original input
on success:

(this(a), that(a)) match {

case And(left, right) =>

(left(a) |@| right(a))

.map((result1, result2) => Right(a))

// etc...

}

In our new formulaঞon we can’t return Right(a) because its type is
Either[E, A] not Either[E, B]. We’re forced to make an arbitrary
choice between returning Right(result1) and Right(result2).
The same is true of the ormethod. From this we can derive two things:

• we should strive to make the laws we adhere to explicit; and
• the code is telling us we have the wrong abstracঞon in Check.

10.4.1 Predicates

Wecanmake progress by pulling apart the concept of a predicate, which
can be combined using logical operaঞons such as and and or, and the
concept of a check, which can transform data.

What we have called Check so far we will call Predicate. For
Predicatewe can state the following idenࢼty law encoding the noঞon
that a predicate always returns its input if it succeeds:
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For a predicate p of type Predicate[E, A] and elements
a1 and a2 of type A, if p(a1) == Success(a2) then a1

== a2.

Making this change gives us the following code:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // |+| syntax

import cats.syntax.cartesian._ // |@| syntax

import cats.data.Validated._ // Valid and Invalid

sealed trait Predicate[E, A] {

def and(that: Predicate[E, A]): Predicate[E, A] =

And(this, that)

def or(that: Predicate[E, A]): Predicate[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a) |@| right(a)).map((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(a1) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(a2) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}
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final case class And[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Predicate[E, A]

10.4.2 Checks

We’ll use Check to represent a structure we build from a Predicate

that also allows transformaঞon of its input. Implement Check with
the following interface. using the same ADT strategy we used for
Predicate:

sealed trait Check[E, A, B] {

def apply(a: A): Validated[E, B] =

???

def map[C](func: B => C): Check[E, A, C] =

???

}

See the soluঞon

What about flatMap? The semanঞcs are a bit unclear here. The
method is simple enough to declare but it’s not so obvious what it
means or how we should implement apply. The general shape of
flatMap is shown in Figure 10.7:

How do we relate F in the igure to Check in our code? Check has three
type variables while F only has one.

To unify the types we need to fix two of the type parameters. The
idiomaঞc choices are the error type E and the input type A. This gives
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F[A] F[B]A => F[B]

flatMap

Figure 10.7: Type chart for flatMap

us the relaঞonships shown in Figure 10.8:

A => F[B] B => (A => F[C]) A => F[C]

flatMap

Figure 10.8: Type chart for flatMap applied to Check

In words, the semanঞcs of applying a FlatMap are:

• given an input of type A, convert to F[B];

• use the output of type B to choose a Check[E, A, C];

• return to the original input of type A and apply it to the chosen
check to generate the final result of type F[C].

This is quite an odd method. We can implement it, but it is hard to find
a use for it. Go ahead and implement flatMap for Check, and thenwe’ll
see a more generally useful method.

See the soluঞon

We can write a more useful combinator that chains together two
Checks. The output of the first check is connected to the input of the
second. This is analogous to funcঞon composiঞon using andThen:
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val f: A => B = ???

val g: B => C = ???

val h: A => C = f andThen g

A Check is basically a funcঞon A => Validated[E, B] so we can de-
fine an analagous andThen method:

trait Check[E, A, B] {

def andThen[C](that: Check[E, B, C]): Check[E, A, C]

}

Implement andThen now!

See the soluঞon

10.4.3 Recap

We now have two algebraic data types, Predicate and Check, and a
host of combinators with their associated case class implementaঞons.
Check the following soluঞon for a complete definiঞon of each ADT.

See the soluঞon

We have a complete implementaঞon of Check and Predicate that do
most of what we originally set out to do. However, we are not finished
yet. You have probably recognised structure in Predicate and Check

that we can abstract over: Predicate has a monoid and Check has a
monad. Furthermore, in implemenঞng Check you might have felt the
implementaঞon doesn’t do much—all we do is call through to underly-
ing methods on Predicate and Validated.

There are a lot of ways this library could be cleaned up. However, let’s
implement some examples to prove to ourselves that our library really
does work, and then we’ll turn to improving it.

Implement checks for some of the examples given in the introducঞon:
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• A username must contain at least four characters and consist
enঞrely of alphanumeric characters

• An email address must contain an @ sign. Split the string at the @.
The string to the le[ must not be empty. The string to the right
must be at least three characters long and contain a dot.

You might find the following predicates useful:

import cats.data.{NonEmptyList, OneAnd, Validated}

import cats.instances.list._

import cats.syntax.cartesian._

import cats.syntax.validated._

type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =

NonEmptyList(s, Nil)

def longerThan(n: Int): Predicate[Errors, String] =

Predicate.lift(

error(s"Must be longer than $n characters"),

str => str.size > n)

val alphanumeric: Predicate[Errors, String] =

Predicate.lift(

error(s"Must be all alphanumeric characters"),

str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char"),

str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char only once"),

str => str.filter(c => c == char).size == 1)

See the soluঞon
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10.5 Kleislis

We’ll finish off this case study by cleaning up the implementaঞon of
Check. A jusঞfiable criঞcism of our approach is that we’ve wri�en a
lot of code to do very li�le. A Predicate is essenঞally a funcঞon A

=> Validated[E, A], and a Check is basically a wrapper that lets us
compose these funcঞons.

We can abstract A => Validated[E, A] to A => F[B], which you’ll
recognise as the type of funcঞon you pass to the flatMap method on
a monad. Imagine we have the following sequence of operaঞons:

• We li[ some value into a monad (by using pure, for example).
This is a funcঞon with type A => F[A].

• We then sequence some transformaঞons on the monad using
flatMap.

We can illustrate this as shown in Figure 10.9:

A => F[A]

flatMap flatMap

A => F[B] B => F[C]

Figure 10.9: Sequencing monadic transforms

We can also write out this example using the monad API as follows:

val aToB: A => F[B] = ???

val bToC: B => F[C] = ???

def example[A, C](a: A): F[C] =

aToB(a).flatMap(bToC)

Recall that Check is, in the abstract, allowing us to compose funcঞons
of type A => F[B]. We can write the above in terms of andThen as:
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val aToC = aToB andThen bToC

The result is a (wrapped) funcঞon aToC of type A => F[C] that we can
subsequently apply to a value of type A.

We have achieved the same thing as the examplemethod without hav-
ing to reference an argument of type A. The andThenmethod on Check
is analogous to funcঞon composiঞon, but is composing funcঞon A =>

F[B] instead of A => B.

The abstract concept of composing funcঞons of type A => F[B] has a
name: a Kleisli.

Cats contains a data type cats.data.Kleisli that wraps a funcঞon
just Check does. Kleisli has all the methods of Check plus some ad-
diঞonal ones. If Kleisli seems familiar to you, then congratulaঞons.
You’ve seen through its disguise and recognised it as another concept
from earlier in the book. Kleisli is just another name for the Reader
monad!

Here is a simple example using Kleisli to transform an integer into a
list of integers through three steps:

import cats.data.Kleisli

import cats.instances.list._

These steps each transform an input Int into an output of type
List[Int]:

val step1: Kleisli[List, Int, Int] =

Kleisli(x => List(x + 1, x - 1))

val step2: Kleisli[List, Int, Int] =

Kleisli(x => List(x, -x))

val step3: Kleisli[List, Int, Int] =

http://typelevel.org/cats/api/cats/data/Kleisli.html


10.5. KLEISLIS 227

Kleisli(x => List(x * 2, x / 2))

We can combine the steps into a single pipeline that combines the un-
derlying Lists using flatMap:

val pipeline = step1 andThen step2 andThen step3

The result is a funcঞon that consumes a single Int and returns eight
outputs, each produced by a different combinaঞon of transformaঞons
from step1, step2, and step3:

pipeline.run(20)

// res2: List[Int] = List(42, 10, -42, -10, 38, 9, -38, -9)

The only notable difference between Kleisli and Check in terms of
API is that Kleisli renames our apply method to run.

Let’s replace Check with Kleisli in our validaঞon examples. To do
so we need to make a few changes to Predicate. We must be able
to convert a Predicate to a funcঞon, as Kleisli only works with
funcঞons. Somewhat more subtly, when we convert a Predicate to
a funcঞon, it should have type A => Either[E, A] rather than A =>

Validated[E, A] because Kleisli relies on the wrapped funcঞon
returning a monad.

Add a method to Predicate called run that returns a funcঞon of the
correct type. Leave the rest of the code in Predicate the same.

See the soluঞon

Now rewrite our username and rmail validaঞon example in terms of
Kleisli and Predicate. Here are few ঞps in case you get stuck:

First, remember that the run method on Predicate takes an implicit
parameter. If you call aPredicate.run(a) it will try to pass the implicit
parameter explicitly. If youwant to create a funcঞon from a Predicate
and immediately apply that funcঞon, use aPredicate.run.apply(a)
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Second, type inference can be tricky in this exercise. We found that
the following definiঞons helped us to write code with fewer type dec-
laraঞons.

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

// Create a check from a function:

def check[A, B](func: A => Result[B]): Check[A, B] =

Kleisli(func)

// Create a check from a Predicate:

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =

Kleisli[Result, A, A](pred.run)

See the soluঞon

We have now wri�en our code enঞrely in terms of Kleisli and
Predicate, completely removing Check. This is a good first step to
simplifying our library. There’s sঞll plenty more to do, but we have
a sophisঞcated building block from Cats to work with. We’ll leave
further improvements up to the reader.

10.6 Conclusions

This case study has been an exercise in removing rather than building
abstracঞons. We started with a fairly complex Check type. Once we re-
alised we were conflaঞng two concepts, we separated out Predicate
leaving us with something that could be implemented with Kleisli.

Predicate is very much like a stripped down version of the match-
ers found in tesঞng libraries like ScalaTest and Specs2. One next step
would be to develop amore elaborate predicate library along these lines.
There are a few other direcঞons to consider.
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With the current representaঞon of Predicate there is no way to im-
plement logical negaঞon. To implement negaঞon we need to know the
error message that a successful predicate would have returned if it had
failed (so that the negaঞon can return that message). Oneway to imple-
ment this is to have a predicate return a Boolean flag indicaঞng success
or failure and the associated message.

We could also do be�er in how error messages are represented. At the
moment there is no indicaঞonwith an error message of the structure of
the predicates that failed. For example, if we represent error messsages
as a List[String] and we get back the message:

List("Must be longer than 4 characters",

"Must not contain a number")

does this message indicate a failing conjuncঞon (two ands) or a failing
disjuncঞon (two ors)? We can probably guess in this case but in general
we don’t have sufficient informaঞon to work this out. We can solve this
problem by wrapping all messages in a type as follows:

sealed trait Structure[E]

final case class Or[E](messages: List[Structure[E]])

extends Structure[E]

final case class And[E](messages: List[Structure[E]])

extends Structure[E]

final case class Not[E](messages: List[Structure[E]])

extends Structure[E]

final case class Pure[E](message: E)

extends Structure[E]

We can simplify this structure by converঞng all predicates into a nor-
mal form. For example, if we use disjuncঞve normal form the structure
of the predicate will always be a disjuncঞon (logical or) of conjuncঞons
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(logical and). By doing so we could errors as a List[List[Either[E,
E]]], with the outer list represenঞng disjuncঞon, the inner list repre-
senঞng conjuncঞon, and the Either represenঞng negaঞon.

Finally, we made several design choices that reasonable people could
disagree with. Should the method that converts a Predicate to a
funcঞon really be called run instead of, say, toFunction? Should
Predicate be a subtype of Function to begin with? The name run

makes sense if you have experienced monad transformers and other
similar abstracঞons, but is not clear if you don’t have this experience.
Many funcঞonal programmers come to prefer avoiding subtyping, as
it plays poorly with implicit resoluঞon and type inference, but there
could be an argument to use it here. As always the best decisions
depend on the context in which the library will be used.



Chapter 11

Case Study: Commutaঞve
Replicated Data Types

In this case study we explore commutaঞve replicated data types
(CRDTs), a data structure that can be used to reconcile eventually
consistent data.

We start by describing the uঞlity and difficulty of eventually consistent
systems, then show how we can use monoids and their extensions to
solve the issues the issues that arise, and finally model the soluঞons in
Scala.

Our goal here is to focus on the implementaঞon in Scala of a parঞcular
type of CRDT. We’re specifically not aiming at a comprehensive survey
of all CRDTs. CRDTs are a fast moving field, and we advise you to read
the literature to learn about more.

11.1 Eventual Consistency

As soon as a system scales beyond a single machine we have to make
a fundamental choice about how we manage data. We can build a sys-

231
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tem that is consistent, meaning that all machines have the same view of
data. For example, if a user changes their password then all machines
that store a copy of that password must accept the change before we
consider the operaঞon to have completed successfully.

Consistent systems are simple to work with but they have their disad-
vantages. They tend to have high latency, as every change can result is
many messages being sent between machines. They can also can have
relaঞvely low upঞme. A network problem can cause some machines to
be unable to communicate with others. This is called a network parঞ-
ঞon. When there is a network parঞঞon a consistent systemmay refuse
further updates as allowing them could result in data becoming incon-
sistent between the parঞঞoned systems.

An alternaঞve approach is an eventually consistent system. This means
that if all machines can communicate and there are no further updates
they will evenutally all have the same view of data. However, at any
parঞcular point in ঞme machines are allowed to have differing views of
data.

Latency can be lower because eventually consistent systems require
less communicaঞon between machines. A parঞঞoned machine can sঞll
accept updates and reconcile its changes when the network is fixed, so
systems can also can have be�er upঞme. How exactly are we to do this
reconciliaঞon, though? CRDTs are one approach to the problem.

11.2 The GCounter

Let’s look at one parঞcular CRDT implementaঞon. Then we’ll a�empt
to generalise properঞes to see if we can find a general pa�ern.

The data structure we will look at is called a GCounter. It is a distributed
increment-only counter. It can be used, for example, for counঞng the
number of visitors to a site where requests are served by many web
servers.
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11.2.1 Simple Counters

To see why a straigh�orward counter won’t work, imagine we have two
servers storing a count of visitors. Let’s call the machines A and B. Each
machine is storing just an integer counter and the counters all start at
zero.

A: 0

B: 0

A serves three visitors, and B two.

A: 3

B: 2

Now the machines want to merge their counters so they each have an
up-to-date view of the total number of visitors. At this point we know
themachines should add together their counters, becausewe know the
history of their interacঞons. However, there is nothing in the data the
machines store that records this. Nonetheless, let’s use addiঞon as our
strategy for merging counters and see what happens.

A: 5

B: 5

Now A serves a single visitor.

A: 6

B: 4

The machines a�empt to merge counters again. If they use addiঞon as
the merging algorithm they will end up with
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A: 10

B: 10

This is clearly wrong! There have only been six visitors in total. Do we
need to store the complete history of interacঞons to be able to compute
the correct value? It turns out we do not, so let’s look at the GCounter
now to see how it solves this problem in an elegant way.

11.2.2 GCounters

The first clever idea in the GCounter is to have each machine storing a
separate counter for everymachine (including itself) that it knows about.
In the previous example we had two machines, A and B. In this situaঞon
both machines would store a counter for A and a counter for B.

Machine A Machine B

A: 0 A: 0

B: 0 B: 0

The rule with these counters is that a given machine is only allowed
to increment it’s own counter. If A serves 3 visitors and B serves two
visitors the counters will look like

Machine A Machine B

A: 3 A: 0

B: 0 B: 2

Now when two machines merge their counters the rule is to take the
largest value stored for a given machine. Given the state above, when
A and B merge counters the result will be
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Machine A Machine B

A: 3 A: 3

B: 2 B: 2

as 3 is the largest value stored for the A counter, and 2 is the largest
value stored for the B counter. The combinaঞon of only allowing ma-
chines to increment their counter and choosing the maximum value on
mergingmeanswe get the correct answerwithout storing the complete
history of interacঞons.

If a machine wants to calculate the current value of the counter (given
its current knowledge of other machines’ state) it simply sums up all the
per-machine counter. Given the state

Machine A Machine B

A: 3 A: 3

B: 2 B: 2

each machine would report the current values as 3 + 2 = 5.

11.2.3 Exercise: GCounter Implementaঞon

We can implement a GCounter with the interface

final case class GCounter(counters: Map[String, Int]) {

def increment(machine: String, amount: Int) =

???

def get: Int =

???

def merge(that: GCounter): GCounter =

???

}
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where we represent machine IDs as Strings.

Finish the implementaঞon.

See the soluঞon

11.3 Generalisaঞon

We’ve now created a distributed eventually consistent increment only
counter. This is a nice achievement, but don’t want to stop here. In this
secঞonwewill a�empt to abstract the operaঞons used in theGCounter
so it will work with more data types than just natural numbers.

The GCounter uses the following operaঞons on natural numbers: - ad-
diঞon (in increment and get); - maximum (in merge); - and the idenঞty
element 0 (in increment and merge).

This should alreadymake you feel there is a monoid somewhere in here,
but let’s look in more detail on the properঞes we rely on.

As a refresher, here are the properঞes we’ve of monoids we’ve seen
earlier:

• the binary operaঞon + is associaঞve, meaning (a + b) + c =

a + (b + c);
• the idenঞty 0 is commutaঞve, meaning a + 0 = 0 + a; and
• the idenঞty is an idenঞty, meaning a + 0 = a.

In increment, we need an idenঞty to iniঞalise the counter. We also
rely on associaঞvity to ensure the specific sequence of addiঞons we
perform gives the correct value.

In getwe implicitly rely on associaঞvity and commuঞvity to ensure we
get the correct value no ma�er what arbitrary order we choose to sum
the per-machine counters. We also implicitly assume an idenঞty, which
allows us to skip machines for which we do not store a counter.
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The properঞes merge relies on are a bit more interesঞng. We rely on
commuঞvity to ensure that machine A merging with machine B yields
the same result as machine B merging with machine A. We need as-
sociaঞvity to ensure we obtain the correct result when three or more
machines are merging data. We need an idenঞty element to iniঞalise
empty counters. Finally, we need an addiঞonal property, called idem-
potency, to ensure that if two machines hold the same data in a per-
machine counter, merging data will not lead to an incorrect result. For-
mally, a binary operaঞon max is idempotent if a max a = a.

Wri�en more compactly, we have:

Method Idenঞty
Commutaঞve

Associaঞve
Idempotent

increment Y N Y N
get Y Y Y N

merge Y Y Y Y

From this we can see that

• increment requires a monoid;
• get requires a commutaঞve monoid; and
• merge required an idempotent commutaঞve monoid, also called

a bounded semilaমce.

Since increment and get both use the same binary operaঞon (addiঞon)
it’s usual to require the same commutaঞve monoid for both.

This invesঞgaঞon demonstrates the powers of thinking about proper-
ঞes or laws of abstracঞons. Now we have idenঞfied these properঞes
we can subsঞtute the natural numbers used in our GCounter with any
data type with operaঞons meeঞng these properঞes. A simple example
is a set, with union being the binary operaঞon and the idenঞty element
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the empty set. Set union is idempotent, commutaঞve, and associaঞve
and therefore fits all our requirements to work with a GCounter. With
this simple subsঞtuঞon of Int for Set[A] we can create a GSet type.

11.3.1 Implementaঞon

Let us now implement this generalisaঞon in code. Remember
increment and get require a commutaঞve monoid and merge requires
a bounded semilaমce (or idempotent commutaঞve monoid).

Cats provides a Monoid, but no commutaঞve monoid or bounded semi-
laমce type class¹. For simplicity of implementaঞon we’ll use Monoid

when we really mean a commutaঞve monoid, and require the program-
mer to ensure the implementaঞon is commutaঞve. We’ll implement
our own BoundedSemiLattice type class.

import cats.Monoid

trait BoundedSemiLattice[A] extends Monoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

In the implementaঞon above, BoundedSemiLattice[A] extends
Monoid[A] because a bounded semilaমce is a monoid (a commutaঞve
idempotent one, to be exact).

11.3.2 Exercises

11.3.2.1 BoundedSemiLaমce Instances

Implement some BoundedSemiLattice type class instances (e.g. for
Int and Set).

¹A closely related library called Spire provides both these abstracঞons.

https://github.com/non/spire
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See the soluঞon

11.3.2.2 Generic GCounter

Using Monoid and BoundedSemiLattice, generalise GCounter.

When you implement this, look for opportuniঞes to use methods and
syntax on monoid to simplify your implementaঞon. This is a good ex-
ample of how type class abstracঞons work at mulঞple levels of code.
We’re using monoids to design a large component—our CRDTs—but
they are also useful in the small, making our code simpler.

See the soluঞon

11.4 Abstracঞng GCounter to a Type Class

We’ve created a generic GCounter that works with any value that has
(commutaঞve) Monoid and BoundedSemiLattice type class instances.
However we’re sঞll ঞed to a parঞcular representaঞon of the map from
machine IDs to values. There is no need to have this restricঞon, and
indeed it can be useful to abstract away from it. There are many key-
value stores that might like to work with our GCounter, from a simple
Map to a relaঞonal database.

If we define a GCounter type class we can abstract over different con-
crete implementaঞons. This allows us to, for example, seamlessly sub-
sঞtute an in-memory store for a persistent store when we want to
change performance and durability tradeoffs.

There are a number of ways we can implement this. Try your own im-
plementaঞon before reading on.

A simple way to achieve this is by defining a GCounter type class with
dependencies on Monoid and BoundedSemiLattice. I defined this
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type class as taking a higher-kinded type with two type parameters, in-
tended to represent the key and value types of the map abstracঞon.

import scala.language.higherKinds

import cats.Monoid

trait BoundedSemiLattice[A] extends Monoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

object BoundedSemiLattice {

implicit object intBoundedSemiLatticeInstance extends

BoundedSemiLattice[Int] {

def combine(a1: Int, a2: Int): Int =

a1 max a2

val empty: Int = 0

}

implicit def setBoundedSemiLatticeInstance[A]:

BoundedSemiLattice[Set[A]] =

new BoundedSemiLattice[Set[A]]{

def combine(a1: Set[A], a2: Set[A]): Set[A] =

a1 union a2

val empty: Set[A] =

Set.empty[A]

}

}

trait GCounter[F[_,_],K, V] {

def increment(f: F[K, V])(k: K, v: V)(implicit m: Monoid[V]):

F[K, V]

def total(f: F[K, V])(implicit m: Monoid[V]): V

def merge(f1: F[K, V], f2: F[K, V])(implicit b:

BoundedSemiLattice[V]): F[K, V]

}

We can easily define some instances of this type class. Here’s a com-
plete example, containing a type class instance for Map and a simple
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test.

import cats.syntax.semigroup._

import cats.syntax.foldable._

object GCounterExample {

trait BoundedSemiLattice[A] extends Monoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

object BoundedSemiLattice {

implicit object intBoundedSemiLatticeInstance extends

BoundedSemiLattice[Int] {

def combine(a1: Int, a2: Int): Int =

a1 max a2

val empty: Int = 0

}

implicit def setBoundedSemiLatticeInstance[A]:

BoundedSemiLattice[Set[A]] =

new BoundedSemiLattice[Set[A]]{

def combine(a1: Set[A], a2: Set[A]): Set[A] =

a1 union a2

val empty: Set[A] =

Set.empty[A]

}

}

trait GCounter[F[_,_],K, V] {

def increment(f: F[K, V])(k: K, v: V)(implicit m: Monoid[V])

: F[K, V]

def total(f: F[K, V])(implicit m: Monoid[V]): V

def merge(f1: F[K, V], f2: F[K, V])(implicit b:

BoundedSemiLattice[V]): F[K, V]

}

object GCounter {

implicit def mapGCounterInstance[K, V]: GCounter[Map, K, V]

=
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new GCounter[Map, K, V] {

import cats.instances.map._

def increment(f: Map[K, V])(k: K, v: V)(implicit m:

Monoid[V]): Map[K, V] =

f + (k -> (f.getOrElse(k, m.empty) |+| v))

def total(f: Map[K, V])(implicit m: Monoid[V]): V =

f.foldMap(identity)

def merge(f1: Map[K, V], f2: Map[K, V])(implicit b:

BoundedSemiLattice[V]): Map[K, V] =

f1 |+| f2

}

def apply[F[_,_],K, V](implicit g: GCounter[F, K, V]) = g

}

import cats.instances.int._

val g1 = Map("a" -> 7, "b" -> 3)

val g2 = Map("a" -> 2, "b" -> 5)

println(s"Merged: ${GCounter[Map, String, Int].merge(g1,g2)}")

println(s"Total: ${GCounter[Map, String, Int].total(g1)}")

}

This implementaঞon strategy is a bit unsaঞsfying. Although the struc-
ture of the implementaঞon will be the same for most of the type class
instances we won’t get any code reuse.

One soluঞon is to capture the idea of a key-value store within a type
class, and then generate GCounter instances for any type that has a
KeyValueStore instance. Here’s the code for KeyValueStore, includ-
ing syntax and an example instance for Map.

trait KeyValueStore[F[_,_]] {

def +[K, V](f: F[K, V])(key: K, value: V): F[K, V]

def get[K, V](f: F[K, V])(key: K): Option[V]
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def getOrElse[K, V](f: F[K, V])(key: K, default: V): V =

get(f)(key).getOrElse(default)

}

object KeyValueStore {

implicit class KeyValueStoreOps[F[_,_],K, V](f: F[K, V]) {

def +(key: K, value: V)(implicit kv: KeyValueStore[F]): F[K,

V] =

kv.+(f)(key, value)

def get(key: K)(implicit kv: KeyValueStore[F]): Option[V] =

kv.get(f)(key)

def getOrElse(key: K, default: V)(implicit kv: KeyValueStore

[F]): V =

kv.getOrElse(f)(key, default)

}

implicit object mapKeyValueStoreInstance extends KeyValueStore

[Map] {

def +[K, V](f: Map[K, V])(key: K, value: V): Map[K, V] =

f + (key, value)

def get[K, V](f: Map[K, V])(key: K): Option[V] =

f.get(key)

override def getOrElse[K, V](f: Map[K, V])(key: K, default:

V): V =

f.getOrElse(key, default)

}

}

Nowwe can generate GCounter instanceswith an implicit def. This
implementaঞon is moderately advanced: it has a number of type class
dependencies, including one on Foldable that uses a type lambda.
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import cats.Foldable

implicit def keyValueInstance[F[_,_],K, V](

implicit

k: KeyValueStore[F],

km: Monoid[F[K, V]],

kf: Foldable[({type l[A]=F[K, A]})#l]

): GCounter[F, K, V] =

new GCounter[F, K, V] {

import KeyValueStore._ // For KeyValueStore syntax

def increment(f: F[K, V])(key: K, value: V)(implicit m:

Monoid[V]): F[K, V] =

f + (key, (f.getOrElse(key, m.empty) |+| value))

def total(f: F[K, V])(implicit m: Monoid[V]): V =

f.foldMap(identity _)

def merge(f1: F[K, V], f2: F[K, V])(implicit b:

BoundedSemiLattice[V]): F[K, V] =

f1 |+| f2

}

Here’s the complete code, including an example. This code is quite long
but the majority of it is boilerplate. We could cut down on the boiler-
plate by using compiler plugins such as Simulacrum and Kind Projector.

object GCounterExample {

import cats.{Monoid, Foldable}

import cats.syntax.foldable._

import cats.syntax.semigroup._

import scala.language.higherKinds

trait BoundedSemiLattice[A] extends Monoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

object BoundedSemiLattice {

https://github.com/mpilquist/simulacrum
https://github.com/non/kind-projector
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implicit object intBoundedSemiLatticeInstance extends

BoundedSemiLattice[Int] {

def combine(a1: Int, a2: Int): Int =

a1 max a2

val empty: Int = 0

}

implicit def setBoundedSemiLatticeInstance[A]:

BoundedSemiLattice[Set[A]] =

new BoundedSemiLattice[Set[A]]{

def combine(a1: Set[A], a2: Set[A]): Set[A] =

a1 union a2

val empty: Set[A] =

Set.empty[A]

}

}

trait GCounter[F[_,_],K, V] {

def increment(f: F[K, V])(key: K, value: V)(implicit m:

Monoid[V]): F[K, V]

def total(f: F[K, V])(implicit m: Monoid[V]): V

def merge(f1: F[K, V], f2: F[K, V])(implicit b:

BoundedSemiLattice[V]): F[K, V]

}

object GCounter {

def apply[F[_,_],K, V](implicit g: GCounter[F, K, V]) = g

implicit class GCounterOps[F[_,_],K, V](f: F[K, V]) {

def increment(key: K, value: V)(implicit g: GCounter[F, K,

V], m: Monoid[V]): F[K, V] =

g.increment(f)(key, value)

def total(implicit g: GCounter[F, K, V], m: Monoid[V]): V

=

g.total(f)

def merge(that: F[K, V])(implicit g: GCounter[F, K, V], b:
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BoundedSemiLattice[V]): F[K, V] =

g.merge(f, that)

}

implicit def keyValueInstance[F[_,_],K, V](implicit k:

KeyValueStore[F], km: Monoid[F[K, V]], kf: Foldable[({type l

[A]=F[K, A]})#l]): GCounter[F, K, V] =

new GCounter[F, K, V] {

import KeyValueStore._ // For KeyValueStore syntax

def increment(f: F[K, V])(key: K, value: V)(implicit m:

Monoid[V]): F[K, V] =

f + (key, (f.getOrElse(key, m.empty) |+| value))

def total(f: F[K, V])(implicit m: Monoid[V]): V =

f.foldMap(identity _)

def merge(f1: F[K, V], f2: F[K, V])(implicit b:

BoundedSemiLattice[V]): F[K, V] =

f1 |+| f2

}

}

trait KeyValueStore[F[_,_]] {

def +[K, V](f: F[K, V])(key: K, value: V): F[K, V]

def get[K, V](f: F[K, V])(key: K): Option[V]

def getOrElse[K, V](f: F[K, V])(key: K, default: V): V =

get(f)(key).getOrElse(default)

}

object KeyValueStore {

implicit class KeyValueStoreOps[F[_,_],K, V](f: F[K, V]) {

def +(key: K, value: V)(implicit kv: KeyValueStore[F]): F[

K, V] =

kv.+(f)(key, value)

def get(key: K)(implicit kv: KeyValueStore[F]): Option[V]

=
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kv.get(f)(key)

def getOrElse(key: K, default: V)(implicit kv:

KeyValueStore[F]): V =

kv.getOrElse(f)(key, default)

}

implicit object mapKeyValueStoreInstance extends

KeyValueStore[Map] {

def +[K, V](f: Map[K, V])(key: K, value: V): Map[K, V] =

f + (key, value)

def get[K, V](f: Map[K, V])(key: K): Option[V] =

f.get(key)

override def getOrElse[K, V](f: Map[K, V])(key: K, default

: V): V =

f.getOrElse(key, default)

}

}

object Example {

import cats.instances.map._

import cats.instances.int._

import KeyValueStore._

import GCounter._

val crdt1 = Map("a" -> 1, "b" -> 3, "c" -> 5)

val crdt2 = Map("a" -> 2, "b" -> 4, "c" -> 6)

crdt1.increment("a", 20).merge(crdt2).total

}

}
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11.5 Summary

In this case study we’ve seen how we can use type classes to model a
simple CRDT, the GCounter, in Scala. Our implementaঞon gives us a
lot of flexibility and code reuse. We are not ঞed to the data type we
“count”, nor to the data type that maps machine IDs to counters.

The focus in this case study has been on using the tools that Scala pro-
vides, and not on exploring CRDTs. There are many other CRDTs, some
of which operate in a similar manner to the GCounter, and some of
which have very different implementaঞons. A fairly recent survey gives
a good overview of many of the basic CRDTs. However this is an acঞve
area of research and we encourage you to read the recent publicaঞons
in the field if CRDTs and eventually consistency interest you.

https://hal.inria.fr/inria-00609399v2/document
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Appendix A

Soluঞons for: Introducঞon

A.1 Printable Library

These steps define the three main components of our type class. First
we define Printable—the type class itself:

trait Printable[A] {

def format(value: A): String

}

Then we define some default instances of Printable and package then
in PrintableInstances:

object PrintableInstances {

implicit val stringPrintable = new Printable[String] {

def format(input: String) = input

}

implicit val intPrintable = new Printable[Int] {

def format(input: Int) = input.toString
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}

}

Finally we define an interface object, Printable:

object Printable {

def format[A](input: A)(implicit p: Printable[A]): String =

p.format(input)

def print[A](input: A)(implicit p: Printable[A]): Unit =

println(format(input))

}

Return to the exercise

A.2 Printable Library Part 2

This is a standard use of the type class pa�ern. First we define a set of
custom data types for our applicaঞon:

final case class Cat(name: String, age: Int, color: String)

Then we define type class instances for the types we care about. These
either go into the companion object of Cat or a separate object to act
as a namespace:

import PrintableInstances._

implicit val catPrintable = new Printable[Cat] {

def format(cat: Cat) = {

val name = Printable.format(cat.name)

val age = Printable.format(cat.age)

val color = Printable.format(cat.color)

s"$name is a $age year-old $color cat."
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}

}

Finally, we use the type class by bringing the relevant instances into
scope and using interface object/syntax. If we defined the instances in
companion objects Scala brings them into scope for us automaঞcally.
Otherwise we use an import to access them:

val cat = Cat("Garfield", 35, "ginger and black")

// cat: Cat = Cat(Garfield,35,ginger and black)

Printable.print(cat)

// Garfield is a 35 year-old ginger and black cat.

Return to the exercise

A.3 Printable Library Part 3

First we define an implicit class containing our extension methods:

object PrintableSyntax {

implicit class PrintOps[A](value: A) {

def format(implicit p: Printable[A]): String =

p.format(value)

def print(implicit p: Printable[A]): Unit =

println(p.format(value))

}

}

With PrintOps in scope, we can call the imaginary print and format

methods on any value for which Scala can locate an implicit instance of
Printable:
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import PrintableSyntax._

Cat("Garfield", 35, "ginger and black").print

// Garfield is a 35 year-old ginger and black cat.

We get a compile error if we haven’t defined an instance of Printable
for the relevant type:

import java.util.Date

new Date().print

// <console>:34: error: could not find implicit value for

parameter p: Printable[java.util.Date]

// new Date().print

// ^

Return to the exercise

A.4 Cat Show

First let’s import everything we need from Cats: the Show type class,
the instances for Int and String, and the interface syntax:

import cats.Show

import cats.instances.int._

import cats.instances.string._

import cats.syntax.show._

Our definiঞon of Cat remains the same:

final case class Cat(name: String, age: Int, color: String)

In the companion object we replace our Printablewith an instance of
Show using one of the definiঞon helpers discussed above:
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implicit val catShow = Show.show[Cat] { cat =>

val name = cat.name.show

val age = cat.age.show

val color = cat.color.show

s"$name is a $age year-old $color cat."

}

Finally, we use the Show interface syntax to print our instance of Cat:

println(Cat("Garfield", 35, "ginger and black").show)

// Garfield is a 35 year-old ginger and black cat.

Return to the exercise

A.5 Equality, Liberty, and Felinity

First we need our Cats imports. In this exercise we’ll be using the Eq

type class and the Eq interface syntax. We’ll bring instances of Eq into
scope as we need them below:

import cats.Eq

import cats.syntax.eq._

Our Cat class is the same as ever:

final case class Cat(name: String, age: Int, color: String)

We bring the Eq instances for Int and String into scope for the imple-
mentaঞon of Eq[Cat]:

implicit val catEqual = Eq.instance[Cat] { (cat1, cat2) =>

import cats.instances.int._

import cats.instances.string._

(cat1.name === cat2.name ) &&

(cat1.age === cat2.age ) &&



256 APPENDIX A. SOLUTIONS FOR: INTRODUCTION

(cat1.color === cat2.color)

}

Finally, we test things out in a sample applicaঞon:

val cat1 = Cat("Garfield", 35, "orange and black")

// cat1: Cat = Cat(Garfield,35,orange and black)

val cat2 = Cat("Heathcliff", 30, "orange and black")

// cat2: Cat = Cat(Heathcliff,30,orange and black)

cat1 === cat2

// res14: Boolean = false

cat1 =!= cat2

// res15: Boolean = true

import cats.instances.option._

val optionCat1 = Option(cat1)

// optionCat1: Option[Cat] = Some(Cat(Garfield,35,orange and

black))

val optionCat2 = Option.empty[Cat]

// optionCat2: Option[Cat] = None

optionCat1 === optionCat2

// res16: Boolean = false

optionCat1 =!= optionCat2

// res17: Boolean = true

Return to the exercise



Appendix B

Soluঞons for: Monoids and
Semigroups

B.1 The Truth About Monoids

There are four monoids for Boolean! First, we have and with operator
&& and idenঞty true:

implicit val booleanAndMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) = a && b

def empty = true

}

Second, we have or with operator || and idenঞty false:

implicit val booleanOrMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) = a || b

def empty = false

}
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Third, we have exclusive or with idenঞty false:

implicit val booleanEitherMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) =

(a && !b) || (!a && b)

def empty = false

}

Finally, we have exclusive nor (the negaঞon of exclusive or) with idenঞty
true:

implicit val booleanXnorMonoid: Monoid[Boolean] =

new Monoid[Boolean] {

def combine(a: Boolean, b: Boolean) =

(!a || b) && (a || !b)

def empty = true

}

Showing that the idenঞty law holds in each case is straigh�orward. Sim-
ilarly associaঞvity of the combine operaঞon can be shown by enumer-
aঞng the cases.

Return to the exercise

B.2 All Set for Monoids

Set union forms a monoid along with the empty set:

implicit def setUnionMonoid[A]: Monoid[Set[A]] =

new Monoid[Set[A]] {

def combine(a: Set[A], b: Set[A]) = a union b

def empty = Set.empty[A]
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}

Weneed to define setUnionMonoid as a method rather than a value so
we can accept the type parameter A. Scala’s implicit resoluঞon is fine
with this—it is capable of determining the correct type parameter to
create a Monoid of the desired type:

implicit val intMonoid: Monoid[Int] = new Monoid[Int] {

def combine(a: Int, b: Int) = a + b

def empty = 0

}

val intSetMonoid = Monoid[Set[Int]]

// intSetMonoid: Monoid[Set[Int]] = $anon$1@5ec1a336

intSetMonoid.combine(Set(1, 2), Set(2, 3))

// res2: Set[Int] = Set(1, 2, 3)

Set intersecঞon forms a semigroup, but doesn’t form amonoid because
it has no idenঞty element:

implicit def setIntersectionSemigroup[A]: Semigroup[Set[A]] =

new Semigroup[Set[A]] {

def combine(a: Set[A], b: Set[A]) =

a intersect b

}

Return to the exercise

B.3 Adding All The Things

We can write the addiঞon as a simple foldLeft using 0 and the + op-
erator:
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def add(items: List[Int]): Int =

items.foldLeft(0)(_ + _)

We can alternaঞvely write the fold using Monoids, although there’s not
a compelling use case for this yet:

import cats.Monoid

import cats.syntax.semigroup._

def add(items: List[Int]): Int =

items.foldLeft(Monoid[Int].empty)(_ |+| _)

Return to the exercise

B.4 Adding All The Things Part 2

Now there is a use case for Monoids. We need a single method that
adds Ints and instances of Option[Int]. We can write this as a
generic method that accepts an implicit Monoid as a parameter:

import cats.Monoid

import cats.syntax.semigroup._

def add[A](items: List[A])(implicit monoid: Monoid[A]): A =

items.foldLeft(monoid.empty)(_ |+| _)

We can opঞonally use Scala’s context bound syntax to write the same
code in a friendlier way:

def add[A: Monoid](items: List[A]): A =

items.foldLeft(Monoid[A].empty)(_ |+| _)

We can use this code to add values of type Int and Option[Int] as
requested:
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import cats.instances.int._

add(List(1, 2, 3))

// res9: Int = 6

import cats.instances.option._

add(List(Some(1), None, Some(2), None, Some(3)))

// res10: Option[Int] = Some(6)

Note that if we try to add a list consisঞng enঞrely of Some values, we
get a compile error:

add(List(Some(1), Some(2), Some(3)))

// <console>:55: error: could not find implicit value for

evidence parameter of type cats.Monoid[Some[Int]]

// add(List(Some(1), Some(2), Some(3)))

// ^

This happens because the inferred type of the list is List[Some[Int]],
while Cats will only generate a Monoid for Option[Int]. We’ll see how
to get around this in a moment.

Return to the exercise

B.5 Adding All The Things Part 3

Easy—we simply define a monoid instance for Order!

implicit val monoid: Monoid[Order] = new Monoid[Order] {

def combine(o1: Order, o2: Order) =

Order(

o1.totalCost + o2.totalCost,

o1.quantity + o2.quantity

)

def empty = Order(0, 0)
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}

Return to the exercise



Appendix C

Soluঞons for: Functors

C.1 Branching out with Functors

The semanঞcs are similar to wriঞng a Functor for List. We recurse
over the data structure, applying the funcঞon to every Leaf we find.
The functor laws intuiঞvely require us to retain the same structure with
the same pa�ern of Branch and Leaf nodes:

import cats.Functor

import cats.syntax.functor._

implicit val treeFunctor = new Functor[Tree] {

def map[A, B](tree: Tree[A])(func: A => B): Tree[B] =

tree match {

case Branch(left, right) =>

Branch(map(left)(func), map(right)(func))

case Leaf(value) =>

Leaf(func(value))

}

}

Let’s use our Functor to transform some Trees:
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Branch(Leaf(10), Leaf(20)).map(_ * 2)

// <console>:38: error: value map is not a member of Branch[Int]

// Branch(Leaf(10), Leaf(20)).map(_ * 2)

// ^

Oops! This is the same invariance problem we saw with Monoids. The
compiler can’t find a Functor instance for Leaf. Let’s add some smart
constructors to compensate:

def branch[A](left: Tree[A], right: Tree[A]): Tree[A] =

Branch(left, right)

def leaf[A](value: A): Tree[A] =

Leaf(value)

Now we can use our Functor properly:

leaf(100).map(_ * 2)

// res6: Tree[Int] = Leaf(200)

branch(leaf(10), leaf(20)).map(_ * 2)

// res7: Tree[Int] = Branch(Leaf(20),Leaf(40))

Return to the exercise

C.2 Showing off with Contramap

Here’s a working implementaঞon:

trait Printable[A] {

def format(value: A): String

def contramap[B](func: B => A): Printable[B] = {

val self = this

new Printable[B] {

def format(value: B): String =
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self.format(func(value))

}

}

}

def format[A](value: A)(implicit p: Printable[A]): String =

p.format(value)

Return to the exercise

C.3 Showing off with Contramap Part 2

To make the instance generic across all types of Box, we base it on the
Printable for the type inside the Box:

implicit def boxPrintable[A](implicit p: Printable[A]) =

p.contramap[Box[A]](_.value)

Return to the exercise

C.4 Transformaঞve Thinking with Imap

Here’s a working implementaঞon:

trait Codec[A] {

def encode(value: A): String

def decode(value: String): Option[A]

def imap[B](dec: A => B, enc: B => A): Codec[B] = {

val self = this

new Codec[B] {

def encode(value: B): String =

self.encode(enc(value))

def decode(value: String): Option[B] =
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self.decode(value).map(dec)

}

}

}

def encode[A](value: A)(implicit c: Codec[A]): String =

c.encode(value)

def decode[A](value: String)(implicit c: Codec[A]): Option[A] =

c.decode(value)

Return to the exercise

C.5 Transformaঞve Thinking with Imap Part 2

implicit val intCodec =

new Codec[Int] {

def encode(value: Int): String =

value.toString

def decode(value: String): Option[Int] =

scala.util.Try(value.toInt).toOption

}

Return to the exercise

C.6 Transformaঞve Thinking with Imap Part 3

implicit def boxCodec[A](implicit c: Codec[A]): Codec[Box[A]] =

c.imap[Box[A]](Box(_), _.value)

Return to the exercise
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Soluঞons for: Monads

D.1 Geমng Func-y

At first glance this seems tricky, but if we follow the types we’ll see
there’s only one soluঞon. Let’s start by wriঞng the method header:

trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

???

}

Now we look at the types. We’ve been given a value of type F[A].
Given the tools available there’s only one thingwe can do: call flatMap:

trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]
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def map[A, B](value: F[A])(func: A => B): F[B] =

flatMap(value)(a => ???)

}

We need a funcঞon of type A => F[B] as the second parameter. We
have two funcঞon building blocks available: the func parameter of type
A => B and the pure funcঞon of type A => F[A]. Combining these
gives us our result:

trait Monad[F[_]] {

def pure[A](value: A): F[A]

def flatMap[A, B](value: F[A])(func: A => F[B]): F[B]

def map[A, B](value: F[A])(func: A => B): F[B] =

flatMap(value)(a => pure(func(a)))

}

Return to the exercise

D.2 Monadic Secret Idenঞঞes

Let’s start by defining the method headers:

import cats.Id

def pure[A](value: A): Id[A] =

???

def map[A, B](initial: Id[A])(func: A => B): Id[B] =

???

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =

???
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Now let’s look at each method in turn. The pure operaঞon is a
constructor—it creates an Id[A] from an iniঞal value of type A. But A
and Id[A] are the same type! All we have to do is return the iniঞal
value:

def pure[A](value: A): Id[A] =

value

pure(123)

// res14: cats.Id[Int] = 123

The mapmethod applies a funcঞon of type A => B to an Id[A], creaঞng
an Id[B]. But Id[A] is simply A and Id[B] is simply B! All we have to
do is call the funcঞon—no packing or unpacking required:

def map[A, B](initial: Id[A])(func: A => B): Id[B] =

func(initial)

map(123)(_ * 2)

// res15: cats.Id[Int] = 246

The final punch line is that, oncewe strip away the Id type constructors,
flatMap and map are actually idenঞcal:

def flatMap[A, B](initial: Id[A])(func: A => Id[B]): Id[B] =

func(initial)

// flatMap: [A, B](initial: cats.Id[A])(func: A => cats.Id[B])

cats.Id[B]

flatMap(123)(_ * 2)

// res16: cats.Id[Int] = 246

Noঞce that we haven’t had to add any casts to any of the examples in
this soluঞon. Scala is able to interpret values of type A as Id[A] and
vice versa, simply by the context in which they are used.

The only restricঞon to this is that Scala cannot unify different shapes of
type constructor when searching for implicits. Hence our need to cast
to Id[A] in the call to sumSquare at the opening of this secঞon:
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sumSquare(3 : Id[Int], 4 : Id[Int])

Return to the exercise

D.3 What is Best?

This is an open quesঞon. It’s also kind of a trick quesঞon—the answer
depends on the semanঞcs we’re looking for. Some points to ponder:

• Error recovery is importantwhen processing large jobs. We don’t
want to run a job for a day and then find it failed on the last
element.

• Error reporঞng is equally important. We need to know what
went wrong, not just that something went wrong.

• In a number of cases we want to collect all the errors, not just
the first one we encountered. A typical example is validaঞng a
web form. It’s a far be�er experience to report all errors to the
user when they submit a form than to report them one at a ঞme.

Return to the exercise

D.4 Safer Folding using Eval

The easiest way to fix this is to introduce a helper method called
foldRightEval. This is essenঞally our original method with every
occurrence of B replaced with Eval[B], and a call to Eval.defer to
protect the recursive call:
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import cats.Eval

def foldRightEval[A, B](as: List[A], acc: Eval[B])

(fn: (A, Eval[B]) => Eval[B]): Eval[B] =

as match {

case head :: tail =>

Eval.defer(fn(head, foldRightEval(tail, acc)(fn)))

case Nil =>

acc

}

We can redefine foldRight simply in terms of foldRightEval and the
resulঞng method is stack safe:

def foldRight[A, B](as: List[A], acc: B)

(fn: (A, B) => B): B =

foldRightEval(as, Eval.now(acc)) { (a, b) =>

b.map(fn(a, _))

}.value

foldRight((1 to 100000).toList, 0)(_ + _)

// res22: Int = 705082704

Return to the exercise

D.5 Show Your Working

We’ll start by defining a type alias for Writer so we can use it with pure
syntax:

import cats.data.Writer

import cats.syntax.applicative._

type Logged[A] = Writer[Vector[String], A]

42.pure[Logged]
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// res15: Logged[Int] = WriterT((Vector(),42))

We’ll import the tell syntax as well:

import cats.syntax.writer._

Vector("Message").tell

// res16: cats.data.Writer[scala.collection.immutable.Vector[

String],Unit] = WriterT((Vector(Message),()))

Finally, we’ll import the Semigroup instance for Vector. We need this
to map and flatMap over Logged:

import cats.instances.vector._

41.pure[Logged].map(_ + 1)

// res17: cats.data.WriterT[cats.Id,Vector[String],Int] =

WriterT((Vector(),42))

With these in scope, the definiঞon of factorial becomes:

def factorial(n: Int): Logged[Int] =

for {

ans <- if(n == 0) {

1.pure[Logged]

} else {

slowly(factorial(n - 1).map(_ * n))

}

_ <- Vector(s"fact $n $ans").tell

} yield ans

Now, when we call factorial, we have to run the result to extract the
log and our factorial:
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val (log, result) = factorial(5).run

// log: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2,

fact 3 6, fact 4 24, fact 5 120)

// result: Int = 120

We can run several factorials in parallel as follows, capturing their
logs independently without fear of interleaving:

val Vector((logA, ansA), (logB, ansB)) =

Await.result(Future.sequence(Vector(

Future(factorial(5).run),

Future(factorial(5).run)

)), 5.seconds)

// logA: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2,

fact 3 6, fact 4 24, fact 5 120)

// ansA: Int = 120

// logB: Vector[String] = Vector(fact 0 1, fact 1 1, fact 2 2,

fact 3 6, fact 4 24, fact 5 120)

// ansB: Int = 120

Return to the exercise

D.6 Hacking on Readers

Our type alias fixes the Db type but leaves the result type flexible:

type DbReader[A] = Reader[Db, A]

Return to the exercise

D.7 Hacking on Readers Part 2

Remember: the idea is to leave injecঞng the configuraঞon unঞl last.
This means seমng up funcঞons that accept the config as a parameter
and check it against the concrete user info we have been given:
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def findUsername(userId: Int): DbReader[Option[String]] =

Reader(db => db.usernames.get(userId))

def checkPassword(

username: String,

password: String

): DbReader[Boolean] =

Reader(db => db.passwords.get(username).contains(password))

Return to the exercise

D.8 Hacking on Readers Part 3

As youmight expect, here we use flatMap to chain findUsername and
checkPassword. Weuse pure to li[ a Boolean to a DbReader[Boolean]
when the username is not found:

import cats.syntax.applicative._ // for `pure`

def checkLogin(

userId: Int,

password: String

): DbReader[Boolean] =

for {

username <- findUsername(userId)

passwordOk <- username.map { username =>

checkPassword(username, password)

}.getOrElse {

false.pure[DbReader]

}

} yield passwordOk

Return to the exercise
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D.9 Post-Order Calculator

The stack operaঞon required is different for operators and operands.
For clarity we’ll implement evalOne in terms of two helper funcঞons,
one for each case:

def evalOne(sym: String): CalcState[Int] =

sym match {

case "+" => operator(_ + _)

case "-" => operator(_ - _)

case "*" => operator(_ * _)

case "/" => operator(_ / _)

case num => operand(num.toInt)

}

Let’s look at operand first. All we have to do is push a number onto the
stack. We also return the operand as an intermediate result:

def operand(num: Int): CalcState[Int] =

State[List[Int], Int] { stack =>

(num :: stack, num)

}

The operator funcঞon is a li�le more complex. We have to pop two
operands off the stack and push the result in their place. The code can
fail if the stack doesn’t have enough operands on it, but the exercise
descripঞon allows us to throw an excepঞon in this case:

def operator(func: (Int, Int) => Int): CalcState[Int] =

State[List[Int], Int] {

case a :: b :: tail =>

val ans = func(a, b)

(ans :: tail, ans)

case _ =>

sys.error("Fail!")
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}

Return to the exercise

D.10 Post-Order Calculator Part 2

We implement evalAll by folding over the input. We start with a pure
CalcState that returns 0 if the list is empty. We flatMap at each stage,
ignoring the intermediate results as we saw in the example:

import cats.syntax.applicative._

// import cats.syntax.applicative._

def evalAll(input: List[String]): CalcState[Int] = {

input.foldLeft(0.pure[CalcState]) { (a, b) =>

a flatMap (_ => evalOne(b))

}

Return to the exercise

D.11 Branching out Further with Monads

The code for flatMap is simple. It’s similar to the code for map. Again,
we recurse down the structure and use the results from func to build
a new Tree.

The code for tailRecM is less simple. In fact, it’s fairly complex! How-
ever, if we follow the types the soluঞon falls out. Note that we can’t
make tailRecM tail recursive in this case because we have to recurse
twicewhen processing a Branch. We implement the tailRecMmethod,
and we don’t use the tailrec annotaঞon:
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import cats.Monad

implicit val treeMonad = new Monad[Tree] {

def pure[A](value: A): Tree[A] =

Leaf(value)

def flatMap[A, B](tree: Tree[A])

(func: A => Tree[B]): Tree[B] =

tree match {

case Branch(l, r) =>

Branch(flatMap(l)(func), flatMap(r)(func))

case Leaf(value) =>

func(value)

}

def tailRecM[A, B](arg: A)

(func: A => Tree[Either[A, B]]): Tree[B] =

func(arg) match {

case Branch(l, r) =>

Branch(

flatMap(l) {

case Left(l) => tailRecM(l)(func)

case Right(l) => pure(l)

},

flatMap(r) {

case Left(r) => tailRecM(r)(func)

case Right(r) => pure(r)

}

)

case Leaf(Left(value)) =>

tailRecM(value)(func)

case Leaf(Right(value)) =>

Leaf(value)

}

}

Now we can use our Monad to flatMap and map:
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import cats.syntax.functor._

import cats.syntax.flatMap._

branch(leaf(100), leaf(200)).

flatMap(x => branch(leaf(x - 1), leaf(x + 1)))

// res4: Tree[Int] = Branch(Branch(Leaf(99),Leaf(101)),Branch(

Leaf(199),Leaf(201)))

We can also transform Trees using for comprehensions:

for {

a <- branch(leaf(100), leaf(200))

b <- branch(leaf(a - 10), leaf(a + 10))

c <- branch(leaf(b - 1), leaf(b + 1))

} yield c

// res5: Tree[Int] = Branch(Branch(Branch(Leaf(89),Leaf(91)),

Branch(Leaf(109),Leaf(111))),Branch(Branch(Leaf(189),Leaf

(191)),Branch(Leaf(209),Leaf(211))))

The monad for Option provides fail-fast semanঞcs. The monad for
List provides concatenaঞon semanঞcs. What are the semanঞcs of
flatMap for a binary tree? Every node in the tree has the potenঞal to be
replaced with a whole subtree, producing a kind of “growing” or “feath-
ering” behaviour, reminiscent of list concatenaঞon along two axes.

Return to the exercise



Appendix E

Soluঞons for: Monad
Transformers

E.1 Monads: Transform and Roll Out

This is a relaঞvely simple combinaঞon. Wewant Future on the outside
and Either on the inside, so we build from the inside out using an
EitherT of Future:

import cats.data.EitherT

import scala.concurrent.Future

type Response[A] = EitherT[Future, String, A]

Return to the exercise

E.2 Monads: Transform and Roll Out Part 2

279
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import cats.instances.future._

import cats.syntax.flatMap._

import scala.concurrent.ExecutionContext.Implicits.global

type Response[A] = EitherT[Future, String, A]

def getPowerLevel(ally: String): Response[Int] = {

powerLevels.get(ally) match {

case Some(avg) => EitherT.right(Future(avg))

case None => EitherT.left(Future(s"$ally unreachable"))

}

}

Return to the exercise

E.3 Monads: Transform and Roll Out Part 3

We request the power level from each ally and use map and flatMap to
combine the results:

def canSpecialMove(

ally1: String,

ally2: String

): Response[Boolean] =

for {

power1 <- getPowerLevel(ally1)

power2 <- getPowerLevel(ally2)

} yield (power1 + power2) > 15

Return to the exercise

E.4 Monads: Transform and Roll Out Part 4

We use the value method to unpack the monad stack and Await and
fold to unpack the Future and Either:
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import scala.concurrent.Await

import scala.concurrent.ExecutionContext.Implicits.global

import scala.concurrent.duration._

def tacticalReport(

ally1: String,

ally2: String

): String =

Await.result(

canSpecialMove(ally1, ally2).value,

1.second

) match {

case Left(msg) =>

s"Comms error: $msg"

case Right(true) =>

s"$ally1 and $ally2 are ready to roll out!"

case Right(false) =>

s"$ally1 and $ally2 need a recharge."

}

Return to the exercise
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Appendix F

Soluঞons for: Cartesians and
Applicaঞves

F.1 Cartesian Applied to Monads

We can implement product in terms of map and flatMap like so:

import cats.syntax.flatMap._

import cats.syntax.functor._

def product[M[_] : Monad, A, B](fa: M[A], fb: M[B]): M[(A, B)] =

fa.flatMap(a => fb.map(b => (a, b)))

Unsurprisingly, this code is equivalent to a for comprehension:

def product[M[_] : Monad, A, B](

fa: M[A],

fb: M[B]

): M[(A, B)] =

for {

a <- fa

b <- fb
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} yield (a, b)

The semanঞcs of flatMap are what give rise to the behaviour for List
and Either:

import cats.instances.list._

product(List(1, 2), List(3, 4))

// res13: List[(Int, Int)] = List((1,3), (1,4), (2,3), (2,4))

type ErrorOr[A] = Either[Vector[String], A]

product[ErrorOr, Int, Int](

Left(Vector("Error 1")),

Left(Vector("Error 2"))

)

// res14: ErrorOr[(Int, Int)] = Left(Vector(Error 1))

Even our results for Future are a trick of the light. flatMap provides
sequenঞal ordering, so product provides the same. The only reasonwe
get parallel execuঞon is because our consঞtuent Futures start running
before we call product. This is equivalent to the classic create-then-
flatmap pa�ern:

val a = Future("Future 1")

val b = Future("Future 2")

for {

x <- a

y <- b

} yield (x, y)

Return to the exercise

F.2 Form Validaঞon

We’ll be using Either and Validated so we’ll start with some imports:
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import cats.data.Validated

type FormData = Map[String, String]

type ErrorsOr[A] = Either[List[String], A]

type AllErrorsOr[A] = Validated[List[String], A]

The getValue rule extracts a String from the form data. We’ll be using
it in sequence with rules for parsing Ints and checking values, so we’ll
define it to return an Either:

def getValue(name: String)(data: FormData): ErrorsOr[String] =

data.get(name).

toRight(List(s"$name field not specified"))

We can create and use an instance of getValue as follows:

val getName = getValue("name") _

// getName: FormData => ErrorsOr[String] = <function1>

getName(Map("name" -> "Dade Murphy"))

// res25: ErrorsOr[String] = Right(Dade Murphy)

In the event of a missing field, our instance returns an error message
containing an appropriate field name:

getName(Map())

// res26: ErrorsOr[String] = Left(List(name field not specified)

)

Return to the exercise

F.3 Form Validaঞon Part 2

We’ll use Either again here. We use Either.catchOnly to consume
the NumberFormatException from toInt, andwe use leftMap to turn
it into an error message:
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type NumFmtExn = NumberFormatException

def parseInt(name: String)(data: String): ErrorsOr[Int] =

Right(data).

flatMap(s => Either.catchOnly[NumFmtExn](s.toInt)).

leftMap(_ => List(s"$name must be an integer"))

Note that our soluঞon accepts an extra parameter to name the field
we’re parsing. This is useful for creaঞng be�er error messages, but it’s
fine if you leave it out in your code.

If we provide valid input, parseInt converts it to an Int:

parseInt("age")("11")

// res28: ErrorsOr[Int] = Right(11)

If we provide erroneous input, we get a useful error message:

parseInt("age")("foo")

// res29: ErrorsOr[Int] = Left(List(age must be an integer))

Return to the exercise

F.4 Form Validaঞon Part 3

These definiঞons use the same pa�erns as above:

def nonBlank(name: String)(data: String): ErrorsOr[String] =

Right(data).

ensure(List(s"$name cannot be blank"))(_.nonEmpty)

def nonNegative(name: String)(data: Int): ErrorsOr[Int] =

Right(data).

ensure(List(s"$name must be non-negative"))(_ >= 0)

Here are some examples of use:
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nonBlank("name")("Dade Murphy")

// res31: ErrorsOr[String] = Right(Dade Murphy)

nonBlank("name")("")

// res32: ErrorsOr[String] = Left(List(name cannot be blank))

nonNegative("age")(11)

// res33: ErrorsOr[Int] = Right(11)

nonNegative("age")(-1)

// res34: ErrorsOr[Int] = Left(List(age must be non-negative))

Return to the exercise

F.5 Form Validaঞon Part 4

We use flatMap to combine the rules sequenঞally:

def readName(data: FormData): ErrorsOr[String] =

getValue("name")(data).

flatMap(nonBlank("name"))

def readAge(data: FormData): ErrorsOr[Int] =

getValue("age")(data).

flatMap(nonBlank("age")).

flatMap(parseInt("age")).

flatMap(nonNegative("age"))

The rules pick up all the error cases we’ve seen so far:

readName(Map("name" -> "Dade Murphy"))

// res36: ErrorsOr[String] = Right(Dade Murphy)

readName(Map("name" -> ""))

// res37: ErrorsOr[String] = Left(List(name cannot be blank))

readName(Map())
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// res38: ErrorsOr[String] = Left(List(name field not specified)

)

readAge(Map("age" -> "11"))

// res39: ErrorsOr[Int] = Right(11)

readAge(Map("age" -> "-1"))

// res40: ErrorsOr[Int] = Left(List(age must be non-negative))

readAge(Map())

// res41: ErrorsOr[Int] = Left(List(age field not specified))

Return to the exercise

F.6 Form Validaঞon Part 5

There are a couple of ways to do this, each involving switching from
Either to Validated. One opঞon is to use product and map:

def readUser(data: FormData): AllErrorsOr[User] =

Cartesian[AllErrorsOr].product(

readName(data).toValidated,

readAge(data).toValidated

).map(User.tupled)

A more idiomaঞc soluঞon is to use cartesian builder syntax:

import cats.syntax.cartesian._

def readUser(data: FormData): AllErrorsOr[User] =

(

readName(data).toValidated |@|

readAge(data).toValidated

).map(User.apply)

Both soluঞons yield the same results:
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readUser(Map("name" -> "Dave", "age" -> "37"))

// res43: AllErrorsOr[User] = Valid(User(Dave,37))

readUser(Map("age" -> "-1"))

// res44: AllErrorsOr[User] = Invalid(List(name field not

specified, age must be non-negative))

The need to switch back and forth between Either and Validated

is annoying. The choice of whether to use Either or Validated as a
default is determined by context. In applicaঞon code, we typically find
areas that favour accumulaঞng semanঞcs and areas that favour fail-fast
semanঞcs. We pick the data type that best suits our need and switch
to the other as necessary in specific situaঞons.

Return to the exercise
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Appendix G

Soluঞons for: Foldable and
Traverse

G.1 Reflecঞng on Folds

Folding from le[ to right reverses the list:

List(1, 2, 3).foldLeft(List.empty[Int])((a, i) => i :: a)

// res6: List[Int] = List(3, 2, 1)

Folding right to le[ copies the list, leaving the order intact:

List(1, 2, 3).foldRight(List.empty[Int])((i, a) => i :: a)

// res7: List[Int] = List(1, 2, 3)

Note that we have to carefully specify the type of the accumulator to
avoid a type error. We use List.empty[Int] to avoid inferring the
accumulator type as Nil.type or List[Nothing]:
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List(1, 2, 3).foldRight(Nil)(_ :: _)

// <console>:13: error: type mismatch;

// found : List[Int]

// required: scala.collection.immutable.Nil.type

// List(1, 2, 3).foldRight(Nil)(_ :: _)

// ^

Return to the exercise

G.2 Scaf-fold-ing other methods

Here are the soluঞons:

def map[A, B](list: List[A])(func: A => B): List[B] =

list.foldRight(List.empty[B]) { (item, accum) =>

func(item) :: accum

}

map(List(1, 2, 3))(_ * 2)

// res9: List[Int] = List(2, 4, 6)

def flatMap[A, B](list: List[A])(func: A => List[B]): List[B] =

list.foldRight(List.empty[B]) { (item, accum) =>

func(item) ::: accum

}

flatMap(List(1, 2, 3))(a => List(a, a * 10, a * 100))

// res10: List[Int] = List(1, 10, 100, 2, 20, 200, 3, 30, 300)

def filter[A](list: List[A])(func: A => Boolean): List[A] =

list.foldRight(List.empty[A]) { (item, accum) =>

if(func(item)) item :: accum else accum

}

filter(List(1, 2, 3))(_ % 2 == 1)

// res11: List[Int] = List(1, 3)
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We’ve provided twodefiniঞons of sum, one using scala.math.Numeric
(which recreates the built-in funcঞonality accurately)…

import scala.math.Numeric

def sumWithNumeric[A](list: List[A])

(implicit numeric: Numeric[A]): A =

list.foldRight(numeric.zero)(numeric.plus)

sumWithNumeric(List(1, 2, 3))

// res13: Int = 6

and one using cats.Monoid (which is more appropriate to the content
of this book):

import cats.Monoid

def sumWithMonoid[A](list: List[A])

(implicit monoid: Monoid[A]): A =

list.foldRight(monoid.empty)(monoid.combine)

import cats.instances.int._

sumWithMonoid(List(1, 2, 3))

// res16: Int = 6

Return to the exercise

G.3 Traversing with Vectors

The argument is of type List[Vector[Int]], so we’re using
the Applicative for Vector and the return type is going to be
Vector[List[Int]].

Vector is a monad, so its cartesian combine funcঞon is based on
flatMap. We’ll end up with a Vector of Lists of all the possible
combinaঞons of List(1, 2) and List(3, 4):
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listSequence(List(Vector(1, 2), Vector(3, 4)))

// res14: scala.collection.immutable.Vector[List[Int]] = Vector(

List(1, 3), List(1, 4), List(2, 3), List(2, 4))

Return to the exercise

G.4 Traversing with Vectors Part 2

With three items in the input list, we end up with combinaঞons of three
Ints: one from the first item, one from the second, and one from the
third:

listSequence(List(Vector(1, 2), Vector(3, 4), Vector(5, 6)))

// res16: scala.collection.immutable.Vector[List[Int]] = Vector(

List(1, 3, 5), List(1, 3, 6), List(1, 4, 5), List(1, 4, 6),

List(2, 3, 5), List(2, 3, 6), List(2, 4, 5), List(2, 4, 6))

Return to the exercise

G.5 Traversing with Opঞons

The arguments to listTraverse are of types List[Int] and Int

=> Option[Int], so the return type is Option[List[Int]]. Again,
Option is a monad, so the cartesian combine funcঞon follows from
flatMap. The semanঞcs are therefore fail fast error handling: if all
inputs are even, we get a list of outputs. Otherwise we get None:

process(List(2, 4, 6))

// res20: Option[List[Int]] = Some(List(2, 4, 6))

process(List(1, 2, 3))

// res21: Option[List[Int]] = None

Return to the exercise
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G.6 Traversing with Validated

The return type here is ErrorsOr[List[Int]], which expands to
Validated[List[String], List[Int]]. The semanঞcs for carte-
sian combine on validated are accumulaঞng error handling, so the
result is either a list of even Ints, or a list of errors detailing which
Ints failed the test:

process(List(2, 4, 6))

// res26: ErrorsOr[List[Int]] = Valid(List(2, 4, 6))

process(List(1, 2, 3))

// res27: ErrorsOr[List[Int]] = Invalid(List(1 is not even, 3 is

not even))

Return to the exercise
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Appendix H

Soluঞons for: Case Study: Tesঞng
Asynchronous Code

H.1 Abstracঞng over Type Constructors

Here’s the implementaঞon:

import scala.language.higherKinds

import cats.Id

trait UptimeClient[F[_]] {

def getUptime(hostname: String): F[Int]

}

trait RealUptimeClient extends UptimeClient[Future] {

def getUptime(hostname: String): Future[Int]

}

trait TestUptimeClient extends UptimeClient[Id] {

def getUptime(hostname: String): Id[Int]

}

Note that, because Id[A] is just a simple alias for A, we don’t need
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to refer to the type in TestUptimeClient as Id[Int]—we can simply
write Int instead:

trait TestUptimeClient extends UptimeClient[Id] {

def getUptime(hostname: String): Int

}

Of course, technically speaking we don’t need to redeclare getUptime
in RealUptimeClient or TestUptimeClient. However, wriঞng every-
thing out helps illustrate the technique.

Return to the exercise

H.2 Abstracঞng over Type Constructors Part 2

The final code is similar to our original implementaঞon of TestUptimeClient,
except we no longer need the call to Future.successful:

class TestUptimeClient(hosts: Map[String, Int])

extends UptimeClient[Id] {

def getUptime(hostname: String): Int =

hosts.getOrElse(hostname, 0)

}

Return to the exercise

H.3 Abstracঞng over Monads

The code should look like this:

class UptimeService[F[_]](client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =
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???

// hostnames.traverse(client.getUptime).map(_.sum)

}

Return to the exercise

H.4 Abstracঞng over Monads Part 2

We can write this as an implicit parameter:

import cats.Applicative

import cats.syntax.functor._

class UptimeService[F[_]](client: UptimeClient[F])

(implicit a: Applicative[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

or more tersely as a context bound:

class UptimeService[F[_]: Applicative]

(client: UptimeClient[F]) {

def getTotalUptime(hostnames: List[String]): F[Int] =

hostnames.traverse(client.getUptime).map(_.sum)

}

Note that we need to import cats.syntax.functor as well as
cats.Applicative. This is because we’re switching from using
future.map to the Cats’ generic extension method that requires an
implicit Functor parameter.

Return to the exercise
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Appendix I

Soluঞons for: Case Study: Pygmy
Hadoop

I.1 Implemenঞng foldMap

/** Single-threaded map reduce function.

* Maps `func` over `values`

* and reduces using a `Monoid[B]`.

*/

def foldMap[A, B](values: Vector[A])(func: A => B): B =

???

Return to the exercise

I.2 Implemenঞng foldMap Part 2

We have to modify the type signature to accept a Monoid for B. With
that change we can use the Monoid empty and |+| syntax as described
in Secঞon 2.5.4:

301
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import cats.Monoid

import cats.instances.int._

import cats.instances.string._

import cats.syntax.semigroup._

def foldMap[A, B : Monoid](values: Vector[A])(func: A => B): B =

values.map(func).foldLeft(Monoid[B].empty)(_ |+| _)

We can make a slight alteraঞon to this code to do everything in one
step:

def foldMap[A, B : Monoid](values: Vector[A])(func: A => B): B =

values.foldLeft(Monoid[B].empty)(_ |+| func(_))

Return to the exercise

I.3 Implemenঞng parallelFoldMap

Here is an annotated soluঞon that splits out each map and fold into a
separate line of code:

import scala.concurrent.duration.Duration

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

// Calculate the number of items to pass to each CPU:

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

// Create one group for each CPU:

val groups: Iterator[Vector[A]] =

values.grouped(groupSize)

// Create a future to foldMap each group:

val futures: Iterator[Future[B]] =
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groups map { group =>

Future {

group.foldLeft(Monoid[B].empty)(_ |+| func(_))

}

}

// foldMap over the groups to calculate a final result:

Future.sequence(futures) map { iterable =>

iterable.foldLeft(Monoid[B].empty)(_ |+| _)

}

}

Await.result(parallelFoldMap((1 to 1000000).toVector)(identity),

1.second)

// res18: Int = 1784293664

We can re-use our definiঞon of foldMap for a more concise soluঞon.
Note that the local maps and reduces in steps 3 and 4 of Figure 9.4 are
actually equivalent to a single call to foldMap, shortening the enঞre
algorithm as follows:

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

val groups: Iterator[Vector[A]] =

values.grouped(groupSize)

val futures: Iterator[Future[B]] =

groups.map(group => Future(foldMap(group)(func)))

Future.sequence(futures) map { iterable =>

iterable.foldLeft(Monoid[B].empty)(_ |+| _)

}

}

Await.result(parallelFoldMap((1 to 1000000).toVector)(identity),
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1.second)

// res19: Int = 1784293664

Return to the exercise

I.4 parallelFoldMap with more Cats

We’ll restate all of the necessary imports for completeness:

import cats.Monoid

import cats.Foldable

import cats.Traverse

import cats.instances.int._ // for Monoid

import cats.instances.future._ // for Applicative and Monad

import cats.instances.vector._ // for Foldable and Traverse

import cats.syntax.monoid._ // for |+|

import cats.syntax.foldable._ // for combineAll and foldMap

import cats.syntax.traverse._ // for traverse

import scala.concurrent._

import scala.concurrent.duration._

import scala.concurrent.ExecutionContext.Implicits.global

Here’s the implementaঞon of parallelFoldMap delegaঞng as much of
the method body to Cats as possible:

def parallelFoldMap[A, B: Monoid]

(values: Vector[A])

(func: A => B): Future[B] = {

val numCores = Runtime.getRuntime.availableProcessors

val groupSize = (1.0 * values.size / numCores).ceil.toInt

values

.grouped(groupSize)

.toVector
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.traverse(group => Future(group.toVector.foldMap(func)))

.map(_.combineAll)

}

val future: Future[Int] =

parallelFoldMap((1 to 1000).toVector)(_ * 1000)

Await.result(future, 1.second)

// res3: Int = 500500000

The call to vector.grouped returns an Iterable[Iterator[Int]].
We sprinkle calls to toVector through the code to convert the data
back to a form that Cats can understand. The call to traverse cre-
ates a Future[Vector[Int]] containing one Int per batch. The call
to map then combines the match using the combineAll method from
Foldable.

Return to the exercise
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Appendix J

Soluঞons for: Case Study: Data
Validaঞon

J.1 Basic Combinators

We need a Semigroup for E. Then we can combine values of E using
the combine method or its associated |+| syntax:

import cats.Semigroup

import cats.instances.list._

import cats.syntax.monoid._

val semigroup = Semigroup[List[String]]

// Combination using methods on Semigroup

semigroup.combine(List("Badness"), List("More badness"))

// res2: List[String] = List(Badness, More badness)

// Combination using Semigroup syntax

List("Oh noes") |+| List("Fail happened")

// res4: List[String] = List(Oh noes, Fail happened)

Note we don’t need a full Monoid because we don’t need the idenঞty
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element. We should always try to keep our constraints as small as pos-
sible!

Return to the exercise

J.2 Basic Combinators Part 2

We want to report all the errors we can, so we should prefer not short-
circuiঞng whenever possible.

In the case of the and method, the two checks we’re combining are in-
dependent of one another. We can always run both rules and combine
any errors we see.

Return to the exercise

J.3 Basic Combinators Part 3

There are at least two implementaঞon strategies.

In the first we represent checks as funcঞons. The Check data type
becomes a simple wrapper for a funcঞon that provides our library of
combinator methods. For the sake of disambiguaঞon, we’ll call this im-
plementaঞon CheckF:

import cats.Semigroup

import cats.syntax.either._ // asLeft and asRight syntax

import cats.syntax.semigroup._ // |+| syntax

final case class CheckF[E, A](func: A => Either[E, A]) {

def apply(a: A): Either[E, A] =

func(a)

def and(that: CheckF[E, A])

(implicit s: Semigroup[E]): CheckF[E, A] =
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CheckF { a =>

(this(a), that(a)) match {

case (Left(e1), Left(e2)) => (e1 |+| e2).asLeft

case (Left(e), Right(a)) => e.asLeft

case (Right(a), Left(e)) => e.asLeft

case (Right(a1), Right(a2)) => a.asRight

}

}

}

Let’s test the behavior we get. First we’ll setup some checks:

import cats.instances.list._ // Semigroup for List

val a: CheckF[List[String], Int] =

CheckF { v =>

if(v > 2) v.asRight

else List("Must be > 2").asLeft

}

// a: CheckF[List[String],Int] = CheckF(<function1>)

val b: CheckF[List[String], Int] =

CheckF { v =>

if(v < -2) v.asRight

else List("Must be < -2").asLeft

}

// b: CheckF[List[String],Int] = CheckF(<function1>)

val check = a and b

// check: CheckF[List[String],Int] = CheckF(<function1>)

Now run the check with some data:

check(5)

// res5: Either[List[String],Int] = Left(List(Must be < -2))

check(0)
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// res6: Either[List[String],Int] = Left(List(Must be > 2, Must

be < -2))

Excellent! Everything works as expected! We’re running both checks
and accumulaঞng errors as required.

What happens if we try to create checks that fail with a type that we
can’t accumulate? For example, there is no Semigroup instance for
Nothing. What happens if we create instances of CheckF[Nothing,
A]?

val a: CheckF[Nothing, Int] =

CheckF(v => v.asRight)

val b: CheckF[Nothing, Int] =

CheckF(v => v.asRight)

We can create checks just fine but when we come to combine them we
get an error we we might expect:

val check = a and b

// <console>:31: error: could not find implicit value for

parameter s: cats.Semigroup[Nothing]

// val check = a and b

// ^

Now let’s see another implementaঞon strategy. In this approach we
model checks as an algebraic data type, with an explicit data type for
each combinator. We’ll call this implementaঞon Check:

sealed trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Either[E, A] =

this match {

case Pure(func) =>

func(a)
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case And(left, right) =>

(left(a), right(a)) match {

case (Left(e1), Left(e2)) => (e1 |+| e2).asLeft

case (Left(e), Right(a)) => e.asLeft

case (Right(a), Left(e)) => e.asLeft

case (Right(a1), Right(a2)) => a.asRight

}

}

}

final case class And[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Either[E, A]) extends Check[E, A]

Let’s see an example:

val a: Check[List[String], Int] =

Pure { v =>

if(v > 2) v.asRight

else List("Must be > 2").asLeft

}

// a: wrapper.Check[List[String],Int] = Pure(<function1>)

val b: Check[List[String], Int] =

Pure { v =>

if(v < -2) v.asRight

else List("Must be < -2").asLeft

}

// b: wrapper.Check[List[String],Int] = Pure(<function1>)

val check = a and b

// check: wrapper.Check[List[String],Int] = And(Pure(<function1

>),Pure(<function1>))

While the ADT implementaঞon is more verbose than the funcঞon
wrapper implementaঞon, it has the advantage of cleanly separaঞng
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the structure of the computaঞon (the ADT instance we create) from
the process that gives it meaning (the apply method). From here we
have a number of opঞons:

• inspect and refactor checks a[er they are created;
• move the apply “interpreter” out into its own module;
• implement alternaঞve interpreters providing other funcঞonality

(for example visualizing checks).

Because of its flexibility, we will use the ADT implementaঞon for the
rest of this case study.

Return to the exercise

J.4 Basic Combinators Part 4

The implementaঞon of apply for And is using the pa�ern for applicaঞve
functors. Either has an Applicative instance, but it doesn’t have the
semanঞcs we want/ It fails fast instead of accumulaঞng errors.

If we want to accumulate errors Validated is a more appropriate ab-
stracঞon. As a bonus, we get more code reuse because we can lean on
the applicaঞve instance of Validated in the implementaঞon of apply.

Here’s the complete implementaঞon:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // |+| syntax

import cats.syntax.cartesian._ // |@| syntax

sealed trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =
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this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a) |@| right(a)).map((_, _) => a)

}

}

final case class And[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Check[E, A]

Return to the exercise

J.5 Basic Combinators Part 5

This reuses the same technique for and. We have to do a bit more
work in the applymethod. Note that it’s ok to short-circuit in this case
because the choice of rules is implicit in the semanঞcs of “or”.

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // |+| syntax

import cats.syntax.cartesian._ // |@| syntax

import cats.data.Validated._ // Valid and Invalid

sealed trait Check[E, A] {

def and(that: Check[E, A]): Check[E, A] =

And(this, that)

def or(that: Check[E, A]): Check[E, A] =

Or(this, that)
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def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a) |@| right(a)).map((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(a) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(a) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}

final case class And[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Or[E, A](

left: Check[E, A],

right: Check[E, A]) extends Check[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Check[E, A]

Return to the exercise

J.6 Checks

If you follow the same strategy as Predicate you should be able to
create code similar to the below:
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import cats.Semigroup

import cats.data.Validated

sealed trait Check[E, A, B] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =

Map[E, A, B, C](this, f)

}

object Check {

def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =

Pure(pred)

}

final case class Map[E, A, B, C](

check: Check[E, A, B],

func: B => C) extends Check[E, A, C] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(in).map(func)

}

final case class Pure[E, A](

pred: Predicate[E, A]) extends Check[E, A, A] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, A] =

pred(in)

}

Return to the exercise

J.7 Checks Part 2

It’s the same implementaঞon strategy as before with one wrinkle:
Validated doesn’t have a flatMap method. To implement flatMap
we must momentarily switch to Either and then switch back to
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Validated. The withEither method on Validated does exactly this.
From here we can just follow the types to implement apply.

import cats.Semigroup

import cats.data.Validated

import cats.syntax.either._

sealed trait Check[E, A, B] {

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def flatMap[C](f: B => Check[E, A, C]) =

FlatMap[E, A, B, C](this, f)

// other methods...

}

final case class FlatMap[E, A, B, C](

check: Check[E, A, B],

func: B => Check[E, A, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => func(b)(a).toEither))

}

// other data types...

Return to the exercise

J.8 Checks Part 3

Here’s a minimal definiঞon of andThen and its corrsponding AndThen

class:

sealed trait Check[E, A, B] {

import Check._

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]
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def andThen[C](that: Check[E, B, C]): Check[E, A, C] =

AndThen[E, A, B, C](this, that)

}

final case class AndThen[E, A, B, C](

check1: Check[E, A, B],

check2: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check1(a).withEither(_.flatMap(b => check2(b).toEither))

}

Return to the exercise

J.9 Recap

Here’s our final implementaton, including some ঞdying and repackaging
of the code:

import cats.Semigroup

import cats.data.Validated

import cats.syntax.semigroup._ // |+| syntax

import cats.syntax.cartesian._ // |@| syntax

import cats.syntax.validated._ // .valid and .invalid syntax

import cats.data.Validated._ // Valid and Invalid patterns

Here is our complete implementaঞon of Predicate, including the
and and or combinators and a Predicate.apply method to create a
Predicate from a funcঞon:

sealed trait Predicate[E, A] {

import Predicate._

def and(that: Predicate[E, A]): Predicate[E, A] =

And(this, that)
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def or(that: Predicate[E, A]): Predicate[E, A] =

Or(this, that)

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

this match {

case Pure(func) =>

func(a)

case And(left, right) =>

(left(a) |@| right(a)).map((_, _) => a)

case Or(left, right) =>

left(a) match {

case Valid(a1) => Valid(a)

case Invalid(e1) =>

right(a) match {

case Valid(a2) => Valid(a)

case Invalid(e2) => Invalid(e1 |+| e2)

}

}

}

}

object Predicate {

final case class And[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Or[E, A](

left: Predicate[E, A],

right: Predicate[E, A]) extends Predicate[E, A]

final case class Pure[E, A](

func: A => Validated[E, A]) extends Predicate[E, A]

def apply[E, A](f: A => Validated[E, A]): Predicate[E, A] =

Pure(f)

def lift[E, A](error: E, func: A => Boolean): Predicate[E, A]
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=

Pure(a => if(func(a)) a.valid else error.invalid)

}

Here is a complete implementaঞon of Check. Due to a type inference
bug in Scala’s pa�ernmatching, we’ve switched to implemenঞng apply
using inheritance:

sealed trait Check[E, A, B] {

import Check._

def apply(in: A)(implicit s: Semigroup[E]): Validated[E, B]

def map[C](f: B => C): Check[E, A, C] =

Map[E, A, B, C](this, f)

def flatMap[C](f: B => Check[E, A, C]) =

FlatMap[E, A, B, C](this, f)

def andThen[C](next: Check[E, B, C]): Check[E, A, C] =

AndThen[E, A, B, C](this, next)

}

object Check {

final case class Map[E, A, B, C](

check: Check[E, A, B],

func: B => C) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(a) map func

}

final case class FlatMap[E, A, B, C](

check: Check[E, A, B],

func: B => Check[E, A, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither(_.flatMap(b => func(b)(a).toEither))

}

https://issues.scala-lang.org/browse/SI-6680
https://issues.scala-lang.org/browse/SI-6680


320 APPENDIX J. SOLUTIONS FOR: CASE STUDY: DATA VALIDATION

final case class AndThen[E, A, B, C](

check: Check[E, A, B],

next: Check[E, B, C]) extends Check[E, A, C] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, C] =

check(a).withEither { _.flatMap (b => next(b).toEither) }

}

final case class Pure[E, A, B](

func: A => Validated[E, B]) extends Check[E, A, B] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, B] =

func(a)

}

final case class PurePredicate[E, A](

pred: Predicate[E, A]) extends Check[E, A, A] {

def apply(a: A)(implicit s: Semigroup[E]): Validated[E, A] =

pred(a)

}

def apply[E, A](pred: Predicate[E, A]): Check[E, A, A] =

PurePredicate(pred)

def apply[E, A, B](func: A => Validated[E, B]): Check[E, A, B]

=

Pure(func)

}

Return to the exercise

J.10 Recap Part 2

Here’s our reference soluঞon. Implemenঞng this required more
thought than we expected. Switching between Check and Predicate
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at appropriate places felt a bit like guesswork ঞll we got the rule into
our heads that Predicate doesn’t transform its input. With this rule
in mind things went fairly smoothly. In later secঞons we’ll make some
changes that make the library easier to use.

import cats.data.{NonEmptyList, OneAnd, Validated}

import cats.instances.list._

import cats.syntax.cartesian._

import cats.syntax.validated._

Here’s the implementaঞon of checkUsername:

// A username must contain at least four characters

// and consist entirely of alphanumeric characters

val checkUsername: Check[Errors, String, String] =

Check(longerThan(3) and alphanumeric)

And here’s the implementaঞon of checkEmail, built up from a number
of smaller components:

// An email address must contain a single `@` sign.

// Split the string at the `@`.

// The string to the left must not be empty.

// The string to the right must be

// at least three characters long and contain a dot.

val splitEmail: Check[Errors, String, (String, String)] =

Check(_.split('@') match {

case Array(name, domain) =>

(name, domain).validNel[String]

case other =>

"Must contain a single @ character".

invalidNel[(String, String)]

})

val checkLeft: Check[Errors, String, String] =

Check(longerThan(0))
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val checkRight: Check[Errors, String, String] =

Check(longerThan(3) and contains('.'))

val joinEmail: Check[Errors, (String, String), String] =

Check { case (l, r) =>

(checkLeft(l) |@| checkRight(r)).map(_+"@"+_) }

val checkEmail: Check[Errors, String, String] =

splitEmail andThen joinEmail

Finally, here’s a check for a User that depends on checkUsername and
checkEmail:

final case class User(username: String, email: String)

def createUser(

username: String,

email: String): Validated[Errors, User] =

(checkUsername(username) |@| checkEmail(email)).map(User)

We can check our work by creaঞng a couple of example users:

createUser("Noel", "noel@underscore.io")

// res14: cats.data.Validated[wrapper.Errors,User] = Valid(User(

Noel,noel@underscore.io))

createUser("", "dave@underscore@io")

// res15: cats.data.Validated[wrapper.Errors,User] = Invalid(

NonEmptyList(Must be longer than 3 characters, Must contain

a single @ character))

One disঞnct disadvantage of our example is that it doesn’t tell uswhere
the errors came from. We can either achieve that through judicious
manipulaঞon of error messages, or we can modify our library to track
error locaঞons as well as messages. Tracking error locaঞons is outside
the scope of this case study, so we’ll leave this as an exercise to the
reader.

Return to the exercise
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J.11 Kleislis

Here’s an abbreviated definiঞon of run. Like apply, the method must
accept an implicit Semigroup:

import cats.Semigroup

import cats.data.Validated

sealed trait Predicate[E, A] {

def run(implicit s: Semigroup[E]): A => Either[E, A] =

(a: A) => this(a).toEither

def apply(a: A): Validated[E, A] =

??? // etc...

// other methods...

}

Return to the exercise

J.12 Kleislis Part 2

Working around limitaঞons of type inference can be quite frustraঞng
when wriঞng this code, Working out when to convert between
Predicates, funcঞons, and Validated, and Either simplifies things,
but the process is sঞll complex:

import cats.data.{Kleisli, NonEmptyList, Validated}

import cats.instances.either._

import cats.instances.function._

import cats.instances.list._

import cats.syntax.cartesian._

import cats.syntax.validated._

Here is the preamble we suggested in the main text of the case study:
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type Errors = NonEmptyList[String]

def error(s: String): NonEmptyList[String] =

NonEmptyList(s, Nil)

type Result[A] = Either[Errors, A]

type Check[A, B] = Kleisli[Result, A, B]

def check[A, B](func: A => Result[B]): Check[A, B] =

Kleisli(func)

def checkPred[A](pred: Predicate[Errors, A]): Check[A, A] =

Kleisli[Result, A, A](pred.run)

Our base predicate definiঞons are essenitally unchanged:

def longerThan(n: Int): Predicate[Errors, String] =

Predicate.lift(

error(s"Must be longer than $n characters"),

str => str.size > n)

val alphanumeric: Predicate[Errors, String] =

Predicate.lift(

error(s"Must be all alphanumeric characters"),

str => str.forall(_.isLetterOrDigit))

def contains(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char"),

str => str.contains(char))

def containsOnce(char: Char): Predicate[Errors, String] =

Predicate.lift(

error(s"Must contain the character $char only once"),

str => str.filter(c => c == char).size == 1)

Our username and email examples are slightly different in that wemake
use of check() and checkPred() in different situaঞons:



J.12. KLEISLIS PART 2 325

val checkUsername: Check[String, String] =

checkPred(longerThan(3) and alphanumeric)

val splitEmail: Check[String, (String, String)] =

check(_.split('@') match {

case Array(name, domain) =>

Right((name, domain))

case other =>

Left(error("Must contain a single @ character"))

})

val checkLeft: Check[String, String] =

checkPred(longerThan(0))

val checkRight: Check[String, String] =

checkPred(longerThan(3) and contains('.'))

val joinEmail: Check[(String, String), String] =

check { case (l, r) =>

(checkLeft(l) |@| checkRight(r)).map(_+"@"+_) }

val checkEmail: Check[String, String] =

splitEmail andThen joinEmail

Finally, we can see that our createUser example works as expected
using Kleisli:

final case class User(username: String, email: String)

def createUser(username: String, email: String): Either[Errors,

User] = (

checkUsername.run(username) |@|

checkEmail.run(email)

).map(User)

createUser("Noel", "noel@underscore.io")

// res16: Either[Errors,User] = Right(User(Noel,noel@underscore.

io))
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createUser("", "dave@underscore@io")

// res17: Either[Errors,User] = Left(NonEmptyList(Must be longer

than 3 characters))

Return to the exercise



Appendix K

Soluঞons for: Case Study:
Commutaঞve Replicated Data
Types

K.1 GCounter Implementaঞon

Hopefully the descripঞon above was clear enough that you can get to
an implementaঞon like the below.

final case class GCounter(counters: Map[String, Int]) {

def increment(machine: String, amount: Int) =

GCounter(counters + (machine -> (amount + counters.getOrElse

(machine, 0))))

def get: Int =

counters.values.sum

def merge(that: GCounter): GCounter =

GCounter(that.counters ++ {

for((k, v) <- counters) yield {

327
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k -> (v max that.counters.getOrElse(k,0))

}

})

}

Return to the exercise

K.2 BoundedSemiLaমce Instances

It’s natural to place the instance in the companion object of
BoundedSemiLattice so they are in the implicit scope without
imporঞng them.

Implemenঞng the instance for Set is good pracঞce with using implicit
methods.

trait BoundedSemiLattice[A] extends Monoid[A] {

def combine(a1: A, a2: A): A

def empty: A

}

object BoundedSemiLattice {

implicit object intBoundedSemiLatticeInstance extends

BoundedSemiLattice[Int] {

def combine(a1: Int, a2: Int): Int =

a1 max a2

val empty: Int = 0

}

implicit def setBoundedSemiLatticeInstance[A]:

BoundedSemiLattice[Set[A]] =

new BoundedSemiLattice[Set[A]]{

def combine(a1: Set[A], a2: Set[A]): Set[A] =

a1 union a2

val empty: Set[A] =
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Set.empty[A]

}

}

Return to the exercise

K.3 Generic GCounter
import cats.syntax.semigroup._

import cats.syntax.foldable._

import cats.instances.map._

final case class GCounter[A](counters: Map[String,A]) {

def increment(machine: String, amount: A)(implicit m: Monoid[A

]) =

GCounter(counters + (machine -> (amount |+| counters.

getOrElse(machine, m.empty))))

def get(implicit m: Monoid[A]): A =

this.counters.foldMap(identity)

def merge(that: GCounter[A])(implicit b: BoundedSemiLattice[A

]): GCounter[A] =

GCounter(this.counters |+| that.counters)

}

Return to the exercise
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